TY - CONF A1 - Wurzler, Nina A1 - Wagner, Ralph A1 - Schutter, Jan David A1 - Das, Chayanika A1 - Dimper, Matthias A1 - An, Biwen A1 - Koerdt, Andrea A1 - Lützenkirchen-Hecht, Dirk A1 - Özcan Sandikcioglu, Özlem T1 - Effect of cultivation conditions on the electrochemical activity of metal reducing bacteria (mrb) on stainless steel surfaces N2 - Investigation of the electrochemical activity of two cultures grown with and without abundance of Fe(III) and their different ability to reduce and therefore dissolve iron oxides in steel and model iron thin films. T2 - Eurocorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - X-ray spectroscopic techniques KW - Microbiologically influenced corrosion KW - MIC KW - XANES KW - Metal reducing bacteria KW - In situ PY - 2019 AN - OPUS4-49692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Seneschal-Merz, Karine A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Determination of boron in 19th and 20th century paint layers using LIBS N2 - 19th and 20th centuries glass paint layers consist of a colour body and a colourless lead silicate flux, in which borax or boric acid was added as further component to improve the paint ability and to reduce the firing temperature for multiple layers of paint. Model glasses were used in laboratory tests to investigate the stability of glass paints with additions of boron oxide. To determine boron in paint layers, a LIBS-system with pulsed NdYAG-laser was used. T2 - Technart 2019 CY - Brugge, Belgien DA - 07.05.2019 KW - Stained glass windows KW - Glass paints KW - LIBS PY - 2019 AN - OPUS4-48229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Seneschal-Merz, Karine A1 - Feldmann, Ines A1 - Bücker, Michael A1 - Oleszczuk, S. T1 - EDX-Analysis on medieval glasses and innovative protection of stained glass panels N2 - The church of Koszewko (Poland) is a brick building edified in the 15th century built on cobblestone foundations. There are five windows in the sanctuary. Three of them enclose heraldic panels from the Küssow’s family from the 15th century which are surrounded with Goethe glass from the 18th century to complete the windows. The colored heraldic panels are strongly damaged and corroded with massive paint layer losses, glass- and leadbreakages. Those medieval glass fragments have been shortly discovered and are of particular interest for Poland since only few medieval glazing have been conserved. The damages as well as the glass compositions have been investigated with ESEM/EDX. Two categories of medieval glass compositions have been identified. The blue glass is particularly sensible to corrosion because of his high content in K2O. The colorless and the red glass samples belong to a stable glass type. Due to the thickness of the gel layer, it is easy to see that the degradation is strongly proceeded. The protection of those medieval stained-glass panels is absolute necessary. The medieval panels have been restored and surrounded from a copper frame. Then they have been fixed on the wood frame in the church. The exterior glazing has been closed with a panel of Goethe glass. The gap between the Goethe- and the medieval glass is about 3 cm. The Goethe glass panel has been stabilized with a film based on polyester to protect the medieval glasses against any damages. In this way, a low cost protective glazing has been installed for a long-term conservation of each medieval stained-glass panels. The climate measurements over the period of one year on the restored windows are in process. The temperature and the relative humidity are recorded in the church interior, in the gap between the original and the Goethe glass and outdoors. T2 - 93rd Annual Meeting of DGG and Annual Meeting of USTV CY - Nuremberg, Germany DA - 13.05.2019 KW - Medieval glasses KW - Stained glasses KW - EDX Analysis KW - Corrosion PY - 2019 AN - OPUS4-48025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, K. H. A1 - Sattari, S. A1 - Beyranvand, S. A1 - Faghani, A. A1 - Ludwig, K. A1 - Schwibbert, Karin A1 - Böttcher, C. A1 - Haag, R. A1 - Adeli, M. T1 - Thermoresponsive Amphiphilic Functionalization of Thermally Reduced Graphene Oxide to Study Graphene/Bacteria Hydrophobic Interactions JF - Langmuir N2 - An understanding of the interactions of 2D nanomaterials with pathogens is of vital importance to developing and controlling their antimicrobial properties. In this work, the interaction of functionalized graphene with tunable hydrophobicity and bacteria is investigated. Poly-(ethylene glycol)-block-(poly-N-isopropylacrylamide) copolymer (PEG-b-PNIPAM) with the triazine joint point was attached to the graphene Surface by a nitrene [2 + 1] cycloaddition reaction. By thermally switching between hydrophobic and hydrophilic states, functionalized graphene sheets were able to bind to bacteria. Bacteria were eventually disrupted when the functionality was switched to the hydrophobic state. On the basis of measuring the different microscopy methods and a live/dead viability assay, it was found that Escherichia coli (E. coli) bacteria are more susceptible to hydrophobic interactions than B. cereus bacteria, under the same conditions. Our investigations confirm that hydrophobic interaction is one of the main driving forces at the presented graphene/bacteria interfaces and promotes the antibacterial activity of graphene derivatives significantly. KW - 2D nanomaterials KW - Functionalized graphene KW - Antimicrobial KW - Hydrophobic interaction PY - 2019 DO - https://doi.org/10.1021/acs.langmuir.8b03660 VL - 35 IS - 13 SP - 4736 EP - 4746 PB - ACS Publications AN - OPUS4-49235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schütter, Jan A1 - Pietsch, Franziska A1 - Schreiber, Frank A1 - Koerdt, Andrea A1 - Özcan Sandikcioglu, Özlem T1 - Effect of surface topography and chemistry on the attachment of bacteria on solid surfaces N2 - Microbiologically induced corrosion due to bacterial biofilms causes several problems in industrial systems, technical applications and in medicine. Prior to the formation of a biofilm on a substrate, planktonic cells attach on the surface. Hence, the properties of the surface play a key role in biofilm formation and are of great importance for the development of strategies to prevent bacterial attachment and biofilm formation. This project aims at clarifying to which extent surface micro-/nanostructuring and chemical functionalization affects bacterial attachment and whether a synergistic combination of the two can be used to control bacterial adhesion. To answer these questions, model surfaces with regular patterns of 5-10 micrometers in size have been prepared, which provide distinct zones differing in terms of their chemistry or nano-roughness. This was achieved by micro contact printing of self-assembled monolayers with different functional groups and deposition of patterned ZnO nanorod arrays for studying the effect of surface chemistry and morphology, respectively. Typical contrasts studied were combinations of positively/negatively charged, hydrophobic/hydrophilic or flat/rough. The attachment behavior of bacteria on tailored surfaces were studied in a flow chamber as a function of time. The strain Pseudomonas fluorescens SBW25 was chosen as a model organism. DNA-intercalating dyes such as Syto9 have a high affinity to adsorb on ZnO nanorods. To overcome this limitation a genetic modification was performed by introducing a gene which expresses a green fluorescent protein in P. fluorescens SBW25 enabling the quantitative evaluation of the flow chamber studies by means of fluorescence microscopy. Further analysis of the attachment behavior was performed by means of scanning electron microscopy. The presentation will summarize the results of our systematic study on the role of individual parameters on bacterial attachment and highlight synergistic combinations, showing an inhibition or enhancing effect. As the investigations with model substrates enable a precise control of the surface parameters, this approach can be applied to different microorganisms and material systems to achieve a correlative description of bacterial adhesion on solid surfaces. T2 - Eurocorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Microbial KW - Corrosion KW - MIC KW - Nanorods PY - 2019 AN - OPUS4-49730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahrig, M. A1 - Torge, Manfred T1 - 3D Inspection of the restoration and conservation of stained glass N2 - The initial focus of this research was on the development of a general workflow for the documentation and monitoring of historical stained glass windows using structured light scanning. Therefore windows from different churches, time periods and with different corrosion and damage phenomena were scanned before and after conservation measures. T2 - 27th CIPA International Symposium “Documenting the past for a better future” CY - Ávila, Spain DA - 01.09.2019 KW - Stained glass KW - Restoration and conservation KW - Structured light scanning KW - 3D inspection KW - Glass scanning PY - 2019 AN - OPUS4-49600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira A1 - Krutzsch, M. T1 - The Writing Surface Papyrus and its Materials T2 - Proceedings of the 28th Congress of Papyrology, Barcelona 1-6 August 2016 N2 - Our experimental knowledge about the inks of antiquity and late antiquity rarely goes beyond their visual description. In rare cases, inks typology has been determined by means of microscopy and reflectography, i.e. using their physical and optical properties, respectively. Since carbon, plant and iron gall inks belong to different classes of compounds they could be easily distinguished had only pure inks been used. Even these crude observations suggest that the inks used differed greatly in their composition. Reconstruction of the ink recipes with the help of advanced non-destructive analytical techniques could serve as a powerful accessory for in the studies of ancient papyri. The proposed paper will present a short survey of the methods of material analysis and the challenges offered by ancient inks. The examples of the ink studies from the collections of the Israel Museum in Jerusalem and Egyptian Museum in Berlin will conclude the paper. T2 - 28th Congress of Papyrology CY - Barcelona, Spain DA - 01.08.2016 KW - Papyrus KW - Ink PY - 2019 SP - 773 EP - 781 AN - OPUS4-49532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Parchment N2 - This lecture will present history of parchment based on written sources and chemical examination of antique, medieval and modern parchment. Our studies of the Dead Sea Scrolls writing surfaces show that they can be divided roughly into three groups: leather, parchments of a light tint, and those of various shades of brown. The latter ones are invariably tanned, whereas the middle group is characterized by the presence of various inorganic salts. Some of the pale parchments, among them the Temple Scroll (11Q19), are remarkably similar to medieval European parchment. Therefore we have formulated the working theory that in the Judaea of the Hellenistic period two different parchment-making traditions existed side by side: an ‘eastern’ one (represented by the tanned parchments of Qumran, closely resembling Aramaic documents from the fifth century BC, and a ‘western’ one (represented by the untanned/lightly tanned ones similar to early Christian Greek parchments). This division has found support during our studies of the Geniza fragments, in which Babylonian and Palestinian traditions seem to follow the “eastern” and “western” technologies, respectively. T2 - Sumer School: Manusciences19 CY - Frejus, France DA - 10.03.2019 KW - Parchment KW - Leather KW - Tanning PY - 2019 AN - OPUS4-48138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Inks and pigments N2 - The writing materials used in various cultures and epochs can be divided into two groups. The first comprises materials that write themselves, producing script by rubbing their own material off onto the writing surface. It includes charcoal, graphite, chalk, raddle, and metal styluses. Depending on the material and consistency, these are cut or pressed to make styluses and then used for writing. The second group comprises all coloring liquids that are applied to the writing surface with a quill, pen, or printing block. It includes inks made from dye solutions (for example, tannin inks) and those made from pigment dispersions (for example, sepia, soot, and bister inks). The latter are sometimes also rubbed as pastes into letters incised into the writing surface, where they increase visual contrast. Due to the variety of recipes and the natural origin of raw materials, there is a wide range of different components and impurities in writing materials. Soluble inks (Tinten) Soluble inks are based mainly on dyes forming a water solution. Colored inks were manufactured with different plant or insect dyes (e.g. Brazil wood, kermes). To stabilize the volatile material, the dyes were mixed with a mordant (e.g., alum). Brown plant inks – best-known as blackthorn or Theophilus’ inks – are usually produced from the blackthorn bark and wine. In the early European Middle Ages, inks of this kind were widely used in the production of manuscripts in monasteries. Usually, they are light brown, so sometimes small amounts of iron sulfate were added, which led to what was called an “imperfect” iron gall ink. The difference between “classic” iron gall ink and such imperfect ink is therefore not clear: the distinction is not possible, especially with the naked eye. Dispersion inks (Tuschen) According to its generic recipe, one of the oldest black writing materials is produced by mixing soot with a binder dissolved in a small amount of water. Thus, along with soot, binders such as gum arabic (ancient Egypt) or animal glue (China) are among the main components of soot inks. From Pliny’s detailed account of the manufacture of various soot-based inks, we learn that, despite its seeming simplicity, producing pure soot of high quality was not an easy task in Antiquity. Therefore, we expect to find various detectable additives that might be indicative of the time and place of production. One such carbon ink requires the addition of copper sulfate . The experimental discovery of this ink in 1990 led to a misleading expression “metal ink” that is sometimes found in the literature. Colored dispersion inks based on pigments such as orpiment, cinnabar, or azurite have been known since Antiquity. Natural or artificially produced minerals are finely ground and dispersed in a binding medium. As in soot inks, water-soluble binders such as gum arabic or egg white were used. Iron gall ink (Eisengallustinten) Iron gall inks are a borderline case between these two groups. They are produced from four basic ingredients: galls, vitriol as the main source of iron, gum arabic as a binding media, and an aqueous medium such as wine, beer, or vinegar. By mixing gallic acid with iron sulfate, a water-soluble ferrous gallate complex is formed; this product belongs to the type “soluble inks”. Due to its solubility, the ink penetrates the writing support’s surface, making it difficult to erase. Exposure to oxygen leads to the formation of insoluble black ferric gallate pigment, i.e., “dispersion ink”. Natural vitriol consists of a varying mixture of metal sulfates. Since for ink making it was obtained from different mines and by various techniques, inks contain many other metals, like copper, aluminum, zinc, and manganese, in addition to the iron sulfate. These metals do not contribute to color formation in the ink solution, but possibly change the chemical properties of the inks. T2 - Summer School Manusciences 19 CY - Frejus, France DA - 10.03.2019 KW - Ink KW - Material science KW - Cultural heritage PY - 2019 AN - OPUS4-48139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Seeger, Stefan A1 - Hilgenberg, Kai T1 - Measurement of particle emissions in Laser Powder Bed Fusion (L-PBF) processes and its potential for in-situ process monitoring T2 - Euro PM 2019 Proceedings N2 - Laser Powder Bed Fusion (L-PBF) is a promising additive manufacturing (AM) technology for metal part production especially for complex and lightweight structures or functional designs. In L PBF processes several by-products including welding plume and its condensates, spatter and ejected powder are generated during laser exposure. Investigations of micro- and nano-sized by-products have received little attention in literature. This study focuses on the analysis of particle emissions in L PBF of 316L stainless steel using a scattered light aerosol spectrometer and a fast mobility particle sizer spectrometer during the process which allows for in-situ analysis of particle sizes in the range of 6 nm to 100 µm. A distinct correlation of emission signals to part position can be revealed. In addition, a significant influence of laser scanning vector directions on emission signals is presented. Furthermore, differing powder layer thicknesses can be recognised by deviations in emission signals. T2 - Euro PM 2019 CY - Maastricht, The Netherlands DA - 13.10.2019 KW - Plume KW - Laser Powder Bed Fusion (L-PBF) KW - Additive Manufacturing (AM) KW - Spatter KW - Fume KW - Particle gas emission KW - Aerosol measurements PY - 2019 SP - 1 EP - 7 AN - OPUS4-49388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Seeger, Stefan A1 - Hilgenberg, Kai T1 - Measurement of particle emissions in Laser Powder Bed Fusion (L-PBF) processes and its potential for in-situ process monitoring N2 - Laser Powder Bed Fusion (L-PBF) is a promising additive manufacturing (AM) technology for metal part production especially for complex and lightweight structures or functional designs. In L PBF processes several by-products including welding plume and its condensates, spatter and ejected powder are generated during laser exposure. Investigations of micro- and nano-sized by-products have received little attention in literature. This study focuses on the analysis of particle emissions in L PBF of 316L stainless steel using a scattered light aerosol spectrometer and a fast mobility particle sizer spectrometer during the process which allows for in-situ analysis of particle sizes in the range of 6 nm to 100 µm. A distinct correlation of emission signals to part position can be revealed. In addition, a significant influence of laser scanning vector directions on emission signals is presented. Furthermore, differing powder layer thicknesses can be recognised by deviations in emission signals. T2 - Euro PM2019 CY - Maastricht, The Netherlands DA - 13.10.2019 KW - Aerosol measurements KW - Laser Powder Bed Fusion (L-PBF) KW - Additive Manufacturing (AM) KW - Spatter KW - Fume KW - Plume KW - Particle gas emission PY - 2019 AN - OPUS4-49387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Landsberger, B A1 - Frauendorf, H A1 - Adler, C A1 - Plarre, Rüdiger ED - Nilsen, L ED - Rossipal, M T1 - Capability and Limitations of Anoxic Treatments for Protecting Museum Collections T2 - Integrated Pest Management (IPM) for Cultural Heritage. Proceedings from the 4th International Conference in Stockholm. N2 - Without precaution, insects may cause serious damage to museum collections. Quarantine of potentially infested objects can be logistically challenging. Anoxia under controlled Nitrogen atmosphere is a most gentle but also time-consuming method to eradicate insect pests in all kinds of different materials. Treatment results are usually affected by duration, temperature, humidity and residual oxygen content. During a two-year research project, 34 relevant pest insect species of all developmental stages were tested in different materials (wood, paper, wool) to monitor treatment success and to determine optimum treatment parameters. Duration of treatment ranged from one to three weeks at temperatures of 20–27 °C. As expected, results showed significant differences in mortality among tested species. Highest tolerance of hypoxic conditions was found in elder larvae of Hylotrupes bajulus. Although this species is an unlikely museum pest, it may serve as an overall most tolerant reference. Anobiids and other wood boring beetles are more often an issue related to cultural heritage. A combination of three weeks exposure time at maximum 0.5% residual oxygen and 24 °C, alternatively 1% residual oxygen and 27 °C are recommended for infested artefacts. Imbedding materials in general had no influence on mortality. This study was funded by Deutsche Bundesstiftung Umwelt (DBU). T2 - 4th International Conference Integrated Pest Management (IPM) for Cultural Heritage CY - Stockholm, Sweden DA - 21.05.2019 KW - Controlled atmosphere KW - Museum insect pest KW - Anoxia KW - Nitrogen PY - 2019 SN - 978-91-7209-845-9 SP - 202 EP - 210 AN - OPUS4-50349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kämpf, K. A1 - Bachmann, V. A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - OECD Test Guideline on particle size and particle size distribution of manufactured nanomaterials: simultaneous measurement of length and diameter of fibers T2 - PTB-Bericht F-61 - NanoWorkshop 2018: Workshop on Reference Nanomaterials N2 - The new OECD test guideline will address the following four main steps in the determination of the length and width distributions of fibers: sample preparation, image acquisition, data evaluation and uncertainty analysis. As the sample preparation has to be optimized for each material, general quality criteria will be given in the protocol. For full visibility of a fiber the appropriate resolution has to be chosen. In the data evaluation the length and diameter of each fiber will be determined concurrently to allow for application of different regulatory definitions. The quality of the results critically depends on the sample preparation as well as the data evaluation. In this step the classification rules have to be formulated and followed accurately in order to optimize reproducibility of the method. The SOP will be validated in an international round robin test, which is planned for 2018/2019. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - OECD KW - Nano KW - Guideline KW - Particle size distributuion KW - Prüfrichtlinie PY - 2019 SN - 978-3-95606-440-1 DO - https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - F-61 SP - 302 EP - 302 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kämpf, K. A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Bachmann, V. A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. T1 - Test Guideline on Particle Size and Size Distribution of Manufactured Nanomaterials N2 - The particle size distribution is considered the most relevant information for nanoscale property identification and material characterization. The current OECD test guideline on particle size and size distribution (TG 110) is not applicable to ‘nano-sized’ objects. In this project we thus develop a new OECD test guideline for the measurement of the size and size distribution of particles and fibers with at least one dimension in the nanoscale. A fiber is defined as an object having an aspect ratio of length/diameter l/d >3. The width and length of each fiber should be measured concurrently. In order to measure the particle size distributions, many techniques are available. 9 methods for particles and 2 methods for fibres have been tested in a prevalidation study and appropriate methods will be compared in an interlaboratory round robin test starting in February 2019. T2 - Workshop zur gemeinsamen Forschungsstrategie der Bundesoberbehörden „Nanomaterialien und andere innovative Werkstoffe: anwendungssicher und umweltverträglich“ CY - Berlin, Germany DA - 02.09.2019 KW - OECD KW - Nano KW - Guideline KW - Particle size distributuion KW - Prüfrichtlinie PY - 2019 AN - OPUS4-49507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in oil and gas facilities. SRM act upon the metal by the re-activeness of hydrogen sulfide (HS-), and by withdrawal of the available electrons in electrical contact with the metal (EMIC). Methanogenic archaea (MA) can also cause MIC (Mi-MIC). Several MAs were identified to be corrosive by using elemental iron as the sole electron donor for methanogenesis, including Methanobacterium­-affliated IM1 and Methanococcus maripaludis Mic1c10. Currently, low corrosion rates were reported for MA, possibly due to the formation of siderite (4Fe + 5HCO3- + 5H+ ® 4FeCO3 + CH4 + 3H2O). Since MA do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of MA, we studied the EMIC methanogenic strains (IM1 and Mic1c10) individually or part of a syntrophic co-culture with SRM. Corrosion studies were conducted using an in-house developed flow-through system to simulate fluctuating environmental conditions. Results indicate that the rates of iron corrosion by MA (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr) and the co-culture (0.1 mm/yr). Scanning electron microscopy (SEM) images of the metal incubated with MA showed severe pitting corrosion. Genomic analysis of the EMIC MA was conducted to provide an insight on the possible cellular mechanisms that could be involved. Furthermore, low concentrations of MA-targeting biocides will be applied to EMIC MA in static and flow conditions to gain insights for possible mitigation strategies. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC. T2 - 7th International Symposium on Applied Microbiology and Molecular Biology in Oil Systems CY - Halifax, Canada DA - 18.06.2019 KW - MIC KW - Microbiologically influenced corrosion KW - Methanogens KW - SRB KW - Corrosion KW - Metalls PY - 2019 AN - OPUS4-48392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons in electrical contact with the metal. Methanogenic archaea can also cause MIC by directly withdrawing electrons from the iron surface for methanogenesis. However, the mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite, a by-product of methanogenesis, (4Fe + 5HCO3 + 5H+  4FeCO3 + CH4 + 3H2O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO3 precipitation may be significantly influenced by environmental conditions such as pH and advective processes. T2 - Dechema CY - Frankfurt a. M., Germany DA - 13.05.2019 KW - MIC KW - Corrosion KW - Methanogens KW - Corrosion product PY - 2019 AN - OPUS4-47982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC T2 - Einladung zum Kolloquium HZDR – Helmholtz-Zentrum Dresden-Rossendorf CY - Dresden, Germany DA - 24.09.2019 KW - Corrosion KW - MIC KW - Archaea KW - Methanogens KW - Environmental Simulation PY - 2019 AN - OPUS4-49403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC T2 - Archaea Meeting-Schmitten VAAM Fachgruppe CY - Schmitten, Germany DA - 12.09.2019 KW - Corrosion KW - MIC KW - Archaea KW - Methanogens KW - Environmental Simulation PY - 2019 AN - OPUS4-49405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Hermann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC. T2 - VAAM- Annual Conference 2019 of the Association for General and Applied Microbiology CY - Mainz, Germany DA - 17.03.2019 KW - HI-Tension KW - MIC KW - Methanogens KW - Corrosion KW - Sulfate reducing bacteria PY - 2019 AN - OPUS4-47739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC.zeige weniger T2 - Dechema CY - Berlin, Germany DA - 09.04.2019 KW - Corrosion KW - Corrosion products KW - Methanogens KW - Sulfate reducing bacteria KW - Flow-system KW - Environmental simulation PY - 2019 AN - OPUS4-47853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Klinge, A. A1 - Roswag-Klinge, E. A1 - Richter, Matthias A1 - Fontana, P. A1 - Hoppe, Johannes A1 - Payet, J. ED - Venkatarama Reddy, B. V. ED - Mani, M. ED - Walker, P. T1 - The Relevance of Earthen Plasters for Eco Innovative, Cost-Efficient and Healthy Construction—Results from the EU-Funded Research Project [H]house T2 - Earthen Dwellings and Structures - Current Status in their Adoption N2 - The European building sector is moving towards more complex and high-tech building approaches. While focusing on energy efficiency, aspects e.g. occupant health, sustainability and life cycle costing are often neglected. This study highlights the potential of earthen plasters in combination with natural ventilation for low-tech solutions. The EU funded project [H]house established the outstanding performance of earthen materials in light of hygrothermal and air purifying properties, which were further supported by experimental data from monitoring of naturally ventilated pilot buildings in Berlin. Additionally, [H]house demonstrated through LCC an increased cost efficiency of earth based low-tech solutions in comparison to conventional constructions relying on mechanical ventilation. KW - Climate responsive materials KW - Low-tech approach KW - IEQ KW - natural ventilation KW - LCC PY - 2019 SN - 978-981-13-5882-1 SN - 978-981-13-5883-8 DO - https://doi.org/10.1007/978-981-13-5883-8_32 SN - 2363-7633 SN - 2363-7641 SP - 371 EP - 382 PB - Springer Nature Singapore Pte Ltd. CY - Singapur AN - OPUS4-47792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kleinbub, Sherin A1 - An, Biwen Annie A1 - Heidrich, Gabriele A1 - Özcan Sandikcioglu, Özlem A1 - Schenderlein, Matthias A1 - Dommisch, H. A1 - Wagner, D. A1 - Koerdt, Andrea T1 - Investigation of the corrosion potential by oral microorganisms related to periodontitis and peri-implantitis N2 - Since the early 19th century microorganisms were studied on their capabilities of causing microbiologically influenced corrosion (MIC) of metals. The most studied ones are sulfate-reducing bacteria (SRB), but others can corrode metals as well, e.g. acid-producing bacteria or methanogenic archaea (MA). However, these studies were mostly focused on metals related to the petroleum industry but metals for other industries, e.g. dentistry, are also susceptible to corrosion. The inert Titanium (Ti) is often used as an implant material, but it is a base metal. The formation of a passivating oxide layer allows Ti to be corrosion resistant at normal conditions. Nonetheless, scanning electron microscope images on dental implants from patients with acute peri-implantitis showed clear signs of corrosion. Currently, the corrosion mechanism of dental implants is unknown, but many indications suggest that oral microorganisms, including MA (Methanobrevibacter oralis) and SRB (Desulfomicrobium orale), could be involved. To determine if MA or SRB can corrode Ti (pure Ti or Ti-6Al-4V alloy), corrosion rate, methane and sulfide concentrations were analyzed. Electrical potential measurements using in-house developed electrochemical cells indicated a potential change on Ti in the presence of a corrosive MA strain compared to an abiotic control. Microbial composition comparison will be analyzed using samples from dental pockets of 150 infected patients by considering the quality of the implant and 50 healthy people by means of amplicon sequencing. Enrichments and isolation of pure cultures from the dentals samples are also examined for their corrosion behavior. Overall, this is the first study investigating the susceptibility of dental implant material to corrosion using human related MA. T2 - Annual Conference of the Association for General and Applied Microbiology CY - Mainz, Germany DA - 17.03.2019 KW - Methanogens KW - Microbiologically Influrenced Corrosion (MIC) KW - Biofilm PY - 2019 AN - OPUS4-47600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Oliver T1 - Paper: history, manufacture, properties N2 - The lecture traces the origins of paper, the manufacture and the spread from China to the Middle East and Europe. Though technological progress considerably affected each step of the manufacture of paper, the essence of the invention remains unchanged until today. The process of manufacturing handmade paper can be divided into a number of steps: - choosing the raw material (e.g. cellulose from wood, cotton, rags) - beating and grinding the fibres into small pieces - producing a liquid pulp of the desired texture - treating the pulp with various additives - filling the pulp suspension into a paper mould - draining the water - pressing and drying to get the actual sheet - various post-production treatments We will see how the manufacturing process is reflected in the properties of the paper and its degradation. A special attention will be paid to the instrumental analysis for identification of the paper types. Also watermark play an important role in the studies of the manuscripts. A short overview will be offered at the ends of the lecture. T2 - Summer School Manusciences 19 CY - Frejus, France DA - 10.03.2019 KW - Material science KW - Cultural heritage PY - 2019 AN - OPUS4-48140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Ghigo, Tea A1 - Rabin, Ira ED - Buzi, P. T1 - Detecting Early Medieval Coptic literature in Dayr Al-Anba Maqar, Between textual conservation and literary rearrangement: The case of Vat. Copt. 57 T2 - Studi e Testi 553 N2 - The study of the VAt.Copt. 57 at the Vatican Library. Codicological, palaeographical, textual and archaeometrical considerations. KW - Coptic KW - Archaeometry KW - Ink KW - Manuscripts PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494004 SN - 978-88-210-1025-5 SP - 77 EP - 83 PB - Biblioteca Apostolica Vaticana AN - OPUS4-49400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, P. T1 - Archaeometric analysis of inks from Coptic Manucripts N2 - Understanding the technological evolution of inks from Coptic Manuscripts. T2 - III International PAThs Conference CY - Rome, University of La Sapienza, Italy DA - 25.02.2019 KW - Archaeometry PY - 2019 AN - OPUS4-48037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, Paola T1 - Archaeometric analysis of Egyptian inks from Late Antiquity N2 - Presentation of the results obtained on a corpus of Egyptian papyri from Late Antiquity T2 - Research Showcase: studying Greco-Roman Egypt CY - University of Basel, Switzerland DA - 26.09.2019 KW - Ink KW - Archaeometry KW - Manuscripts KW - Coptic PY - 2019 AN - OPUS4-49969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, Paola T1 - Archaeometric analisis of Egyptian inks from Late Antiquity N2 - Archaeometric analisis of Egyptian inks from Late Antiquity: presentation of the results obtaine on a curpus of literary and documentary manuscripts. T2 - International congress of papyrology CY - Lecce, Italy DA - 28.07.2019 KW - Coptic KW - Archaeometry KW - Ink KW - Manuscripts PY - 2019 AN - OPUS4-49971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia T1 - Ink for papyri, ink of papyrus: Recipes from the Arabic world N2 - Papyrus was in use in the Islamic world until the 11th century and few ink recipes collected from treatises about the art of the books are dedicated to this support. But papyrus was also burnt in order to obtain soot used as an ingredient for a particular type of ink (midād al-qarāṭīs). In this talk I will give an overview of the recipes – in particular those by ar-Rāzī –, their context and transmission in order to evaluate this double nature of papyrus, which is considered at the same time a writing support and a material to be recycled. Moreover, I will discuss what kinds of ink are most likely to be found, according to these literary sources, on Arabic manuscripts and documents written on papyrus and compare them to the typologies mentioned for paper and parchment. These results are the premises of a research project starting at the beginning of 2019, in which a number of dated fragments from several European institutions will be analysed with non-destructive techniques in order to establish a profile of the main writing media used in the early centuries of the Islamic Era. T2 - 29th International Congress of Papyrology CY - Lecce, Italy DA - 28.07.2019 KW - Inks KW - Arabic recipes KW - Papyrus PY - 2019 AN - OPUS4-50158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia T1 - Fifty shades of black: Typologies and terminology of black inks in the light of new discoveries N2 - The identification of the materials constituting an artefact is the basis of any correct conservation project. For this reason (among others) in the last 50 years analytical techniques have been applied to the study of manuscripts. Unfortunately, the scientific investigation of Arabic books is still uncommon, focusing mainly on single case studies of illuminated manuscripts where the black media used to write the text is largely overlooked. This lack of knowledge prompted a recent research in which black ink recipes have been collected from written Arabic sources, their feasibility has been assessed, and some of them have been reproduced. These samples were artificially aged and analysed through an array of analytical techniques, mostly non-invasive and non-destructive, in order to build a database of Arabic inks and their ingredients and to verify the detection limits of the equipment employed. Finally, the results were compared to the data collected from historical manuscripts. In this talk I will focus on the ink typologies and the terminology (ancient and modern) used to describe them. In particular I will highlight how even the modern classification fails to capture the variety encountered in both recipes and manuscripts, particularly in the light of recent discoveries. I will address especially the terminological and conceptual issues of mixed inks – in the form of carbon inks and tannins, of carbon and iron gall inks, and of carbon and metallic salts –, iron gall inks made without vitriol and iron gall inks made with sources of tannins different from gall nuts. T2 - First International Conference Oriental Manuscripts: Codicology and Conservation issues CY - Saint Petersburg, Russia DA - 04.12.2019 KW - Ink terminology KW - Codicology KW - Non destructive analytical techniques PY - 2019 AN - OPUS4-50159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia T1 - Ink recipes from the islamic era: Texts, manuscripts, ink reproductions and scientific analyses N2 - Ink recipes can often be found in Arabic manuscripts. They may be included in treatises of diverse subjects – from handbooks for secretaries or calligraphers to books on arts and crafts, to alchemical and astrological essays. Recipes can also appear, with or without relation to the main text in the manuscript, in the form of lists or collections or even added in empty spaces as single entries. Why were these recipes written down? Were they used by the many professionals dealing with inks in their every-day work? Or were they part of the literary genre of adab with little or no practical application? To answer these questions a research project was set up: ink recipes have been collected from written Arabic sources, their feasibility has been assessed and some of them have been reproduced. These samples were artificially aged and analysed through an array of analytical techniques, most non-invasive and non-destructive, and the results compared to the data obtained by the application of the same analyses on concrete manuscripts. The codicological characteristics of the manuscripts have also been studied. My aim in this talk is to show how such an interdisciplinary approach could be beneficial for the study of material culture. T2 - Broadening Horizons 6 CY - Berlin, Germany DA - 24.06.2019 KW - Inks KW - Arabic Recipes KW - Non destructive analytical techniques PY - 2019 AN - OPUS4-50160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia A1 - Hahn, Oliver A1 - Rabin, Ira T1 - A black ink by any other name...: Typologies of arabic inks and their detection limits N2 - In this poster we will present some results of a research projects dealing with Arabic recipes of black inks [1-2]. To improve conservation practices of Arabic manuscripts we have assessed the feasibility of the recipes collected from many Arabic sources on bookmaking and reproduced the most common inks. Ink samples were then artificially aged and analysed using an array of analytical techniques, mostly non-invasive, in order to build a database of Arabic inks and their ingredients and also to verify the detection limits of the portable equipment employed. We will show procedures and problems concerning the identification of ink types and ingredients using reflectography (in Vis, IR and UV), X-Ray Fluorescence, Infrared and Raman spectroscopy. The focus will be in particular on squid ink [3] and mixed inks – both in the form of carbon inks with the addition of tannins and of a mixture of carbon and iron gall inks – which are particularly difficult to detect [4]. We will also examine the results of iron gall inks made with iron filings or nails instead of vitriol, the various precursor used to extract gallic acid that are mentioned in the sources as surrogates of gall nuts. [1] A. Schopen, Tinten und Tuschen des arabisch-islamischen Mittelalters, Göttingen: Vandenhoeck & Ruprecht, 2004 [2] S. Fani, Le arti del libro secondo le fonti arabe originali. I ricettari arabi per la fabbricazione degli inchiostri (sec. IX-XIII): loro importanza per una corretta valutazione e conservazione del patrimonio manoscritto, PhD thesis, Napoli: Università L’Orientale, 2013 [3] S. Centeno, J. Shamir Journal of Molecular Structure, 873 (2008), 149-159 [4] C. Colini et. al, Manuscript cultures, 11 (2018) 43-50 T2 - Jahrestagung „Archäometrie und Denkmalpflege 2019“ CY - Vienna, Austria DA - 11.09.2019 KW - Inks KW - Reflectography KW - XRF KW - Raman Spectroscopy KW - ATR PY - 2019 AN - OPUS4-50162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia ED - Hahn, Oliver ED - Rabin, Ira T1 - A black ink by any other name... Typologies of Arabic inks and their detection limits T2 - Metalla Archäometrie und Denkmalpflege 2019 N2 - In this poster we will present some results of a research projects dealing with Arabic recipes of black inks. To improve conservation practices of Arabic manuscripts we have assessed the feasibility of the recipes collected from many Arabic sources on bookmaking and reproduced the most common inks. Ink samples were then artificially aged and analysed using an array of analytical techniques, mostly non-invasive, in order to build a database of Arabic inks and their ingredients and also to verify the detection limits of the portable equipment employed. We will show procedures and problems concerning the identification of ink types and ingredients using reflectography (in Vis, IR and UV), X-Ray Fluorescence, Infrared and Raman spectroscopy. The focus will be in particular on squid ink and mixed inks – both in the form of carbon inks with the addition of tannins and of a mixture of carbon and iron gall inks – which are particularly difficult to detect. We will also examine the results of iron gall inks made with iron filings or nails instead of vitriol, the various precursor used to extract gallic acid that are mentioned in the sources as surrogates of gall nuts. T2 - Jahrestagung „Archäometrie und Denkmalpflege 2019“ CY - Vienna, Austria DA - 11.09.2019 KW - Inks KW - Reflectography KW - XRF KW - Raman Spectroscopy KW - ATR PY - 2019 SN - 0947-6229 VL - Sonderheft 9 SP - 93 EP - 96 PB - Deutsches Bergbau-Museum Bochum CY - Bochum AN - OPUS4-50163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia A1 - Hahn, Oliver A1 - Rabin, Ira T1 - A black ink by any other name...: Typologies of Arabic inks and their detection limits N2 - In this poster we will present some results of a research projects dealing with Arabic recipes of black inks. To improve conservation practices of Arabic manuscripts we have assessed the feasibility of the recipes collected from many Arabic sources on bookmaking and reproduced the most common inks. Ink samples were then artificially aged and analysed using an array of analytical techniques, mostly non-invasive, in order to build a database of Arabic inks and their ingredients and also to verify the detection limits of the portable equipment employed. First, we will provide an overview of the sources [1-2] employed in the study – dating from 9th to 14th century, although the manuscripts in which they can be found dates up to the 20th century – with an eye on the ink typologies (real and perceived by the compilers). Then we will show how, by reproducing the recipes, it was possible to shed light on some oddities in the procedures and the choice of ingredients. In the end we will discuss problems concerning the identification of ink types and ingredients using reflectography (in Vis, IR and UV), X-Ray Fluorescence, Infrared and Raman spectroscopy. The focus will be in particular on mixed inks – both in the form of carbon inks with the addition of tannins and of a mixture of carbon and iron gall inks – which are particularly difficult to detect [3]. We will also examine the results of iron gall inks made with iron filings or nails instead of vitriol and the various precursor used to extract gallic acid that are mentioned in the sources as surrogates of gall nuts. [1] A. Schopen, Tinten und Tuschen des arabisch-islamischen Mittelalters, Göttingen: Vandenhoeck & Ruprecht, 2004 [2] S. Fani, Le arti del libro secondo le fonti arabe originali. I ricettari arabi per la fabbricazione degli inchiostri (sec. IX-XIII): loro importanza per una corretta valutazione e conservazione del patrimonio manoscritto, PhD thesis, Napoli: Università L’Orientale, 2013 [3] C. Colini et. al, Manuscript cultures, 11 (2018) 43-50 T2 - Technart 2019 CY - Bruges, Belgium DA - 07.05.2019 KW - Inks KW - Reflectography KW - XRF KW - Raman Spectroscopy KW - ATR PY - 2019 AN - OPUS4-50112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia T1 - The Interdisciplinary Alchemist: Reproduction and Study of Black Inks from the Islamicate World N2 - The identification of the materials constituting an artefact is the basis of any correct conservation project, for this reason (among others) in the last 50 years analytical techniques have been applied to the study of manuscripts. Unfortunately, the scientific investigation of Arabic books is still uncommon, focusing mainly on single case studies, often producing unclear results, especially for black inks. This lack of knowledge prompted a recent research in which black ink recipes have been collected from written Arabic sources on bookmaking, their feasibility has been assessed, and finally some of them have been reproduced. These samples were artificially aged and analysed through an array of analytical techniques, mostly non-invasive and non-destructive, in order to build a database of Arabic inks and their ingredients and also to verify the detection limits of the portable equipment employed. In this talk I will present some instances of how this approach can help textual criticism, for example in evaluating variants and determining the competence of authors and compilers. At the same time the research highlights how much this scientific work depends on textual studies, especially concerning the identification of ingredients. Moreover, I will focus on some of the problematics I faced both during the textual interpretation and the actual reproduction of the recipes and how they influenced the results of the scientific analyses. In particular I’ll look into the role played by the degree of purity of the components and the function (real and perceived) of some of the ingredients. T2 - International Medieval Conference 2019 CY - Leeds, UK DA - 01.07.2019 KW - Black Ink KW - Arabic Recipes KW - Interdisciplinary PY - 2019 AN - OPUS4-50114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Bachmann, V. A1 - Kämpf, K. A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - OECD Test Guideline on particle size and size distribution of manufactured nanomaterials T2 - PTB-Bericht F-61 - NanoWorkshop 2018: Workshop on Reference Nanomaterials N2 - The properties of nanomaterials are influenced not only by their chemical composition but also by physical properties (such as size, geometry and crystal structure). For the reliable determination and assessment of behaviour and effects of nanomaterials as well as for the determination of the exposure of humans and environment a comprehensive physical-chemical characterization of nanomaterials is essential. This is an important prerequisite to identify them as nanomaterials and to interpret and compare test results and - in future – to forecast interaction and effects of nanomaterials. In 2006, the OECD launched a sponsorship program for the testing of nanomaterials in which 11 nanomaterials were thoroughly investigated using a variety of methods. The aim of the project was, among other things, to find out where problems occur and where there are gaps in the measurement and test procedures and where are changes required. An important outcome of the sponsorship program was the finding that the OECD Test Guidelines should in several cases be extended to the specific needs in testing of nanomaterials. The existing standardized test methods of the OECD for physical-chemical characterization have not been developed for nanomaterials in particular. A high demand for an extension of the test guidelines was identified. Germany complied with the OECD's request in 2017 and has agreed to extend the “Test Guideline on Particle Size Distribution / Fiber Length and Diameter Distributions Test Guideline” for Manufactured Nanomaterials (MN). UBA commissioned BAM and BAuA with the preparation of the Test Guideline. The aim of the project is the development of a harmonized test protocol for a valid and reproducible determination of particle size and size distribution which is one of the most relevant physical-chemical properties for MNs. Different measuring methods provide different results for the size distribution of the particles. This is caused by the different measuring principles of the methods. Each method measures a specific parameter that ultimately determines particle size. First, the measured quantity differs for each method (Scattered light intensity, 2D image / projection, electric mobility, etc.). Second, the calculated diameters of the MN may differ (Feret Diameter, Area Projection, Mobility Diameter, Aerodynamic Diameter, Hydrodynamic Diameter). Third, a measuring method provides a size distribution which is measured either mass-based, surface-based or number-based. A conversion between the results requires additional parameters and thus possibly increases the measurement error. In addition to the technical differences, the individual parameters are strongly influenced by the structure and material of the nanoparticles. For example, a surface functionalization can lead to very different results in the size distribution. The suitability of measurement methods differs with the material of the MN. As a result, two very different results can be measured for the particle size distribution using two different methods, which are nevertheless both correct. Several large projects in recent years therefore concluded that nanomaterials should be characterized by at least two complementary method. Imaging techniques are regarded as one of these methods for the characterization, the complementary methods are supposed to be statistical methods. The different results for the size distribution of nanomaterials become problematic for the registration of new MN. A comparable and reproducible size distribution is a prerequisite for a standardized registration. In the future, the particle size distribution in the EU will also decide on the classification of a substance as a nanomaterial or as a non-nanomaterial. Especially in borderline cases, a standardized and comparable measurement methodology is therefore essential. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - OECD KW - Guideline KW - Particle size distribution KW - Nano KW - Prüfrichtlinie PY - 2019 SN - 978-3-95606-440-1 DO - https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - F-61 SP - 125 EP - 132 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea A1 - Kleinbub, Sherin T1 - Microbial modelling of sulfate-reducing bacteria (SRB) and methanogenic archaea (ME) using iron N2 - Sulfate reducing bacteria (SRB) and methanogenic archaea (MA) are commonly found in the oil and gas environments. The formation of hydrogen sulfide (HS-) is particularly concerning for the petroleum industry due to its corrosiveness. However, the activities of SRB are limited to the concentration of sulfate present in the environment, whereas methanogens can utilize substrates such as H¬2 for methanogenesis. MA is commonly found in sulfate-free environments, such as deep sediments, and are known to form interspecies electron transfer relationships with SRB. Recently, SRB and MA capable of microbiologically influenced corrosion (MIC) by using elemental iron as a direct electron source (EMIC) have gained increased attention. On the iron surface, EMIC-SRB can outcompete EMIC-MA in the presence of sulfate, but this changes as sulfate depletes. The formation of FeS on the metal surface can be further utilized by MA for methanogenesis as it provides a conductive path. However, the possible kinetics involved of the overall process are currently unknown. We obtained a co-culture of EMIC-SRB and EMIC-MA to investigate the growth rates and electrical potential changes under different environmental conditions, including changes in pH, temperature and salinity. Results indicate that under neutral conditions and using iron as the sole substrate, methane production (up to 5 mM) starts after sulfate was depleted. Electrochemical measurements will be conducted on the co-culture under different conditions to determine the changes in the electrical potential in correlation with the sulfate and methane concentration. Fluorescence and electron microscope images of the biofilm structure will be used to visualize cell distribution and morphology. This study embarks the first step of understanding the relationship between EMIC-SRB and EMIC-MA. Such knowledge is important for the field of microbial electrophysiology and can be further explored for industrial applications. T2 - 7th International Symposium on Applied Microbiology and Molecular Biology in Oil Systems (ISMOS-7) CY - Halifax, Canada DA - 18.06.2019 KW - MIC KW - Corrosion KW - FIB/SEM KW - Corrosion products KW - Bacteria KW - Archaea KW - Iron PY - 2019 AN - OPUS4-49420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Baesso, Ilaria A1 - Straße, Anne A1 - Pittner, Andreas A1 - Pignatelli, Giuseppe A1 - Seeger, Stefan A1 - Nazarzadehmoafi, Maryam A1 - Ehlers, Henrik A1 - Gohlke, Dirk A1 - Homann, Tobias A1 - Scheuschner, Nils A1 - Ulbricht, Alexander A1 - Heinrich, P. A1 - Maierhofer, Christiane T1 - Process monitoring of additive manufacturing of metals - an overview of the project ProMoAM N2 - The project ProMoAM is presented. The goal of the project is to evaluate which NDT techniques or combination of techniques is suited for in-situ quality assurance in additive manufacturing of metals. To this end, also 3d-data fusion and visualization techniques are applied. Additional ex-situ NDT-techniques are used as references for defect detection and quantification. Feasability studies for NDT-techniques that are presently not applicable for in-situ use are performed as well. The presentation gives a brief overview of the whole project and the different involved NDT-techniques. T2 - Workshop od Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - Process monitoring KW - NDT PY - 2019 AN - OPUS4-48087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -