TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Microstructural evolution of the S-phase in aluminium alloy 2618A during ageing and creep N2 - The degradation of alloy 2618A due to coarsening of the S-phase was investigated. Dark-field transmission electron microscopy (DFTEM) results are presented and the discussed focusing on the implications considering the degradation mechanism. T2 - 15th International Conference on Aluminium Alloys (ICAA 15) CY - Chongqing, China DA - 12.06.2016 KW - 2618A KW - Dark-field transmission electron microscopy (DFTEM) KW - Coarsening KW - S-phase KW - Microstructure PY - 2016 AN - OPUS4-36704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Microstructural characterisation of ageing and creep of 2618A N2 - Presentation of microstructural characterisation results for alloy 2618A T2 - Projektausschusssitzung mit Industrivertretern der Forschungsvereinigung Verbrennungskraftmaschinen (FVV) CY - Frankfurt a. M., Germany DA - 07.04.2016 KW - Dark-field transmission electron microscopy (DFTEM) KW - 2618A KW - S-Phase KW - Coarsening KW - Microstructure PY - 2016 AN - OPUS4-36705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Quantitative determination of microstructural parameters from TEM – Part II N2 - Presentation of quantitative microstructural parameter determination from Transmission electron microscopy (TEM) T2 - DFG Priority Program 1713 Docus Group Meeting CY - Berlin, Germany DA - 27.06.2016 KW - Dark-field transmission electron microscopy (DFTEM) KW - 2618A KW - S-Phase KW - Volume fraction KW - Microstructure PY - 2016 AN - OPUS4-36706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Rethmeier, Michael A1 - Alexandrov, B. T. T1 - Low heat input gas metal arc welding for dissimilar metal weld overlays part I: the heat-affected zone N2 - Dissimilar metal weld overlays of nickel base alloys on low alloy steel components are commonly used in the oil and gas, petro-chemical, and power generation industries to provide corrosion and oxidation resistance in a wide range of service environments and temperatures. Traditionally, weld overlays are produced using cold or hot wire gas tungsten arc welding (GTAW). Potential advantages of cold metal Transfer (CMT) welding, a low heat input gas metal arc welding process, over the conventional GTAW in production of weld overlays were evaluated. Metallurgical characterization was performed on CMT overlays of Alloy 625 filler metal on Grade 11 and Grade 22 steels. Significant grain refinement was found in the high temperature HAZ compared to the traditional coarse-grained HAZ in arc welding. Evidences of incomplete carbide dissolution, limited carbon diffusion, and incomplete transformation to austenite were also found. These phenomena were related to high heating and cooling rates and short dwell times of the high-temperature HAZ in austenitic state. Tempering effects in the steel HAZ were identified, showing a potential for development of CMT temperbead procedures. Based on the results of this study, the steel HAZ regions in CMT overlays were classified as high-temperature HAZ and intercritical HAZ. KW - Clad steels KW - Nickel alloys KW - Low alloy steels KW - GMA surfacing KW - DIP transfer KW - Coarse-grained heat-affected zone KW - Microstructure PY - 2016 U6 - https://doi.org/10.1007/s40194-016-0306-z SN - 0043-2288 SN - 1878-6669 VL - 60 IS - 3 SP - 459 EP - 473 PB - Springer CY - Heidelberg, Germany AN - OPUS4-36377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Link, T. A1 - Nolze, Gert A1 - Loshchinin, Yu. V. A1 - Gerstein, G. T1 - Thermal stability of the structure of a heat-resistant cobalt alloy hardened with intermetallic γ'-phase precipitates N2 - The thermal stability of the microstructure of a heat-resistant cobalt alloy, which consists of a γ solid solution strengthened with γ'-phase precipitates, has been studied. The temperature behavior of the dissolution of the hardening γ' phase and the kinetics of its coarsening at 700 and 800°C have been determined. It is found that, during prolonged annealing at 800°C, the γ' → β phase transformation occurs. KW - Superalloy KW - Microstructure KW - Hardening KW - Electron backscatter diffraction KW - TEM PY - 2016 U6 - https://doi.org/10.1134/S0036029516040078 SN - 0036-0295 VL - 2016 IS - 4 SP - 286 EP - 291 PB - Pleiades Publishing AN - OPUS4-37768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Microstructure characterization of the Treysa meteorite N2 - Microstructure descripton of heat-affected zone, fusion crust and main metal of the Treysa iron using scanning electron microscopy, EBSD and EDS. T2 - 8. Deutsches Meteoriten Kolloquium, CY - Zella Willingshausen, Germany DA - 02.04.2016 KW - Electron backscatter diffraction KW - EDX KW - Light microscopy KW - Microstructure KW - Oxidation PY - 2016 U6 - https://doi.org/10.13140/RG.2.1.3387.8161 AN - OPUS4-37769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dietrich, D. A1 - Nolze, Gert A1 - Mehner, T. A1 - Nickel, D. A1 - Lampke, T. T1 - EDS/EBSD studies and HR-EBSD pattern analysis on pre-Inca ceramic fragments recovered during San José de Moro Archaeology Program N2 - Pre-Inca civilizations like the coastal cultures Moche and Nazca (Early Intermediate) and the inland culture Wari (Middle Horizon) were agrarian societies which supported indigenous elites of impressive wealth, power, and organization. With the expansion of the Wari Empire, the polychrome style and technique of Nazca propagated to the other cultures. High status burials, most of the Late Moche Fine Line ceramics and a large corpus of ceramics with Wari-derived decoration have been recovered in San José de Moro since 1991. The degree of transfer of procedures in this highly interactive scenario is of special interest: is there a limitation to decoration or is it adopted by the local potters also regarding the formulation of the ceramic bodies? In this context the relative amount, size and type of incorporated non-plastic inclusions as temper are important. T2 - The 16th European Microscopy Congress 2016 CY - Lyon, France DA - 28.08.2016 KW - EBSD KW - EDX KW - Ceramic KW - Phase distribution KW - Microstructure KW - Texture KW - Phase identification KW - SEM PY - 2016 U6 - https://doi.org/10.1002/9783527808465.EMC2016.4462 SP - 4462 PB - John Wiley & Sons AN - OPUS4-37740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kreutzbruck, Marc A1 - Stegemann, Robert T1 - Prospects of the metal magnetic memory technique N2 - Prospects and Restrictions of the Metal Magnetic Memory Technique T2 - 69th-IIW-Meeting CY - Melbourne, Australia DA - 12.07.2016 KW - Metal magnetic memory KW - Magnetic field KW - GMR sensor KW - Microstructure PY - 2016 AN - OPUS4-38133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Steger, Jörg A1 - Böllinghaus, Thomas A1 - Kannengießer, Thomas ED - Lippold, J. ED - Böllinghaus, Thomas ED - Richardson, I. M. T1 - Hydrogen degradation effects on mechanical properties in T24 weld microstructures N2 - Spectacular failure cases of fossil power stations in the recent years exhibited severe cracking in T24 welds. The results show that hydrogen-assisted cracking up to 200 °C cannot be excluded. Hence, it is important to gain a basic understanding on how hydrogen might affect the basic material properties in the respective weld microstructures. The present study focuses on hydrogen degradation of the respective weld microstructures, i.e., the weld metal and the coarse grained heat affected zone, where actually cracking appeared in practice. Tensile tests were carried out for coarse grain heataffected zone (CGHAZ) and the weld metal in uncharged and electrochemically hydrogen-charged condition. It turned out that both microstructures show distinct tendency for gradual degradation of mechanical properties in the presence of increasing hydrogen concentration. Already for a hydrogen concentration about and above 2 ml/100 g Fe, a significant ductility reduction has been observed. SEM investigations revealed that the fracture topography changes from ductile topography in uncharged condition to intergranular topography for the CGHAZ and to ductile-brittle mix for the weld metal (WM) in hydrogen charged condition. Ti-rich inclusions were identified as central regions of quasi-cleavage fracture areas in the WM. An approximation procedure is applied to quantify the degradation intensity. KW - Low alloy steels KW - Hydrogen embrittlement KW - Heat affected zone KW - Microstructure KW - Creep resisting materials PY - 2016 UR - http://link.springer.com/article/10.1007/s40194-015-0285-5 U6 - https://doi.org/10.1007/s40194-015-0285-5 SN - 0043-2288 VL - 60 IS - 2 SP - 201 EP - 216 PB - Springer-Verlag GmbH CY - Heidelberg AN - OPUS4-35390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steppan, Enrico A1 - Zhang, Lei A1 - Kannengießer, Thomas T1 - Influence of microalloy design on HAZ toughness of S690QL steel N2 - Three high strength Nb-, Ti- and Ti+V- bearing S690QL steels were welded to investigate and compare the effects of microalloy addition on HAZ toughness. Charpy V notch impact tests from three microalloyed welds under different cooling rates have been performed. Fractographic examination shows that several factors including large-sized grain, upper bainite or hard second phase, interact to determine the brittle fracture mode and impaired toughness of Nb bearing weld at high heat input. In contrast to this reduced toughness, Ti bearing welds exhibits satisfied toughness regardless of at a fast or slow cooling rate as a result of limited austenite grain and refined favourable intragranular acicular ferrite structure. Moreover, in the case of such refined structure as matrix, TiN particles are found to be irrelevant to the fracture process and crystallographic misorientation results also confirms that high angle boundaries between fine ferrites plates provide much effective barrier for crack propagation and contribute to improved toughness. T2 - 69th IIW Annual Assembly and International Conference CY - Melbourne, Australia DA - 10.07.2016 KW - Cooling rate KW - High strength steel KW - Microalloy elements KW - HAZ toughness KW - Microstructure PY - 2016 AN - OPUS4-39458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Kachanov, Mark T1 - Microstructure-property connections for porous ceramics: The possibilities offered by micromechanics N2 - Microstructure of porous ceramics is highly “irregular”: it comprises pores and microcracks of diverse shapes and orientations. This makes their quantitative modeling challenging, and one often resorts to empirical relations containing Fitting Parameters and having somewhat uncertain range of applicability. We review the substantial progress made in modeling of “irregular” microstructures that does not seem to have been sufficiently utilized in the context of ceramics. We discuss the possibilities offered by micromechanics in developing microstructure–property relations for porous microcracked ceramics. After an overview of relevant micromechanics topics, we focus on several issues of specific interest for ceramics: nonlinear stress–strain behavior, effective elastic properties, and thermally induced microcracking. We discuss extraction of microscale Parameters (such as strength of the intergranular cohesion, density of cracks and pores, etc.) from macroscopic data and identify the extent of uncertainty in this process. We also argue that there is no quantitative correlation between fracturing process and the loss of elastic stiffness. KW - Ceramics KW - Microcracking KW - Pores KW - Microstructure KW - Micromechanics KW - Intergranular strength KW - Nonlinearity KW - Stress– strain curves PY - 2016 U6 - https://doi.org/10.1111/jace.14624 SN - 0002-7820 SN - 1551-2916 VL - 99 IS - 12 SP - 3829 EP - 3852 AN - OPUS4-39355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Microstructural characterisation of ageing and creep of 2618A N2 - The degradation process of alloy 2618A was investigated and results especially regarding volume fractions are presented. An ageing model for the alloy is tentatively formulated. However, the presence of dislocations remains questionable. T2 - Working Group Meeting Research Association for Combustion Engines CY - Frankfurt, Germany DA - 24.11.2016 KW - Alloy 2618A KW - Dark-field transmission electron microscopy KW - Degradation KW - Microstructure KW - Volume fraction PY - 2016 AN - OPUS4-42246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Microstructural characterisation and creep of alloy 2618A N2 - Dark-field Transmission electron microscopy (DFTEM) results were obtained and presented. The results are discussed with regard to additional microstructural characterisation of the primyra Phase and creep experiments of alloy 2618A. Different methods to determine the volume fractions of precipitate phases are presented. T2 - Working group meeting of the Research Association for Combustion Engines CY - Frankfurt, Germany DA - 07.04.2016 KW - Alloy 2618A KW - Dark-field transmission electron microscopy KW - Microstructure KW - Degradation KW - Volume fraction PY - 2016 AN - OPUS4-42220 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -