TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding N2 - The additional element from the filler wire in the laser beam welding is usually distributed inhomogeneously in the final weld due to the high solidification rate of weld pool. It has been found that the electromagnetic stirring produced by an external oscillating magnetic field can enhance the material mixing in the weld pool to achieve a more uniform element distribution. However, the magnetic field has a highly non-linear and multi-coupled interaction with the weld pool behavior, which makes the quantitative explanation of the physical mechanism difficult. In this study, the effect of electromagnetic stirring on the transport phenomena in the wire feed laser beam welding is investigated by a numerical modelling. A 3D transient multi-physical model considering the magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics and element transport is developed. The multiple reflections and the Fresnel absorption of the laser on the keyhole wall are calculated using the ray tracing method. The numerical results show that a Lorentz force produced by the oscillating magnetic field and its induced eddy current gives significant influence on the transport phenomena in the molten pool. The forward and downward flow is enhanced by the electromagnetic stirring, which homogenizes the distribution of the additional elements from a nickel-based filler wire in a steel weld pool. The numerical results show a good agreement with the high-speed images of the molten pool, the fusion line from the optical micrograph and the element distribution from the energy dispersive X-ray spectroscopy. This work provides a physical base for the electromagnetic-controlled laser beam welding and some guidance for the selection of electromagnetic parameters. T2 - ICALEO 2019 CY - Orlando, US DA - 07.10.2019 KW - Magnetohydrodynamics KW - Molten pool dynamics KW - Element transport KW - Laser beam welding PY - 2019 AN - OPUS4-49300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A theoretical study of influence o f electromagnetic stirring on transport phenomena in wire feed laser beam welding T2 - ICALEO 2019 - 38th International congress on applications of lasers & electro-optics (Proceedings) N2 - The additional element from the filler wire in the laser beam welding is usually distributed inhomogeneously in the final weld due to the high solidification rate of weld pool. It has been found that the electromagnetic stirring produced by an external oscillating magnetic field can enhance the material mixing in the weld pool to achieve a more uniform element distribution. However, the magnetic field has a highly non-linear and multi-coupled interaction with the weld pool behavior, which makes the quantitative explanation of the physical mechanism difficult. In this study, the effect of electromagnetic stirring on the transport phenomena in the wire feed laser beam welding is investigated by a numerical modelling. A 3D transient multi-physical model considering the magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics and element transport is developed. The multiple reflections and the Fresnel absorption of the laser on the keyhole wall are calculated using the ray tracing method. The numerical results show that a Lorentz force produced by the oscillating magnetic field and its induced eddy current gives significant influence on the transport phenomena in the molten pool. The forward and downward flow is enhanced by the electromagnetic stirring, which homogenizes the distribution of the additional elements from a nickel-based filler wire in a steel weld pool. The numerical results show a good agreement with the high-speed images of the molten pool, the fusion line from the optical micrograph and the element distribution from the energy dispersive X-ray spectroscopy. This work provides a physical base for the electromagnetic-controlled laser beam welding and some guidance for the selection of electromagnetic parameters. T2 - ICALEO 2019 - 38th International congress on applications of lasers & electro-optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Magnetohydrodynamics KW - Molten pool dynamics KW - Element transport KW - Laser beam welding PY - 2019 SN - 978-1-940168-1-42 SP - Paper # Macro 403 AN - OPUS4-49664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ivanov, S. A1 - Vildanov, A. A1 - Golovin, P. A1 - Artinov, Antoni A1 - Karpov, I. T1 - Effect of Inter-Layer Dwell Time on Distortion and Residual Stresses of Laser Metal Deposited Wall JF - Key Engineering Materials N2 - The laser metal deposition is an advanced manufacturing technology enabling the production of large-sized parts and partially or completely elimination of machining and welding. The process is characterised by non-uniform local heating of the buildup leading to a stress distribution, which may exceed the yield strength of the material and leads to loss of dimensional accuracy. The interlayer dwell time has a strong influence on the temperature field. The effect of the interlayer dwell time on the distortion and the stress distribution during laser metal deposition of a single-pass wall on the edge of 2 mm thick plate was studied experimentally and numerically. The deposited material was IN625 and the substrate material was AISI 316. A decrease of the residual displacement, due to a uniform shrinkage after the deposition of the last layer and a lower level of the residual compressive longitudinal plastic strain, has been observed in the studies without dwell time. The peak increment of the free edge displacement corresponds to the first layer and hence the subsequent layers will be deposited on the already plastically deformed buildup. The tensile residual longitudinal stress near the top of the buildup and transverse stress near the edges of the buildup is higher than yield strength in the studies with dwell time. KW - Laser metal deposition KW - Distortion KW - Residual stresses KW - Temperature field KW - Simulation PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/KEM.822.445 SN - 1662-9795 VL - 822 SP - 445 EP - 451 PB - Trans Tech Publications Ltd. AN - OPUS4-49113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bakir, Nasim A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Lamé curves approximation for the assessment of the 3-D temperature distribution in keyhole mode welding processes T2 - ICALEO 2019 - 38th International congress on applications of lasers & electro-optics (Proceedings) N2 - A novel approach for the reconstruction of an equivalent volumetric heat source from a known weld pool shape is proposed. It is based on previously obtained weld pool geometries from a steady-state thermo-fluid dynamics simulation. Hereby the weld pool dimensions are obtained under consideration of the most crucial physical phenomena, such as phase transformations, thermo-capillary convection, natural convection and temperature-dependent material properties. The algorithm provides a time and calibration efficient way for the reproduction of the weld pool shape by local Lamé curves. By adjusting their parameters, the identification of the finite elements located within the weld pool is enabled. The heat input due to the equivalent heat source is assured by replacing the detected nodes’ temperature by the melting temperature. The model offers variable parameters making it flexible and adaptable for a wide range of workpiece thicknesses and materials and allows for the investigation of transient thermal effects, e.g. the cooling stage of the workpiece. The calculation times remain acceptably short especially when compared to a fully coupled process simulation. The computational results are in good agreement with performed complete-penetration laser beam welding experiments. T2 - ICALEO 2019 - 38th International congress on applications of lasers & electro-optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Weld pool shape approximation KW - Keyhole mode laser beam welding KW - Numerical simulation KW - Superelliptic Lamé curves PY - 2019 UR - http://icaleo.conferencespot.org/2019-proceedings?qr=1 SN - 978-1-940168-1-42 SP - Paper # Macro 1002 AN - OPUS4-49310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool T2 - ICALEO 2019 - The International Congress on Applications of Lasers & Electro-Optics (Proceedings) N2 - The geometrical characteristics of the weld end crater are commonly used for the validation of numerical results in welding simulation. A semi-analytical model calculating the cooling stage of the welding process after the moving energy source is turned off has been developed. A solution for various combinations of heat sources and workpieces has been found. The theoretical limits for the heat transfer of the absorbed energy during cooling in a thin plate and a semi-infinite body were studied. It is shown that after turning off the energy source, an additional melting of the base material in longitudinal direction may occur. The developed technique is applied to complete-penetration keyhole laser beam welding of a 2 mm thick austenitic chromium-nickel 316L steel plate at a welding speed of 20 mm/s and a laser power of 2.3 kW. The results show a theoretical increase of the weld end crater length in comparison to the length of the steady-state weld pool of up to 19 %. A shift of the centre of the end crater, in which the solidification of the liquid metal ends, towards the tail of the end crater relative to the axis of the heat source at the time of its termination, was computed. The speed and the direction of crystallization of the molten material in the weld pool and the end crater were found to be different. A good agreement between the computational results and the welding experiments was achieved. T2 - ICALEO 2019 - The International Congress on Applications of Lasers & Electro-Optics (Proceedings) CY - Orlando, FL USA DA - 07.10.2019 KW - Keyhole mode welding KW - Weld pool shape KW - End-crater KW - Heat conduction PY - 2019 UR - http://icaleo.conferencespot.org/2019-proceedings?qr=1 SN - 978-1-940168-1-42 SP - 1 EP - 8 AN - OPUS4-49344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Na, S.-J. A1 - Rethmeier, Michael T1 - On the search for the origin of the bulge effect in high power laser beam welding T2 - ICALEO 2018 - The International Congress on Applications of Lasers & Electro-Optics (Proceedings) N2 - The shape of the weld pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging MWIR and VIS cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop shaped weld pool. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulging-region. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface were found. T2 - International Congress on Applications of Lasers & Electro-Optics (ICALEO®) CY - Orlando, USA DA - 14.10.2018 KW - Bulging effect KW - High power laser beam welding KW - Numerical modelling KW - Solidification cracking PY - 2019 SP - 1 EP - 8 AN - OPUS4-47139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Karkhin, Victor A1 - Rethmeier, Michael ED - Sommertisch, C. ED - Enzinger, N. ED - Mayr, P. T1 - A novel approach for calculating the thermal cycle of a laser beam welding process using a stationary CFD model T2 - Mathematical Modelling of Weld Phenomena 12 N2 - This work aims to find the thermal cycles during and after fusion welding through simulation by first calculating the resulting local temperature field in the quasi-stationary part of the process. Here complete-penetration keyhole laser beam welding with a laser power of 18 kW on a 15 mm thick slab of a low-alloyed steel at a welding speed of 2 m/min is considered. In order to physically depict the laser material interaction a multi-physics numerical model including the effects of phase transformation, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature is developed. It uses a fixed keyhole geometry with a right truncated circular cone shape to introduce the laser beam energy to the workpiece. In a subsequent study, the resulting local temperature field is then used as an equivalent heat source in order to predict the unsteady thermal cycle during and after fusion welding. The translational movement of the laser beam through the workpiece is represented by a moving mesh approach. For the simulation, stationary heat transfer and fluid dynamics are described by a system of strongly coupled partial differential equations. These are solved with the commercial finite element software COMSOL Multiphysics 5.0. The results of the numerical simulation are validated by experiments, where the weld bead shapes and the thermal cycles show good correlation. T2 - 12th International Seminar "Numerical Analysis of Weldability" CY - Graz, Austria DA - 24.09.2018 KW - Equivalent heat source KW - Process simulation KW - Laser beam welding KW - Transient heat transfer KW - Moving mesh PY - 2019 SN - 978-3-85125-616-1 VL - 12 SP - Chapt. VI, 694 EP - 710 PB - Verlag der Technischen Universität Graz AN - OPUS4-48817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A decoupling numerical approach for the study of hot cracking formation during high power keyhole mode welding of steel plates with a high sheet thickness N2 - The weld pool dynamics and shape play a fundamental role in keyhole mode welding. The presented work aims the experimental and numerical investigation of the influence of the weld pool characteristics on the formation of hot cracking. The experimental procedure allows recording the molten pool in the longitudinal section of a butt joint configuration of 15 mm thick structural steel and transparent quartz glass by using a high-speed video camera and two thermal imaging cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop-shaped weld pool. A bulge-region and its temporal evolution are observed approximately in the middle of the depth of the weld pool, where hot cracking appears. A numerical framework including models for the weld pool dynamics, global temperature field, transient stress state, crystal growth, diffusion and macro-segregation and subroutines for their one-way couplings is developed. The numerically obtained and experimentally observed results are in a good agreement. It is shown that the bulge-region leads to a delay in the solidification behavior, increased temporal tensile stresses and accumulation of impurities in the defect region and hence enhance the probability of hot cracking formation. T2 - Colloquium, Dept. Materials Science & Engineering, The Ohio State University CY - Columbus, Ohio, USA DA - 18.10.2019 KW - Keyhole mode welding KW - Weld pool shape KW - Bulge KW - Hot cracking PY - 2019 AN - OPUS4-49339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael A1 - Karkhin, V. T1 - Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool N2 - The geometrical characteristics of the weld end crater are commonly used for the validation of numerical results in welding simulation. A semi-analytical model calculating the cooling stage of the welding process after the moving energy source is turned off has been developed. A solution for various combinations of heat sources and workpieces has been found. The theoretical limits for the heat transfer of the absorbed energy during cooling in a thin plate and a semi-infinite body were studied. It is shown that after turning off the energy source, an additional melting of the base material in longitudinal direction may occur. The developed technique is applied to complete-penetration keyhole laser beam welding of a 2 mm thick austenitic chromium-nickel 316L steel plate at a welding speed of 20 mm/s and a laser power of 2.3 kW. The results show a theoretical increase of the weld end crater length in comparison to the length of the steady-state weld pool of up to 19 %. A shift of the centre of the end crater, in which the solidification of the liquid metal ends, towards the tail of the end crater relative to the axis of the heat source at the time of its termination, was computed. The speed and the direction of crystallization of the molten material in the weld pool and the end crater were found to be different. A good agreement between the computational results and the welding experiments was achieved. T2 - ICALEO 2019 - The International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Keyhole mode welding KW - Weld pool shape KW - End-crater KW - Heat conduction PY - 2019 AN - OPUS4-49341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Karkhin, Victor A1 - Khomich, P. A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Assessment of welding thermal cycles by boundary element method N2 - A numerical framework simulation of the steady-state thermal behaviour in keyhole mode welding has been developed. It is based on the equivalent heat source concept and consists of two parts: computational thermo-fluid dynamics and heat conduction. The solution of the thermo-fluid dynamics problem by the finite element method for a bounded domain results in a weld pool interface geometry being the input data for a subsequent heat conduction problem solved for a workpiece by proposed boundary element method. The main physical phenomena, such as keyhole shape, thermo-capillary and natural convection and temperaturedependent material properties are taken into consideration. The developed technique is applied to complete-penetration keyhole laser beam welding of a 15 mm thick low-alloyed steel plate at a welding speed of 33 mm/s and a laser power of 18 kW. The fluid flow of the molten metal has a strong influence on the weld pool geometry. The thermo-capillary convection is responsible for an increase of the weld pool size near the plate surfaces and a bulge formation near the plate middle plane. The numerical and experimental molten pools, cross-sectional weld dimensions and thermal cycles of the heat affected zone are in close agreement. T2 - 72nd IIW Annual Assembly and International Conference CY - Bratislava, Slovakia DA - 07.07.2019 KW - Numerical simulation KW - Boundary element method KW - Themral cycles KW - Keyhole mode welding KW - Bulging PY - 2019 AN - OPUS4-48467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -