TY - CONF A1 - Müller, Christina A1 - Pavlovic, Mato A1 - Bartsch, Ludwig A1 - Rosenthal, Martina A1 - Jaenisch, Gerd-Rüdiger A1 - Holstein, R. T1 - Analysis and synthesis of NDT reliability using the extended modular model N2 - The aim of all the effort devoted to NDE reliability is to evaluate the reliability accurately, reliably and efficiently, in accordance with the specific requirements of industrial application taking into account the very different nature of influencing factors. The set up of the Modular Reliability Model in 1997 was a big step forward in the understanding of influencing mechanisms in terms of the three different main elements, i.e. the intrinsic capability (IC), the application parameters (AP) and the human factors (HF). The intrinsic capability stands for the pure physical-technological process of the signal detection caused by the waves or the rays from a material defect in the presence of noise (caused by the material and the devices). This intrinsic capability is the upper bound of the possible reliability. Already when measuring this intrinsic capability for thick walled components the original one-parameter POD should be extended to a multi-parameter POD, where, in addition to the defect size, a number of additional physical parameters, such as the grain size distribution (or attenuation), defect depth, and angle or surface roughness, must be considered. For real life cycle assessments it is necessary to evaluate the signal response from real defects. The industrial application factors, e.g. coupling conditions, limited accessibility, heat and environmental vibrations, diminish the reliability. The amount of reduction can be determined quantitatively, if the underlying conditions are controlled. In case they are not controlled it is necessary to count for a (unknown) fluctuation in the reliability in the field anyway. The third group of important influencing factors are the human factors, which do not only cover the individual performance capability of the inspectors but also the design of the working place, the procedure, the teamwork quality, interaction with systems, the organization, and finally, the relationship between the companies involved in the inspection process and to which extend the responsible parties are aware of it. Both the internal and external organizational context, affect not only the HF but also the IC and AP. After having analysed the single factors separately it is necessary to look how everything is interconnected. When comparing an “ideal inspection” with a “real inspection” it is worthwhile to look at the existing practices, rules and standards. How do they really support reliable testing? With respect to the industrial end user, it needs to be shown how the level of reliability of NDE, influenced by the different factors and their interaction, has an impact on acceptance or rejection of safety critical parts. The approach of analysis and synthesis will be illustrated by examples of the reliability investigation of the inspection of copper canisters for nuclear fuel deposit in Sweden and Finland and German Railway inspections (hollow axle testing). T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - Modular model PY - 2016 AN - OPUS4-37602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Selby, G. A1 - Dunlap, M. A1 - Müller, Christina T1 - Observations on implementation of the BAM holistic reliability model N2 - Achieving reliability in NDE for nuclear power plants is a complex challenge. As engineers we tend to focus on the equipment and the written procedures; they are easy for us to understand, measure and control. This focus addresses only one of the four aspects of the BAM holistic model, namely, Intrinsic Capability. Another of the model's modules, Application Parameters, also is engineering-oriented as examiners work to ensure that the equipment and procedure can be applied correctly in the actual examination environment as it is found in the field, though in addition to engineering it requires organizational foresight and commitment to understand and prepare for that specific environment well in advance. The Human Factors reliability module is harder for us to think about. The procedure developers think, "Of course all the examiners in the field will understand all aspects of my procedure and execute them correctly." Most of our bad experiences with reliability occur when this happy thought turns out to be untrue. And finally, perhaps the hardest reliability module to affect is Organizational Context. Getting all of the stakeholders -- the plant owner, the NDE company, the examiners, the regulators, the qualification body, the equipment suppliers -- to think about reliability in the same way, years in advance of the examination, to think about reliability at every step in the long process leading to the day of the examination itself, is a heavy lift indeed. T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - Modular model PY - 2016 AN - OPUS4-37603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanzler, Daniel A1 - Müller, Christina T1 - Evaluating RT systems with a new POD approach N2 - The usefulness and purpose of evaluating nondestructive testing (NDT) systems and their capabilities has changed in the last decade. The conventional method of simply applying a familiar statistical algorithm to say whether the system is usable for the tasks is history. Nowadays, multiple parameter methods which describe the probabilities of detection (POD) of different systems or real defects need new characteristics and a broader variety of statistical models to describe the true system behaviour. The appraisal of the NDT system involves diverse departments within a company (engineering, NDT-operators, and statisticians), but is, at the same time, more needed and requested than in the past. In this article, an approach is discussed in which professionals from different fields worked well together, accomplishing cost-intensive metallographic studies in correlation with well-understood physical behaviour of NDT-methods as well as deep-discussed mathematical methods to create a holistic evaluation of the technical reliability for a specific radiographic testing (RT) equipment. The first part of the publication will show the comparison between metallographic grinding and the RT indications. An essential innovation over past evaluation methods was the use of a multi-scale smoothing algorithm, which describes physical parameters, which were not used in evaluation like the POD in this way in the past. In the second part the statistical requirements for the POD take the focus. It can often be hard to make significant statements; especially in the case where only a small amount of data is available. The combination of data and the use of knowledge from simulations are essential. One possible solution will be shown for the RT evaluation. The methodology is used for evaluating the digital RT system for the inspection of electron-beam welds, which was method considered to seal the Finnish copper canisters for the final deposit of spent nuclear fuel. T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - POD KW - RT PY - 2016 AN - OPUS4-37607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Hickmann, Stefan A1 - Müller, Alexander T1 - Infinite life of CFRP evaluated non-destructively with X-ray-refraction topography in-situ mechanical loading N2 - Carbon Fibre Reinforced Plastics (CFRP) are more and more used in modern civil aircrafts. These days the whole fuselage is made of this material (B787; A350). Due to strict certification standards the normal in-service loading gives a low stress level compared to the static and even the fatigue strength of the material. Hence CFRP are assumed to have an infinite life. To evaluate this assumption, fatigue tests on CFRP-specimens were performed up to 108 load cycles and the first inter-fibre failure was evaluated non-destructively by accompanying X-ray-refraction topography. A tensile testing machine was integrated in a small angle X-ray scattering (SAXS) setup. X-ray refraction topography was performed while the CFRP-samples were tensile loaded. This non-destructive technique enables the detection of micro-cracking and inter-fibre failure especially for CFRP. For Glass Fibre Reinforced Plastic (GFRP) X-ray refraction and in-situ loading has already been successfully used. The increase of inner surfaces due to inter fibre failure was measured as a function of the stress state. Fatigue tests were performed at and below the limit of inter-fibre failure strength. State of the art is to assume the failure of the samples under cyclic loading as the fatigue life. Accompanying non-destructive X-ray refraction measurements reflects the damage state and enables to trace its evolution even if the total failure of the specimens does not occur. This investigation technique is of high interest to give the engineer a design value of infinite life which is practically often reached due to knock down factors of certification standards. Finally the infinite life was found for cyclic fatigue loaded CFRP-samples even under high inter fibre transverse and shear loading investigated up to 108 load cycles. T2 - 19th World Conference on Non-Destructive Testing CY - Munich, Germany DA - 13.06.2016 KW - CFRP KW - NDT KW - Fatigue KW - Damage evolution PY - 2016 AN - OPUS4-37567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holstein, R. A1 - Müller, Christina T1 - Analyzing the reliability of non-destructive tests using the modular modell - a practical approach T2 - Proceedings of the 19th World Conference on Non-Destructive Testing N2 - Non-destructive testing is an important tool to guarantee the safety of railway traffic. The infrastructure with tracks, switches and sleepers is regularly tested, the locomotives and wagons with their wheels, bogies and axles as well. Many years of experience and some events lead in Germany to a good practice in testing the railway components. Now, European authorities are drafting a system of common requirements and standards for the European Railway Market. The German practice combines an intensive training of the NDT-personnel including sufficient time for practical exercises with organizational measures of the companies, responsible for rolling stock and infrastructure. Through the example of UT-testing of railway axles it will be shown, how training and organizational measures influence the reliability of such testing. T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - Modular model KW - Railway KW - Human factors PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-375712 UR - http://www.ndt.net/article/wcndt2016/papers/mo1d4.pdf SP - id 19519, 1 EP - 6 AN - OPUS4-37571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanzler, D. A1 - Müller, Christina T1 - Evaluating RT systems with a new POD approach T2 - Proceedings of the 19th World Conference on Non-Destructive Testing N2 - The usefulness and purpose of evaluating nondestructive testing (NDT) systems and their capabilities has changed in the last decade. The conventional method of simply applying a familiar statistical algorithm to say whether the system is usable for the tasks is history. Nowadays, multiple parameter methods which describe the probabilities of detection (POD) of different systems or real defects need new characteristics and a broader variety of statistical models to describe the true system behaviour. The appraisal of the NDT system involves diverse departments within a company (engineering, NDT-operators, and statisticians), but is, at the same time, more needed and requested than in the past. In this article, an approach is discussed in which professionals from different fields worked well together, accomplishing cost-intensive metallographic studies in correlation with well-understood physical behaviour of NDT-methods as well as deep-discussed mathematical methods to create a holistic evaluation of the technical reliability for a specific radiographic testing (RT) equipment. The first part of the publication will show the comparison between metallographic grinding and the RT indications. An essential innovation over past evaluation methods was the use of a multi-scale smoothing algorithm, which describes physical parameters, which were not used in evaluation like the POD in this way in the past. In the second part the statistical requirements for the POD take the focus. It can often be hard to make significant statements; especially in the case where only a small amount of data is available. The combination of data and the use of knowledge from simulations are essential. One possible solution will be shown for the RT evaluation. The methodology is used for evaluating the digital RT system for the inspection of electron-beam welds, which was method considered to seal the Finnish copper canisters for the final deposit of spent nuclear fuel. T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - POD KW - RT PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-375732 UR - http://www.ndt.net/article/wcndt2016/papers/we1d4.pdf SP - id 19535, 1 EP - 8 AN - OPUS4-37573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McGrath, B. A1 - Holstein, R. A1 - Bertovic, Marija T1 - How NDT companies can benefit from human factors knowledge T2 - Proceedings of the 19th World Conference on Non-Destructive Testing N2 - Ultrasonic phased array is, currently, the technology which is being applied as the solution to a lot of inspection problems. The perceived benefits are seen to be worth the outlay on equipment and specialised personnel. Yet, there is a source of knowledge, freely available, which can also deliver immediate benefits, through more reliable inspection results, and consequently increased client confidence, but which is largely ignored by the greater part of the NDT community. This talk will review the latest Human Factors knowledge and provide practical illustrations of how companies can use it to improve their competitive edge. T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - Human factors PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-375742 UR - http://www.ndt.net/article/wcndt2016/papers/tu4d3.pdf SP - id 19532, 1 EP - 8 AN - OPUS4-37574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ronneteg, U. A1 - Grybäck, T. A1 - Bertovic, Marija A1 - Müller, Christina A1 - Pavlovic, Mato T1 - Safe for 1 million years – NDT matters! T2 - Proceedings of the 19th World Conference on Non-Destructive Testing N2 - The General Guidance in the Swedish regulations state that the safety assessment for a final repository for spent nuclear fuel should be 1 million years after closure. SKB developed the KBS-3 method, according to which the spent nuclear fuel is protected by three barriers. It is encapsulated in canisters with a diameter of 1 metre and a length of 5 metres. The canister consists of a cast iron insert surrounded by a 5 centimetre thick shell of copper. The canisters are disposed in the bedrock at a depth of about 500 meters surrounded by bentonite clay. In order to assess the safety over this extremely long period, an extensive quality control programme is applied to the canisters before deposit. In this programme, the use of non-destructive testing (NDT) is vital. The safety assessment of the canister in turn places high demands on the coverage, detectability, and reliability of the applied NDT inspections of the canister parts, i.e. cast iron insert, copper base, tube and lid, and the copper friction stir welds (FSW). This paper presents the extensive full-scale inspection development programme that runs at the Canister Laboratory in Oskarshamn (Sweden). In order to fulfil the high demands, phased array ultrasonic inspection techniques are developed using practical trials aided by ultrasonic modelling. The techniques apply, for example, different frequencies, inspection angles, focus depths, and both longitudinal and shear waves. Increased inspection reliability of the FSW is achieved by applying digital X-ray technique using a 9 MeV linear accelerator and a line detector. To complete the coverage, complementary surface inspections methods, i.e. eddy current array, magnetic flux sensor techniques and magnetic particle inspection, are applied. The canister safety assessment was the driving force to include reliability studies during the NDT development. Initially, the technical reliability was considered, resulting in development of advanced POD models (probability of detection). In combination with human factors studies, these models were implemented as tools in the development of the NDT techniques. Human factors studies were also applied to improve the inspection procedures to be more user-friendly enabling reliable inspections. T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - Spent nuclear fuel PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-375785 UR - http://www.ndt.net/article/wcndt2016/papers/we4e4.pdf SP - id 19464, 1 EP - 9 AN - OPUS4-37578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bertovic, Marija T1 - A human factors perspective on the use of automated aids in the evaluation of NDT data JF - AIP Conference Proceedings N2 - In comparison to manual NDT methods, mechanized NDT is considered to be more reliable for a number of reasons, one of which being that the role of the inspectors and, therewith, the potential for human error, have been reduced. However, human-automation interaction research suggests that in spite of its numerous benefits, automation can lead to new yet unknown risks. One of those risks is inappropriate reliance on automation, which can result in automation misuse and disuse. The aim of this study was to investigate the potential inappropriate use of automation (specifically - the automated aids) in NDT addressing therewith the prevalent belief in the high reliability of automation held by the NDT community. To address this issue, 70 NDT trainees were asked to control the results of an eddy current data evaluation, allegedly provided by an automated aid, i.e. indication detection and sizing software. Seven errors were implemented into the task and it was measured to what extent the participants agreed with the aid. The results revealed signs of both misuse (agreeing with the aid even though it is incorrect) and disuse (disagreeing with the aid even though it is correct) of the aid that can affect the reliability with which inspections are carried out. Whereas misuse could be explained by a lower propensity to take risks and by a decreased verification behaviour-possibly due to bias towards automation and complacent behaviour-, disuse was assigned to problems in establishing the sizing criterion or to general difficulties in sizing. The implications of these results for the NDT praxis including suggestions for the decrease of automation bias are discussed. T2 - 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Minneapolis, MN, USA DA - 26.07.2015 KW - Non-Destructive Testing KW - Human Factors KW - NDT KW - Automation Bias PY - 2016 UR - http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4940449 DO - https://doi.org/10.1063/1.4940449 VL - 1706 SP - 020003-1 EP - 020003-16 PB - Amer institute physics CY - Melville, NY, USA AN - OPUS4-36561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Christina A1 - Bertovic, Marija A1 - Kanzler, Daniel A1 - Ronneteg, U. T1 - Conclusions of the 6th European American workshop on reliability of NDE JF - AIP Conference Proceedings N2 - The principles of Open Space Technology (OST) were again applied to discuss burning issues in the field of NDE reliability. The results of the discussions among NDE professionals concerning new reliability methods, human factors and integrated solutions will be presented. T2 - 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Minneapolis, Minnesota, USA DA - 26.07.20155 KW - NDT KW - Reliability KW - Probability of detection KW - Human factors KW - POD PY - 2016 SN - 978-0-7354-1353-5 DO - https://doi.org/10.1063/1.4940452 SN - 0094-243X VL - 1706 SP - 020006-1 EP - 020006-9 PB - AIP Publishing AN - OPUS4-36637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -