TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Brunner-Schwer, C. A1 - Knöfel, F. A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laserstrahlhybridschweissen von Türmen für Windkraftanlagen Ökonomische und ökologische Vorteile N2 - Das Laserstrahlhybridschweißen ist beim Schweißen von Türmen für Windkraftanlagen eine Alternative zum Unterpulverschweißen von Dickblechen in Mehrlagentechnik und bietet hier ökonomische und ökologische Vorteile. Der industrielle Einsatz des Verfahrens ist jedoch durch prozessspezifische Herausforderungen eingeschränkt. Die im Beitrag beschriebene kontaktlose elektromagnetische Badstütze dient zur Erweiterung des Verfahrenspotenzials im Dickblechbereich >15 mm. KW - Elektromagnetische Badstütze KW - Laserhybridschweißen KW - Windkraftanlagen KW - Ökonomische und ökologische Vorteile PY - 2022 VL - 7 SP - 340 EP - 347 PB - DVS Media GmbH AN - OPUS4-56372 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Improvement of Charpy impact toughness by using an AC magnet backing system for laser hybrid welding of thick S690QL steels N2 - The study deals with the influence of the heat input and the resulting cooling times on the microstructure and Charpy impact toughness of single-pass laser hybrid welded 20-mm thick high-strength steel S690QL. The main focus is on the change of the mechanical properties over the entire seam thickness. The cooling times were measured in-situ using a pyrometer and an optical fibre in three different depths of the seam where Charpy impact test specimens were also later taken. Thereby, three different heat inputs from 1.3 kJ/mm to 2 kJ/mm were investigated. Despite the observed decreased values of both t8/5-cooling time and the Charpy impact toughness in the root part of the seam, the required impact toughness of 38 J/cm2 could be reached in dependance on applied heat input, especially at the heat input of 1.6 kJ/mm. T2 - 12th CIRP conference on photonic technologies [lane 2022] CY - Fürth, Germany DA - 04.09.2022 KW - Thick-plate welding KW - Laser hybrid welding KW - Electromagnetic backing KW - Charpy impact toughness KW - Thermal cycles PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-563731 VL - 111 SP - 462 EP - 465 PB - Elsevier B.V. AN - OPUS4-56373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jokisch, T. A1 - Gook, S. A1 - Marko, A. A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser beam welding of additive manufactured components: Applicability of existing valuation regulations N2 - With additive manufacturing in the powder bed, the component size is limited by the installation space. Joint welding of additively manufactured parts offers a possibility to remove this size limitation. However, due to the specific stress and microstructure state in the additively built material, it is unclear to what extent existing evaluation rules of joint welding are also suitable for welds on additive components. This is investigated using laser beam welding of additively manufactured pipe joints. The welds are evaluated by means of visual inspection, metallographic examinations as well as computed tomography. The types of defects found are comparable to conventional components. This is an indicator that existing evaluation regulations also map the possible defects occurring for weld seams on additive components. KW - Weld imperfections KW - Additive manufacturing KW - Weldability KW - Laser welding PY - 2022 VL - 2 SP - 109 EP - 113 PB - DVS Media GmbH AN - OPUS4-56374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Elektromagnetische Schmelzbadbeeinflussung beim Laserhybridschweißen von Dickblechen N2 - Die technischen Entwicklungen in der Lasertechnologie in den letzten Jahrzehnten haben eine neue Generation von Hochleistungslasersystemen im Leistungsbereich bis zu 100 kW auf den Markt gebracht. Dennoch ist die industrielle Anwendung des Hochleistungslaserstrahlschweißens auf bis zu 15 mm dicke Bleche beschränkt. Mögliche Ursachen der Einschränkungen des Verfahrens sind z.B. die Sensibilität des Verfahrens auf Fertigungstoleranzen wie Spalt und Kantenversatz, die erhöhte Tropfenbildung bei höheren Blechdicken und eine inhomogene Verteilung des Zusatzwerkstoffes beim Laserhybridschweißen. In dieser Studie wird ein auf extern angelegte Magnetfelder basierte elektromagnetische Schmelzbadstütze eingesetzt, um die Grenzen des Verfahrens zu erweitern und die Herausforderungen zu minimieren. Der wesentliche Vorteil der elektromagnetischen Schmelzbadstütze ist, dass sie berührungslos arbeitet. Mit Hilfe der elektromagnetischen Schmelzbadstütze konnten bei 20 mm dicken Proben aus S355J2 die Tropfenbildung an der Wurzel vermieden werden. Zudem wurde der Einfluss der Kantenqualität auf die Schweißnahtqualität untersucht, wobei verschiedene Schneidverfahren zur Kantenvorbereitung eingesetzt wurden, wie z.B. Plasma-, Brenn- oder Laserschneiden. Es konnte gezeigt werden, dass auch bei schlechteren Kantenvorbereitung im Gegensatz zu gefrästen Bauteilen die Werkstoffe einlagig mittels Laserhybridschweißen bei einer hohen Schweißnahtqualität gefügt werden konnten. Bei plasmageschnittenen Proben wurden zudem eine Spaltüberbrückbarkeit bzw. Kantenversatz von bis zu 2 mm sicher überbrückt. Des Weiteren war es mit Hilfe der externen Magnetfelder möglich, die Durchmischung des Zusatzwerkstoffes über die gesamte Schweißnahttiefe deutlich zu homogenisieren. T2 - 42. Assistentenseminar der Wissenschaftlichen Gesellschaft Fügetechnik e.V. CY - Blankenau, Germany DA - 06.10.2021 KW - Elektromagnetische Schmelzbadstütze KW - Laserhybridschweißen KW - Dickblech PY - 2022 VL - 385 SP - 1 EP - 7 PB - DVS Media GmbH AN - OPUS4-56375 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of the weld pool geometry on solidification cracking in partial penetration high power laser beam welding N2 - Solidification cracking is still a serious problem in laser beam welding, especially in the welding of thick-walled plates. The influence of weld pool geometry on solidification cracking in partial penetration welding of thick plates is investigated within scope of this study. Therefore, a specific experimental setup of steel and quartz glass in butt configuration and on the side with high-speed camera were used to record the weld pool shape. In addition, the influence of laser inclination angle on the weld pool geometry and on solidification crack formation was investigated. The results show a bulge in the weld pool root, which is separated from an upper region by a necking region. This leads to a case where there are three different longitudinal region lengths with different solidification zones. This temporal sequence of solidification strongly promotes the formation of solidification cracks in the weld root. T2 - 12th CIRP Conference on photonic technologies (LANE 2022) CY - Fürth, Germany DA - 04.09.2022 KW - Laser beam welding KW - Partial penetration KW - Weld pool shape PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-563940 VL - 111 SP - 397 EP - 400 PB - Elsevier B.V. AN - OPUS4-56394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - Evaluation of narrowed weld pool shapes and their effect on resulting potential defects during deep penetration laser beam welding N2 - This study presents mechanisms of the evolution of a narrowed region in the weld pool center during deep penetration laser beam welding. In numerous numerical studies presented in this study, it was also found that the local reduction of the weld pool size can cause detrimental effects on the melt flow behavior and the resulting properties of the welds. A particularly large influence of this effect was identified in three aspects. Firstly, the local variation of the solidification sequence of the weld pool causes an increase in the hot-cracking susceptibility due to a locally delayed solidification. Secondly, it was proven that a change in the local length and width of the weld pool is associated with an adverse impact on the potential flow routes of the molten material that induces stronger local variations of its solidification. Thus, the element mixing, e.g. during the welding with filler materials, is blocked. This leads to a non-homogeneous chemical composition of the final weld and can cause undesired effects on the final material properties. Finally, another observed effect is related to the reduced ability of process pores to reach the top surface. As this type of porosity is usually produced around the keyhole tip, the change of the fluid flow regime above this area plays a significant role in determining the final path of the pores until the premature solidification in the middle of the weld pool captures them. This study summarizes mainly numerical results which were supported by selected experimental validation results. T2 - International Congress of Applications of Lasers & Electro-Optics 2022 CY - Orlando, FL, USA DA - 17.10.2022 KW - Weld pool shape KW - Laser beam welding KW - Solidification KW - Porosity KW - Numerical process simulation PY - 2022 SP - 1 AN - OPUS4-56532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - The influence of the free surface reconstruction on the spatial laser energy distribution in high power laser beam welding modeling N2 - An accurate and efficient description of the spatial distribution of laser energy is a crucial factor for the modeling of laser material processing, e.g., laser welding, laser cutting, or laser-based additive manufacturing. In this study, a 3D heat transfer and fluid flow model coupled with the volume-of-fluid algorithm for free surface tracking is developed for the simulation of molten pool dynamics in high-power laser beam welding. The underlying laser-material interactions, i.e., the multiple reflections and Fresnel absorption, are considered by a ray-tracing method. Two strategies of free surface reconstruction used in the ray-tracing method are investigated: a typical piecewise linear interface calculation (PLIC)-based method and a novel localized Level-Set method. The PLIC-based method is discrete, resulting in non-continuous free surface reconstruction. In the localized Level-Set method, a continuous free surface is reconstructed, and thus the exact reflection points can be determined. The calculated spatial laser energy distribution and the corresponding molten pool dynamics from the two methods are analyzed and compared. The obtained numerical results are evaluated with experimental measurements to assure the validity of the proposed model. It is found that distinct patterns of the beam multiple reflections are obtained with the different free surface reconstructions, which shows significant influence not only on the molten pool behaviors but also on the localized keyhole dynamics. T2 - International Congress of Applications of Lasers & Electro-Optics 2022 CY - Orlando, FL, USA DA - 17.10.2022 KW - Laser beam welding KW - laser energy distribution KW - Weld pool dynamics KW - Ray-tracing PY - 2022 SP - 1 EP - 9 AN - OPUS4-56533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Lichtbogenbasierte additive Fertigung dickwandiger Strukturen aus einer höherfesten Al-Mg-Si-Aluminiumlegierungen N2 - Die lichtbogenbasierte, additive Fertigung ist dank hoher erreichbarer Aufbauraten und nahezu uneingeschränktem Bauraum zur Fertigung großvolumiger Bauteile prädestiniert. Die Kombination etablierter Maschinenkomponenten aus Robotertechnik, Schweißtechnik und Sensorik ermöglicht den präzisen schichtweisen Materialauftrag. Die Wirkmechanismen zwischen Prozessparametern und den daraus resultierenden mechanisch-technologischen Eigenschaften der additiv gefertigten Bauteile stellen eine Herausforderung dar. Dies gilt insbesondere auch für dickwandige Bauteile. Bei der Fertigung von Bauteilen aus höherfesten Al-Mg-Si-Aluminiumlegierungen ist aufgrund der hohen Anfälligkeit für Erstarrungsrisse und der Neigung zu wasserstoffinduzierter Porosität im besonderen Maße auf das Temperaturregime und die gewählte Aufbaustrategie zu achten. Der Einfluss der Prozessparameter auf die Bauteilqualität wurde durch die Analyse der Größe und Verteilung von Poren sowie der resultierenden Festigkeit untersucht. Darüber hinaus wurde der Einfluss einer Wärmenachbehandlungsstrategien auf das Festigkeitsverhalten analysiert. Es konnte gezeigt werden, dass dickwandige Strukturen aus höherfesten Al-Mg-Si-Aluminiumlegierungen mit mechanischen Kennwerten im Bereich des Referenzmaterials mittels MSGLichtbogenverfahren additiv gefertigt werden können. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - WAAM KW - Al-Mg-Si-Legierungen KW - Porosität KW - Wärmenachbehandlung KW - Mechanisch technologische Kennwerte PY - 2022 SP - 169 EP - 181 PB - Arbeitsgemeinschaft Wärmebehandlung und Werkstofftechnik e. V. CY - Bremen AN - OPUS4-56673 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Study on the transition behavior of the bulging effect during deep penetration laser beam welding N2 - The present work is devoted to the study of the transition behavior of the recently confirmed widening of the weld pool, known as the bulging effect, during high-power deep penetration laser beam welding of thick unalloyed steel sheets. A three-dimensional transient multi-physics numerical model is developed, allowing for the prediction of the bulge formation and the study of its temporal behavior. The model is generalized to account automatically for the transition from partial to complete penetration. Several experimental measurements and observations, such as drilling period, weld pool length, temperature, efficiency, and metallographic cross-sections are used to verify the model and assure the plausibility of the numerical results. The analysis of the calculated temperature and velocity distributions, as well as the evolution of the keyhole geometry, shows that the formation of a bulging region strongly depends on the penetration depth of the weld. Based on the numerical results, the bulge is found to occur transiently, having its transition from a slight bulge to a fully developed bulging between penetration depths of 6 mm and 9 mm, respectively. KW - Laser beam welding KW - Deep penetration KW - Bulge formation KW - Numerical modeling PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545067 VL - 184 SP - 122171 PB - Elsevier Ltd. AN - OPUS4-54506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, Sergej A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Method for defect-free hybrid laser-arc welding of closed circumferential welds N2 - This paper presents investigation results of a process for defect-free hybrid laser arc welding (HLAW) of closed circumferential welds. The process aims to avoid weld imperfections in the overlap area of a HLAW circumferential weld. A process control strategy for closing the circumferential weld was developed to achieve a defect-free overlap region by controlling the solidification conditions at the end of the weld. The controlled heat flow is achieved by adjusting the parameters of both welding processes involved, the laser beam as well as gas metal arc welding (GMAW) process. Experimental investigations were carried out on 12 mm to 15 mm thick tube sections. The influence of process parameters such as the laser ramp time, the change in magnification scale and the defocusing of the laser beam on the solidifi-cation conditions at the end of the circumferential weld was investigated to find an optimum strategy for ramping out the process energy. Within the framework of the experimental studies, it was demonstrated that defocusing the laser beam in the range between 60 mm and 100 mm over a short run-out area of the weld of approximately 15 mm led to a significantly better weld formation in the overlap area. A favourable cup-shaped weld shape could be achieved without a tendency to crack. The laser optics with a motor-driven lens system made it possible to increase the laser beam diameter without changing the position of the GMAW arc relative to the component surface. KW - Weld defects KW - Hybrid welding KW - Laser beam welding KW - Pipe manufacturing KW - Gas shielded arc welding PY - 2021 VL - 20 IS - 4 SP - 334 EP - 339 PB - DVS Media AN - OPUS4-54665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -