TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Exploring the correlation between subsurface residual stresses and manufacturing parameters in laser powder bed fused Ti-6Al-4V JF - Metals N2 - Subsurface residual stresses (RS) were investigated in Ti-6Al-4V cuboid samples by means of X-ray synchrotron diffraction. The samples were manufactured by laser powder bed fusion (LPBF) applying different processing parameters, not commonly considered in open literature, in order to assess their influence on RS state. While investigating the effect of process parameters used for the calculation of volumetric energy density (such as laser velocity, laser power and hatch distance), we observed that an increase of energy density led to a decrease of RS, although not to the same extent for every parameter variation. Additionally, the effect of support structure, sample roughness and LPBF machine effects potentially coming from Ar flow were studied. We observed no influence of support structure on subsurface RS while the orientation with respect to Ar flow showed to have an impact on RS.We conclude recommending monitoring such parameters to improve part reliability and reproducibility. KW - Additive manufacturing KW - Synchrotron X-ray diffraction KW - Residual stress KW - Ti-6Al-4V PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474281 DO - https://doi.org/10.3390/met9020261 SN - 2075-4701 VL - 9 IS - 2 SP - 261, 1 EP - 13 PB - MDPI AN - OPUS4-47428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Serrano Munoz, Itziar A1 - Gollwitzer, Christian A1 - Bruno, Giovanni T1 - 3D shape analysis of powder for laser beam melting by synchrotron X-ray CT JF - Quantum Beam Science N2 - The quality of components made by laser beam melting (LBM) additive manufacturing is naturally influenced by the quality of the powder bed. A packing density <1 and porosity inside the powder particles lead to intrinsic voids in the powder bed. Since the packing density is determined by the particle size and shape distribution, the determination of these properties is of significant interest to assess the printing process. In this work, the size and shape distribution, the amount of the particle’s intrinsic porosity, as well as the packing density of micrometric powder used for LBM, have been investigated by means of synchrotron X-ray computed tomography (CT). Two different powder batches were investigated: Ti–6Al–4V produced by plasma atomization and stainless steel 316L produced by gas atomization. Plasma atomization particles were observed to be more spherical in terms of the mean anisotropy compared to particles produced by gas atomization. The two kinds of particles were comparable in size according to the equivalent diameter. The packing density was lower (i.e., the powder bed contained more voids in between particles) for the Ti–6Al–4V particles. The comparison of the tomographic results with laser diffraction, as another particle size measurement technique, proved to be in agreement. KW - Additive manufacturing KW - Laser beam melting KW - Synchrotron computed tomography KW - Powder analysis KW - Imaging PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474070 DO - https://doi.org/10.3390/qubs3010003 SN - 2412-382X VL - 3 IS - 1 SP - 3, 1 EP - 12 PB - MDPI AN - OPUS4-47407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - New aspects about the search for the most relevant parameters optimizing SLM materials JF - Additive Manufacturing N2 - While the volumetric energy density is commonly used to qualify a process parameter set, and to quantify its influence on the microstructure and performance of additively manufactured (AM) materials and components, it has been already shown that this description is by no means exhaustive. In this work, new aspects of the optimization of the selective laser melting process are investigated for AM Ti-6Al-4V. We focus on the amount of near-surface residual stress (RS), often blamed for the failure of components, and on the porosity characteristics (amount and spatial distribution). First, using synchrotron x-ray diffraction we show that higher RS in the subsurface region is generated if a lower energy density is used. Second, we show that laser de-focusing and sample positioning inside the build chamber also play an eminent role, and we quantify this influence. In parallel, using X-ray Computed Tomography, we observe that porosity is mainly concentrated in the contour region, except in the case where the laser speed is small. The low values of porosity (less than 1%) do not influence RS. KW - Additive manufacturing KW - Selective laser melting KW - Residual stress KW - Computed tomography PY - 2019 DO - https://doi.org/10.1016/j.addma.2018.11.023 SN - 2214-8604 VL - 25 SP - 325 EP - 334 PB - Elsevier AN - OPUS4-46737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -