TY - JOUR A1 - Daly, H.C A1 - Matikonda, S.S A1 - Steffens, H.C A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Ivanic, J. A1 - Schermann, M.J T1 - Daly_Photochem Photobiol 2021_Ketone Incorporation Extends the Emission Properties of the Xanthene Scaffold N2 - Imaging in the shortwave-infrared region (SWIR, λ = 1000–2500 nm) has the potential to enable deep tissue imaging with high resolution. Critical to the development of these Methods is the identification of low molecular weight, biologically compatible fluorescent probes that emit beyond 1000 nm. Exchanging the bridging oxygen atom on the xanthene scaffold (C10’ position) with electron withdrawing groups has been shown to lead to significant redshifts in absorbance and emission. Guided by quantum chemistry computational modeling studies, we investigated the installation of a Ketone bridge at the C10’ position. This simple modification extends the absorbance maxima to 860 nm and the emission beyond 1000 nm, albeit with reduced photon output. Overall, These studies demonstrate that broadly applied xanthene dyes can be extended into the SWIR range. KW - Flourescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Reliability KW - Method KW - Quality assurance PY - 2021 DO - https://doi.org/10.1111/php.13544 SN - 1751-1097 VL - 98 IS - 2 SP - 325 EP - 333 PB - Wiley Online Library AN - OPUS4-54080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Denißen, M. A1 - Hannen, R. A1 - Itskalov, D. A1 - Biesen, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Reiss, G. J. A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - One-pot synthesis of a white-light emissive bichromophore operated by aggregation-induced dual emission (AIDE) and partial energy transfer N2 - Merocyanine–triarylamine bichromophores are readily synthesized by sequentially Pd-catalyzed insertion alkynylation–Michael–Suzuki four-component reactions. White-light emissive systems form upon aggregation in 1 : 99 and 0.1 : 99.9 vol% CH2Cl2–cyclohexane mixtures, ascribed to aggregation-induced dual emission (AIDE) in combination with partial energy transfer between both chromophore units as supported by spectroscopic studies. KW - Energy transfer KW - Nano KW - Nanoparticle KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Dye KW - Enhancement KW - Particle KW - Polarity KW - AIE KW - Aggregation KW - Aggregation-induced emission KW - Solid state emission KW - Merocyanine PY - 2020 DO - https://doi.org/10.1039/d0cc03451g VL - 56 IS - 54 SP - 7407 PB - Royal Society of Chemistry AN - OPUS4-50936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - EvstigneevT, Roman V. A1 - Parfenov, Peter S. A1 - Dubavik, Aliaksei A1 - Cherevkov, Sergei A A1 - Fedorov, Anatoly V A1 - Martynenko, Irina V. A1 - Resch-Genger, Ute A1 - Ushakova, Elena V. A1 - Baranov, Alexander V. T1 - Time-resolved FRET in AgInS2/ZnS-CdSe/ZnS quantum dot systems N2 - The fast and accurate detection of disease-related biomarkers and potentially harmful analytes in different matrices is one of the main challenges in the life sciences. In order to achieve high signal-to-background ratios with frequently used photoluminescence techniques, luminescent reporters are required that are either excitable in the first diagnostic window or reveal luminescence lifetimes exceeding that of autofluorescent matrix components. Here, we demonstrate a reporter concept relying on broad band emissive ternary quantum dots (QDs) with luminescence lifetimes of a few hundred nanoseconds utilized for prolongating the lifetimes of organic or inorganic emitters with lifetimes in the order of a very few 10 ns or less through fluorescence resonant energy transfer. Using spectrally resolved and time-resolved measurements of the system optical response we demonstrate the potential of lifetime multiplexing with such systems exemplarily for AgInS2/ZnS and CdSe/ZnS QDs. KW - Nano KW - Nanomaterial KW - Ternary quantum dots KW - AIS KW - Semiconductor nanocrystal KW - Photoluminescence KW - Mechanism KW - Quantum yield KW - Photophysics KW - Energy transfer KW - Lifetime KW - Time-gated emission PY - 2019 DO - https://doi.org/10.1088/1361-6528/ab0136 SN - 0957-4484 SN - 1361-6528 VL - 30 IS - 19 SP - 195501, 1 EP - 7 PB - IOP Publishing Ltd AN - OPUS4-47434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fa, X. A1 - Lin, Sh. A1 - Yang, J. A1 - Shen, Ch. A1 - Liu, Y. A1 - Gong, Y. A1 - Qin, A. A1 - Ou, Jun A1 - Resch-Genger, Ute T1 - −808 nm-activated Ca2+ doped up-conversion nanoparticles that release no inducing liver cancer cell (HepG2) apoptosis N2 - Anear-infrared (NIR) light-triggered release method for nitric oxide (NO) was developed utilizing core/shell NaYF4: Tm/Yb/Ca@NaGdF4:Nd/Yb up-conversion nanoparticles (UCNPs) bearing a mesoporous silica (mSiO2) shell loaded with theNOdonor S-nitroso-N-acetyl-DL-penicillamine (SNAP). To avoid overheating in biological samples, Nd3+ was chosen as a sensitizer, Yb3+ ions as the bridging sensitizer, andTm3+ ions as UV-emissive activator while co-doping with Ca2+ was done to enhance the luminescence of the activatorTm3+.NOrelease from SNAP was triggered by an NIR-UV up-conversion process, initiated by 808nmlight absorbed by the Nd3+ ions.NOrelease was confirmed by the Griess method. Under 808nmirradiation, the viability of the liver cancer cell line HepG2 significantly decreased with increasing UCNPs@mSiO2-SNAP concentration. For a UCNPs@mSiO2-SNAP concentration of 200 μgml−1, the cell survival probability was 47%. These results demonstrate that UCNPs@mSiO2-SNAP can induce the release of apoptosis-inducingNOby NIR irradiation. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Triggered KW - Release KW - Cell KW - PDT KW - Dye KW - Therapy KW - Surface KW - Coating PY - 2022 DO - https://doi.org/10.1088/2050-6120/ac5524 VL - 10 IS - 2 SP - 1 EP - 9 PB - IOP Publishing AN - OPUS4-54842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frenzel, Florian A1 - Würth, Christian A1 - Dukhno, O. A1 - Przybilla, F. A1 - Wiesholler, L. M. A1 - Muhr, V. A1 - Horsch, T. A1 - Mély, Y. A1 - Resch-Genger, Ute T1 - Multiband emission from single β-NaYF4(Yb,Er) nanoparticles at high excitation power densities and comparison to ensemble studies N2 - Ensemble and single particle studies of the excitation power density (P)-dependent upconversion luminescence (UCL) of core and core–shell β-NaYF4:Yb,Er upconversion nanoparticles (UCNPs) doped with 20% Yb3+ and 1% or 3% Er3+ performed over a P regime of 6 orders of magnitude reveal an increasing contribution of the emission from high energy Er3+ levels at P > 1 kW/cm2. This changes the overall emission color from initially green over yellow to white. While initially the green and with increasing P the red emission dominate in ensemble measurements at P < 1 kW/cm2, the increasing population of higher Er3+ energy levels by multiphotonic processes at higher P in single particle studies results in a multitude of emission bands in the ultraviolet/visible/near infrared (UV/vis/NIR) accompanied by a decreased contribution of the red luminescence. Based upon a thorough analysis of the P-dependence of UCL, the emission bands activated at high P were grouped and assigned to 2–3, 3–4, and 4 photonic processes involving energy transfer (ET), excited-state absorption (ESA), cross-relaxation (CR), back energy transfer (BET), and non-radiative relaxation processes (nRP). This underlines the P-tunability of UCNP brightness and color and highlights the potential of P-dependent measurements for mechanistic studies required to manifest the population pathways of the different Er3+ levels. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Llifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Color tuning PY - 2021 DO - https://doi.org/10.1007/s12274-021-3350-y SN - 1998-0124 VL - 14 IS - 11 SP - 4107 EP - 4115 PB - Nano Research AN - OPUS4-52364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goryacheva, O. A. A1 - Wegner, Karl David A1 - Sobolev, A. M. A1 - Häusler, I. A1 - Gaponik, N. A1 - Gorycheva, I. Y. A1 - Resch-Genger, Ute T1 - Influence of particle architecture on the photoluminescence properties of silica‑coated CdSe core/shell quantum dots N2 - Light-emitting nanoparticles like semiconductor nanocrystals (termed quantum dots, QDs) are promising candidates for biosensing and bioimaging applications based on their bright and stable photoluminescent properties. As high-quality QDs are often synthesized in organic solvents, strategies needed to be developed to render them water-dispersible without affecting their optical properties and prevent changes in postmodification steps like the biofunctionalization with antibodies or DNA. Despite a large number of studies on suitable surface modification procedures, the preparation of water-soluble QDs for nanobiotechnology applications still presents a challenge. To highlight the advantages of surface silanization, we systematically explored the influence of the core/multishell architecture of CdSe/CdS/ZnS QDs and the silanization conditions on the optical properties of the resulting silanized QDs. Our results show that the optical properties of silica-coated CdSe/CdS/ZnS QDs are best preserved in the presence of a thick CdS (6 monolayers (ML)) intermediate shell, providing a high photoluminescence quantum yield (PL QY), and a relatively thick ZnS (4.5 ML) external shell, effectively shielding the QDs from the chemical changes during silica coating. In addition to the QD core/shell architecture, other critical parameters of the silica-coating process, that can have an influence on the optical properties of the QD, include the choice of the surfactant and its concentration used for silica coating. The highest PL QY of about 46% was obtained by a microemulsion silica-coating procedure with the surfactant Brij L4, making these water-dispersible QDs to wellsuited optical reporters in future applications like fluorescence immunoassays, biomedicine, and bioimaging. KW - Nano KW - Nanomaterial KW - Particle KW - Semiconductor KW - Quantum do KW - Photoluminescence KW - Photophysics KW - Lifetime KW - Sensor KW - Mechanism KW - Surface KW - Shell KW - Silica KW - Silanization KW - Synthesis PY - 2022 DO - https://doi.org/10.1007/s00216-022-04005-7 SP - 1 EP - 13 PB - Springer AN - OPUS4-54546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Fischer, Linn A1 - Hoffmann, Katrin A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Close spectroscopic look at dye-stained polymer microbeads N2 - Dye-stained micrometer-sized polymer beads are important tools in the life sciences with applications in biomedical, biochemical, and clinical research. Here, bead-based assays are increasingly used, for example, in DNA sequencing and the detection of autoimmune diseases or pathogenic microorganisms. Moreover, stained beads are employed as calibration tools for fluorescence microscopy and flow cytometry methods with increasing complexity. To address the requirements concerning the relevant fluorescence features, the spectroscopic properties of representative polymer beads with diameters ranging from about 1 to 10 μm stained with varying concentrations of rhodamine 6G were systematically assessed. The observed dependence of the spectral properties, fluorescence decay kinetics, and fluorescence quantum yields on bead size and dye loading concentration is attributed to different fluorescence characteristics of fluorophores located in the particle core and near-surface dye molecules. Supported by the fluorescence anisotropy measurements, the origin of the observed alteration of fluorescence features is ascribed to a combination of excitation energy transfer and polarity-related effects that are especially pronounced at the interface of the bead and the surrounding medium. The results of our studies underline the need to carefully control and optimize all Parameters that can affect the fluorescence properties of the dye-stained beads. KW - Fluorophore KW - Polymer particles KW - Photophysics KW - Life sciences KW - Standards PY - 2018 DO - https://doi.org/10.1021/acs.jpcc.8b02546 SN - 1932-7447 VL - 122 IS - 24 SP - 12782 EP - 12791 PB - ACS Publications CY - Washington, DC AN - OPUS4-45453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalmbach, J. A1 - Wang, Cui A1 - You, Yi A1 - Förster, C. A1 - Schubert, H. A1 - Heinze, K. A1 - Resch-Genger, Ute A1 - Seitz, M. T1 - Near-IR to near-IR upconversion luminescence in molecular chromium ytterbium salts N2 - Upconversion photoluminescence in hetero-oligonuclear metal complex architectures featuring organic ligands is an interesting but still rarely observed phenomenon, despite its great potential from a basic research and application perspective. In this context, a new photonic material consisting of molecular chromium(III) and ytterbium(III) complex Ions was developed that exhibits excitation-power density-dependent cooperative sensitization of the chromium-centered 2E/2T1 phosphorescence at approximately 775 nm after excitation of the ytterbium band 2F7/2!2F5/2 at approximately 980 nm in the solid state at ambient temperature. The upconversion process is insensitive to atmospheric oxygen and can be observed in the presence of water molecules in the crystal lattice. KW - Upconversion KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - NIR KW - Cr(III) KW - Yb(III) complex KW - Crystal KW - Triplet-triplet annihilation KW - Sensitization KW - Light harvesting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512619 DO - https://doi.org/10.1002/anie.202007200 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 42 SP - 18804 EP - 18808 PB - Wiley CY - Weinheim AN - OPUS4-51261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraft, Marco A1 - Würth, Christian A1 - Palo, Emilia A1 - Soukka, Tero A1 - Resch-Genger, Ute T1 - Colour-optimized quantum yields of Yb, Tm Co-doped upconversion nanocrystals N2 - Wepresent here a systematic analysis of the influence of Tm3+ Doping concentrations (xTm) on the excitation power (P)-dependent upconversion luminescence and -performance of hexagonal-Phase NaYF4: 20% Yb3+, xTm%Tm3+ upconversion nanoparticles (UCNPs) for xTm of 0.2, 0.5, 0.8, 1.2, and 2.0, respectively. Our results reveal the influence of these differentTm3+ doping concentrations with respect to optimized upconversion quantum yield (ΦUC) values of the variousTm3+ upconversion emission bands, with the highestΦUC values of theTm3+ emission bands above 700 nmresulting for different xTm values as theTm3+ emission bands below 700 nm. This underlines the potential ofTm3+ dopant concentration for colour tuning. Special emphasis was dedicated to the spectroscopic parameters that can be linked to the (de)population pathways of the variousTm3+ energy levels, like the P- and xTm-dependent slope factors and the intensity ratios of selected emission bands. The evaluation of all parameters indicates that not only energy transfer upconversion-, but also crossrelaxation processes between neighbouringTm3+ ions play a vital role in the (de)population of the excited energy levels of Yb3+, Tm3+ codoped nanocrystals. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Mechanism KW - Quantum yield KW - Photophysics KW - Lifetime PY - 2019 DO - https://doi.org/10.1088/2050-6120/ab023b SN - 2050-6120 VL - 7 IS - 2 SP - 024001, 1 EP - 6 PB - IOP AN - OPUS4-47420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le Guevel, X. A1 - Wegner, Karl David A1 - Würth, Christian A1 - Baulin, V. A. A1 - Musnier, B. A1 - Josserand, V. A1 - Resch-Genger, Ute A1 - Koll, J-C T1 - Tailoring the SWIR emission of gold nanoclusters by surface ligand rigidification and their application in 3D bioimaging N2 - The influence of solvent polarity and surface ligand rigidification on the SWIR emission profile of gold nanoclusters with an anistropic surface was investigated. A strong enhancement of the SWIR emission band at 1200 nm was observed when measuring in different local environments: in solution, in polymer composites, and in solids. SWIR in vivo imaging of mice assisted by deep learning after intravenous administration of these gold nanoclusters provides high definition pseudo-3D views of vascular blood vessels. KW - Nano KW - Nanomaterial KW - Metal cluster KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - NIR KW - SWIR KW - Ligand KW - Gold KW - Mechanism KW - Charge transfer KW - Enhancement strategy KW - Imaging KW - Application KW - Contrast agent PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543582 DO - https://doi.org/10.1039/D1CC06737K VL - 58 IS - 18 SP - 2967 EP - 2970 PB - RSC AN - OPUS4-54358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -