TY - JOUR A1 - Payton, E. A1 - Nolze, Gert T1 - The Backscatter Electron Signal as an Additional Tool for Phase Segmentation in Electron Backscatter Diffraction JF - Microscopy and Microanalysis N2 - The advent of simultaneous energy dispersive X-ray spectroscopy (EDS) data collection has vastly improved the phase separation capabilities for electron backscatter diffraction (EBSD) mapping. A major problem remains, however, in distinguishing between multiple cubic phases in a specimen, especially when the compositions of the phases are similar or their particle sizes are small because the EDS interaction volume is much larger than that of EBSD, and the EDS spectra collected during spatial mapping are generally noisy due to time limitations and the need to minimize sample drift. The backscatter electron (BSE) signal is very sensitive to the local composition due to its atomic number (Z) dependence. BSE imaging is investigated as a complimentary tool to EDS to assist phase segmentation and identification in EBSD through examination of specimens of meteorite, Cu dross, and steel oxidation layers. The results demonstrate that the simultaneous acquisition of EBSD patterns, EDS spectra, and the BSE signal can provide new potential for advancing multiphase material characterization in the scanning electron microscope. KW - Electron backscatter diffraction KW - Energy dispersive x-ray spectroscopy KW - Scanning electron microscopy KW - Multiphase microstructure KW - Phase identification KW - Backscattered electron imaging KW - Meteorite KW - Monte Carlo simulation PY - 2013 DO - https://doi.org/10.1017/S1431927613000305 VL - 19 IS - 4 SP - 929 EP - 941 AN - OPUS4-37895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Link, T. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Lucas, H. T1 - Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys JF - International Journal of Materials Research N2 - Several mechanisms for porosity growth in single crystal nickel-based superalloys during homogenisation heat treatment have been proposed in the literature. They were carefully checked using different experimental methods, namely quantitative light microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and density measurements. It is shown that the main mechanism is the Kirkendall–Frenkel effect, i.e. generation of voids due to uncompensated efflux of Al atoms from dissolving γ/γ′-eutectic areas. The Al diffusion is supported by the afflux of vacancies from surrounding γ-matrix which results in porosity growth. This conclusion is confirmed by the estimation of the vacancy afflux towards the dissolving eutectic. KW - Ni-base superalloy KW - Eutectic KW - Vacancies KW - Porosity PY - 2013 VL - 104 IS - 8 SP - 776 EP - 782 PB - Carl Hanser Verlag AN - OPUS4-37983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Payton, E. J. A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert T1 - Phase Identification by Image Processing of EBSD Patterns JF - Microscopy and Microanalysis N2 - Automated electron backscatter diffraction (EBSD) is generally unable to distinguish between multiple cubic phases in a specimen without additional information, such as that obtained by simultaneous energy dispersive X-ray spectroscopy (EDS). Small particles of phases with relatively similar compositions push the limits of phase identification using simultaneous EBSD and EDS, and a mismatch exists between the spatial resolutions of these two techniques due to them having different electron interaction volumes. In a recent paper, the present authors explored using backscatter detectors mounted on top of the EBSD detector to obtain atomic number (Z) contrast images that could be used for phase segmentation in cases where the results from the EBSD and EDS signals remain ambiguous. In the present work, we show that similar information can be obtained from the raw EBSD patterns themselves at higher spatial resolution than was obtained from the backscatter detectors, with the additional advantage of having no spatial mismatch between the data collection grids. KW - Phase identification KW - Backscattered electrons KW - EBSD KW - SEM PY - 2013 DO - https://doi.org/10.1017/S143192761300620X VL - 19 IS - Suppl. 2 SP - 842 EP - 843 AN - OPUS4-37985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Payton, E. A1 - Winkelmann, Aimo T1 - Advanced EBSD Pattern Interpretation through Iterative Post-Processing JF - Microscopy and Microanalysis N2 - Since the BSE signal depends on many factors, like the chemistry of the phase and the acceleration voltage, the size and position of the detector array is (slightly) different from phase to phase so that an (iterative) post-processing of the stored patterns is highly recommended. The derived BSE signal can be used for phase assignment in high resolution and high speed maps when EBSD fails and/or EDS (energy dispersive spectroscopy) needs too much time for a suitable and parallel signal acquisition. KW - Electron backscatter diffraction KW - Phase identification KW - Microstructure KW - SEM PY - 2013 DO - https://doi.org/10.1017/S1431927613005631 VL - 19 IS - Suppl. 2 SP - 728 EP - 729 AN - OPUS4-37986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Combination of colored patterns and cubes for crystallographic point group visualization JF - Crystal Research and Technology N2 - A concept based on the application of a cube as a general polyhedron is presented for the visualization of point group symmetry. The cube is used to represent both the highest and lowest crystal symmetries, with differences observable as patterns characteristic to each point group. Patterns are generated using direction-specific color keys, which enable the recognition of point group-specific distribution of vectors in an external reference frame. For the visualization of the incoherent hexagonal crystal classes, two twinned cubes are applied in order to generate symmetry operators that would otherwise be missing. The resulting hexagonal dipyramid is described in the frame of a cube, reducing the number of used symmetry operators from 72 to 60. The complete set of 32 polyhedra are suitable, for example, as a visual aid for understanding the crystal symmetry and/or sub- and supergroup relationships. KW - Subgroup KW - Crystal class KW - Color key KW - Fundamental zone KW - Teaching PY - 2013 DO - https://doi.org/10.1002/crat.201300134 VL - 48 IS - 7 SP - 476 EP - 489 PB - WILEY-VCH AN - OPUS4-37988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Azimuthal Projections: Data Rotation and Projection Switching in Real Time JF - Microscopy and Microanalysis N2 - Pole figures are often used to present crystal orientation data. The huge number of single orientation measurements acquired by electron backscatter diffraction (EBSD) poses a challenge for pole figure representation due to the large number of calculations required. This significantly reduces the speed at which the data may be rotated and affects the ability to switch between different projection types. In the present work, it will be shown that satisfactory representation of orientation data in different projection types can generally be achieved by an imaging of a spherical projection. With this approach, explicit calculation of the projections is no longer required, allowing for both real-time dataset rotation and real-time switching between all projection types relevant to materials science. The technique can be applied to any other directional property distribution, for example, not only for EBSD orientation presentation. KW - Stereographic projection KW - Equal area projection KW - Gnomonic projection KW - Azimuthal projection KW - Crystal orientation KW - Projection imaging KW - Coordinate transformation KW - Real-time rotation PY - 2013 DO - https://doi.org/10.1017/S1431927613001414 VL - 19 SP - 950 EP - 958 PB - Microscopy Society of America AN - OPUS4-37989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Payton, E. T1 - Messengers from Space: A Scanning Electron Microscopy Investigation JF - Imaging & Microscopy N2 - The macro- and microstructure of iron meteorites provide valuable insights into both the inner structure of our planet and the history of our solar system. High speed collision events in the asteroid belt send the meteorites careening toward Earth. The collisions produce unique deformation microstructures. With cooling rates on the scale of a few degrees per million years, iron meteorites can consist of crystal sizes on the order of meters prior to the collision events. These extremely slow cooling rates result in phase transformations occurring at conditions near thermodynamic equilibrium. Preserving meteorite fragments is important for future studies of phase transformations, material behavior at high strain rates, and the origin of the universe. KW - Meteorite KW - Phase identification KW - Hibbingite KW - Orientation relationship KW - Electron backscatter diffraction KW - Energy dispersive x-ray spectroscopy KW - EDX PY - 2013 IS - 3 SP - 2 EP - 4 PB - GIT Verlag AN - OPUS4-37981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Elabshihy, Karim A1 - Kalinka, Gerhard T1 - Investigation of the time-dependent behavior of cnt-filled epoxy using nanoindentation N2 - Epoxy/Carbon nanotube (CNT) composites are interesting materials that could be used in a wide variety of applications. In this study, CNT contents of 0.25, 0.5, 1 and 2 wt% were used for reinforcing epoxy. A nanoindentation device and a temperature regulating system were developed in order to investigate the effect of CNTs on the time-dependent properties of epoxy using relaxations and creep tests on the nano scale. The relaxation tests showed a significant shift for the relaxation spectrum towards shorter times with introducing a low CNT content of 0.25 wt%. Additionally, creep tests showed that both the holding time at a constant load and the unloading velocity have a major effect on the contact stiffness. However, there was no effect for the CNTs on the creep behavior with contents lower than 1 wt%, which was related to the presence of a percolation threshold around this value. T2 - Nanobrücken 2013 CY - Dresden, Germany DA - 20.03.2013 KW - Epoxy KW - CNT KW - Time-dependent KW - Nanoindentation PY - 2013 AN - OPUS4-35533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröter, Maria-Astrid A1 - Sturm, Heinz A1 - Holschneider, M. T1 - Phase and amplitude patterns in DySEM mappings of vibrating microstructures JF - Nanotechnology N2 - We use a dynamic scanning electron microscope (DySEM) to analyze the movement of oscillating micromechanical structures. A dynamic secondary electron (SE) signal is recorded and correlated to the oscillatory excitation of scanning force microscope (SFM) cantilever by means of lock-in amplifiers. We show, how the relative phase of the oscillations modulate the resulting real part and phase pictures of the DySEM mapping. This can be used to obtain information about the underlying oscillatory dynamics. We apply the theory to the case of a cantilever in oscillation, driven at different flexural and torsional resonance modes. This is an extension of a recent work (Schr¨oter et al 2012 Nanotechnology 23 435501), where we reported on a general methodology to distinguish nonlinear features caused by the Imaging process from those caused by cantilever motion. KW - DySEM KW - mechanical nonlinearity KW - vibration KW - DySEM KW - mechanische Nichtlinearitäten KW - Vibration PY - 2013 DO - https://doi.org/doi:10.1088/0957-4484/24/21/215701 VL - 24 IS - 21 SP - 215701-1 EP - 215701-10 PB - IOP PUBLISHING LTD CY - Bristol, UK AN - OPUS4-35396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebhardt, M.O. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical analysis of hot cracking in laser-hybrid welded tubes JF - Advances in materials science and engineering N2 - In welding experiments conducted on heavy wall pipes, the penetration mode (full or partial penetration) occurred to be a significant factor influencing appearance of solidification cracks. To explain the observed phenomena and support further optimization of manufacturing processes, a computational model was developed, which used a sophisticated strategy to model the material. High stresses emerged in the models in regions which showed cracking during experiments. In partial penetration welding, they were caused by the prevention of weld shrinkage due to the cold and strong material below the joint. Another identified factor having an influence on high stress localization is bulging of the weld. PY - 2013 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-302961 DO - https://doi.org/10.1155/2013/520786 SN - 1687-8442 SN - 1687-8434 IS - Article ID 520786 SP - 1 EP - 8 PB - Hindawi Publishing Corporation CY - New York, NY, USA AN - OPUS4-30296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -