TY - CONF A1 - Ávila, Luis A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Assessing the low cycle fatigue behaviour of additively manufactured Ti-6Al-4V: Challenges and first results N2 - The understanding of process-microstructure-property-performance (PMPP) relationships in additive manufacturing (AM) of metals is highly necessary to achieve wide-spread industrial application and replace conventionally manufactured parts, especially regarding safety-relevant applications. To achieve this understanding, reliable data and knowledge regarding material’s microstructure-property relationships (e.g. the role of defects) is needed, since it represents the base for future more targeted process optimizations and more reliable calculations of performance. However, producing reliable material data and assessing the AM material behaviour is not an easy task: big challenges are e.g. the actual lack of standard testing methods for AM materials and the occasional difficulties in finding one-to-one comparable material data for the conventional counterpart. This work aims to contribute to end this lack of reliable material data and knowledge for the low cycle fatigue behaviour of the most used titanium alloy in aerospace applications (Ti-6Al-4V). For this purpose, two sets of test specimens were investigated. The first set was manufactured from cylindrical rods produced by an optimized DED-L process and the second was manufactured from a hot formed round bar. The test specimens were cyclically loaded until failure in the low-cycle-fatigue (LCF) regime. The tests were carried out according to ISO 12106 between 0.3 to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behaviour is described and compared between materials and with literature values based on cyclic deformation curves and strain-based fatigue life curves. Besides, the parameters of Manson-Coffin-Basquin relationship were calculated. The microstructures (initial and after failure) and fracture surfaces were comparative characterized. Thereby, the focus lied on understanding the role of grain morphology and defects on the failure mechanisms and fatigue lifetimes. For this latter characterization, optical microscopy (OM), scanning electron microscopy (SEM) and micro computed tomography (µCT) were used. T2 - 4th International Symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Ti-6Al-4V KW - Additive manufacturing KW - Low cycle fatigue KW - Micro computed tomography KW - Microstructure PY - 2020 AN - OPUS4-50893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Low cycle fatigue behavior of DED-L Ti-6AL-4V N2 - Laser powder-based directed energy deposition (DED-L) is a technology that offers the possibility for 3D material deposition over hundreds of layers and has thus the potential for application in additive manufacturing (AM). However, to achieve broad industrial application as AM technology, more data and knowledge about the fabricated materials regarding the achieved properties and their relationship to the manufacturing process and the resulting microstructure is still needed. In this work, we present data regarding the low-cycle fatigue (LCF) behavior of Ti-6Al-4V. The material was fabricated using an optimized DED-L process. It features a low defect population and excellent tensile properties. To assess its LCF behavior two conventionally manufactured variants of the same alloy featuring different microstructures were additionally tested. The strain-controlled LCF tests were carried out in fully reversed mode with 0.3 % to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behavior and failure mechanisms are described. For characterization, optical microscopy (OM), scanning electron microscopy (SEM), and micro-computed tomography (µCT) were used. The low defect population allows for a better understanding of the intrinsic material’s properties and enables a fairer comparison against the conventional variants. The fatigue lifetimes of the DED-L material are nearly independent of the test temperature. At elevated test temperatures, they are similar or higher than the lifetimes of the conventional counterparts. At room temperature, they are only surpassed by the lifetimes of one of them. The principal failure mechanism involves multiple crack initiation sites. T2 - Ninth International Conference on Low Cycle Fatigue (LCF9) CY - Berlin, Germany DA - 21.06.2022 KW - AGIL KW - Additive Manufacturing KW - Ti-6Al-4V KW - Low-Cycle-Fatigue KW - Microstructure PY - 2022 AN - OPUS4-55123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Ávila Calderón, Luis Alexander T1 - Mechanisches Verhalten von additiv gefertigtem nichtrostendem Stahl X2CrNiMo17-12-2 (AISI 316L) und Vergleich zur konventionell gefertigten Variante T1 - Mechanical behavior of additively manufactured stainless steel X2CrNiMo17-12-2 (AISI 316L) and comparison with a conventionally manufactured variant N2 - Die additive Fertigung (AM) metallischer Werkstoffe ist eine Technologie, die zunehmend Gegenstand von Forschungsaktivitäten und industrieller Anwendung ist. Dennoch steht sie noch vor Herausforderungen, um eine breite Nutzung in sicherheitsrelevanten Anwendungen zu erreichen. Die Hauptgründe für die Verzögerung des technologischen Durchbruchs zugunsten von AM-Metallen gegenüber konventionell hergestellten Varianten sind das Fehlen eines tieferen Verständnisses der Prozess-Struktur-Eigenschafts-Beziehungen und die begrenzte Verfügbarkeit von Daten zu den Materialeigenschaften. In diesem Kontext stellt diese Arbeit einen Beitrag sowohl zum Verständnis der Prozess-Struktur-Eigenschafts-Beziehungen als auch zur Verbesserung der Datenlage von 316L dar, einem häufig als Konstruktionswerkstoff in verschiedenen Hochtemperaturbauteilen verwendeten Werkstoff. Die Arbeit legt den Fokus auf die mittels Laser-Pulverbettschmelzen hergestellte Werkstoffvariante, PBF-LB/M/316L. Eine konventionell hergestellte Variante, HR/316L, wurde auch untersucht. Bei PBF-LB/M/316L wurde zusätzlich der Effekt ausgewählter Wärmebehandlungen ausgewertet. Die Untersuchung umfasste die Charakterisierung der mechanischen Eigenschaften und der Verformungs- und Schädigungsmechanismen bei erhöhten Prüftemperaturen bei LCF und Kriechen, wo die Daten und Wissenslage am spärlichsten ist. Außerdem hat die untersuchte PBF-LB/M/316L-Wersktoffvariante einen geringen Porositätsgrad. Somit hat diese Arbeit die Mikrostruktur stärker in den Fokus genommen als die meisten bisher in der Literatur verfügbaren Studien. Die mechanische Prüfkampagne umfasste Zugversuche zwischen Raumtemperatur und 650 °C, LCF-Versuche zwischen Raumtemperatur und 600 °C sowie Kriechversuche bei 600 °C und 650 °C. In Ermangelung konkreter Richtlinien und Normen wurde die Charakterisierung zumeist anhand der bestehenden internationalen Prüfnormen und Probengeometrien durchgeführt. Aus jedem dieser Prüfverfahren wurden die entsprechenden Festigkeits- und Verformungskennwerte ermittelt. Darüber hinaus wurde mit Hilfe gezielter mikrostruktureller Untersuchungen ein Beitrag zum Verständnis des Zusammenhangs zwischen der Mikrostruktur und den mechanischen Eigenschaften in Bezug auf die Verformungs- und Schädigungsmechanismen geleistet. Die Dehngrenze von PBF-LB/M/316L ist etwa doppelt so hoch wie die von HR/316L und dieser Trend setzt sich mit ansteigender Prüftemperatur fort. Die Bruchdehnung ist bei allen Prüftemperaturen geringer. PBF-LB/M/316L weist über den größten Teil der Ermüdungslebensdauer vor allem bei Raumtemperatur höhere zyklische Spannungen als HR/316L auf. Ausschließlich bei den kleinsten Dehnungs-schwingbreiten sind die Ermüdungslebensdauer ausgeprägt kürzer. Das Wechselverformungsverhalten von PBF-LB/M/316L ist durch eine Anfangsverfestigung gefolgt von einer kontinuierlichen Entfestigung charakterisiert, welche bis zum Auftreten der zum Versagen führenden Entfestigung stattfindet. Die Kriechbruchzeiten und die Dauer jeder Kriechphase sind bei allen Kombinationen von Prüfparametern bei PBF-LB/M/316 kürzer als bei HR/316L. Die Spannungsabhängigkeit von PBF-LB/M/316L ist im Vergleich zu HR/316L geringer und die Duktilität beim Kriechen kleiner. Die minimale Kriechrate wird bei allen geprüften Parameterkombinationen bei deutlich geringeren Kriechdehnungen erreicht. Eine Wärmebehandlung bei 450 °C / 4 h bewirkt keine wesentliche Änderungen der Mikrostruktur und Zugversuchseigenschaften. Eine zusätzliche Wärmebehandlung bei 900 °C / 1 h verursacht eine Abnahme der Dehngrenze des PBF-LB/M/316L. Diese blieb aber immer noch um den Faktor 1,5x höher als bei HR/316L. Die Verformungsmerkmale wurden kaum davon beeinflusst. Bezüglich des Kriechverhaltens hat die Wärmebehandlung bei 900 °C / 1 h längere sekundäre und tertiäre Kriechstadien bewirkt und die Kriechdehnung hat sich signifikant erhöht. Die Bruchbilder unterscheiden sich generell nicht nur aber vor allem mit ansteigender Prüftemperatur, bei der bei PBF-LB/M/316L oft interkristalline Rissbildung beobachtet wurde. Die Zellstruktur trägt als der Hauptfaktor zu den unterschiedlichen mechanischen Eigenschaften im Vergleich zur HR/316L-Variante bei. Darüber hinaus spielen mutmaßlich die Kornmorphologie, die Stapelfehlerenergie und der Stickstoffgehalt eine Rolle. N2 - Metal additive manufacturing (AM) is a technology that is increasingly the subject of research activities and industrial applications. However, it still faces challenges to achieve widespread use in safety-relevant applications. The main reasons for the delay of this technological breakthrough in favor of AM metals over conventionally manufactured variants are the lack of a deeper understanding of process-structure-property relationships and the limited availability of data on material properties. In this context, this work contributes to both achieving a better understanding of process-structure-property relationships and the improvement of data for 316L, an alloy frequently used as a structural material in various high-temperature components. The work focuses on a material variant produced by laser pow-der bed fusion, PBF-LB/M/316L. A conventionally produced variant, HR/316L, was also investigated. For PBF-LB/M/316L, the effect of selected heat treatments was also evaluated. The investigation included the characterization of the mechanical properties and the related deformation and damage mechanisms at elevated test temperatures in LCF and creep, where data and knowledge are scarce. The PBF-LB/M/316L variant studied has a low degree of porosity. Thus, this work is more focused on the microstructure than most studies available in the literature. The mechanical test campaign included tensile tests between room temperature and 650 °C, LCF tests between room temperature and 600 °C, and creep tests at 600 °C and 650 °C. In the absence of concrete guidelines and standards for testing of AM metals, the characterization mostly took place using existing international test standards and specimen geometries. From each of the test methods, corresponding strength, and deformation characteristic values were determined. In addition, targeted microstructural investigations contributed to understanding the relationship between the microstructure and the mechanical properties in terms of deformation and damage mechanisms. The proof stress of PBF-LB/M/316L is about twice that of HR/316L. This trend remains with increasing test temperature. The elongation after fracture is lower at all test temperatures. Regarding LCF, PBF-LB/M/316L exhibits higher cyclic stresses than HR/316L for most of the fatigue life, especially at room temperature. Exclusively at the smallest strain amplitudes, the fatigue lives of PBF-LB/M/316L are markedly shorter than in HR/316L. The cyclic stress-strain deformation behavior of PBF-LB/M/316L features an initial strain hardening followed by a continuous softening, which occurs until the softening leading to failure takes place. The creep rupture times and the duration of each creep stage are shorter for PBF-LB/M/316 than for HR/316L for all combinations of test parameters. The stress dependence of PBF-LB/M/316L is lower, and the creep ductility is smaller compared to HR/316L. The minimum creep rate is reached at significantly lower creep extensions for all parameter combinations tested. A heat treatment at 450 °C / 4 h did not cause significant changes in the microstructure and tensile behavior. An additional heat treatment at 900 °C / 1 h caused a decrease in the proof stress of PBF-LB/M/316L. However, it still remained higher than the one of HR/316L by a factor of 1.5x. The deformation characteristics were hardly affected. Regarding the creep behavior, this latter heat treatment at 900 °C / 1 h caused longer secondary and tertiary creep stages, and the creep strain increased significantly. The fracture characteristics generally differed, which happened not only but especially with increasing test temperature, where intergranular cracking often took place in PBF-LB/M/316L. The cellular structure is considered the main factor contributing to the different mechanical properties compared to the HR/316L variant. In addition, grain morphology, stacking fault energy, and nitrogen content might play a role. KW - AGIL KW - Additive Fertigung KW - Laser-Pulverbettschmelzen KW - Mikrostrukturentwicklung KW - 316L KW - LCF KW - Kriechen KW - Additive Manufacturing KW - Microstructure KW - Mechanical Properties KW - Mechanische Eigenschaften PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597143 SP - 1 EP - 190 CY - Berlin AN - OPUS4-59714 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Creep and fracture behavior of conventionally and additively manufactured stainless steel 316L N2 - A critical task within the frame of establishing process-structure-property-performance relationships in additive manufacturing (AM) of metals is producing reliable and well-documented material behavior’s data and knowledge regarding the structure-property correlation, including the role of defects. After all, it represents the basis for developing more targeted process optimizations and more reliable predictions of performance in the future. Within this context, this contribution aims to close the actual gap of limited historical data and knowledge concerning the creep behavior of the widely used austenitic stainless steel 316L, manufactured by Laser-Powder-Bed-Fusion (L-PBF). To address this objective, specimens from conventional hot-rolled and AM material were tested under application-relevant conditions according to existing standards for conventional material, and microstructurally characterized before and after failure. The test specimens were machined from single blocks from the AM material. The blocks were manufactured using a standard scan and build-up strategy and were subsequently heat-treated. The creep behavior is described and comparatively assessed based on the creep lifetime and selected creep curves and characteristic values. The effect of defects and microstructure on the material’s behavior is analyzed based on destructive and non-destructive evaluations on selected specimens. The AM material shows shorter creep lives, reaches the secondary creep stage much faster and at a lower strain, and features lower creep ductility compared to its conventional counterpart. The creep damage behavior of the AM material is more microstructure than defect controlled and is characterized by the formation and accumulation of single intergranular damage along the whole volume. Critical features identified are the grain morphology and the grain-boundary as well as the dislocation’s density. Micro-computed tomography (µCT) proves to be an alternative to metallography to analyze the creep damage. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - 316L KW - Creep behavior KW - Laser powder bed fusion KW - Additive manufacturing KW - Microstructure PY - 2020 AN - OPUS4-51823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Lei A1 - Kannengießer, Thomas T1 - Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel N2 - The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results. KW - Hardness measurement KW - Microstructure KW - Microalloyed steel KW - Welding KW - Grain growth PY - 2014 U6 - https://doi.org/10.1016/j.msea.2014.06.106 SN - 0921-5093 VL - 613 SP - 326 EP - 335 PB - Elsevier B.V. AN - OPUS4-36520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Woydt, Mathias T1 - Niobium carbide, a new cermet material with excellent properties N2 - Niobium carbide is a ceramic material which can be used with excellent results to replace tungsten carbide with cobalt binder. Furthermore, it might be manufactured by classic ceramic technologies and even colloidal processing. To achieve high toughness and strength, it is necessary to have a perfect mix of hard phase and binder, which is mainly achieved by ball milling. Mechanical and physical properties as well as results on different tribological and application-oriented machining tests are presented. The results have been compared with results obtained with NbC grades with Co and Fe3Al binders as well as with pure binderless hot-pressed NbC and SPS sintered Nb2O5. T2 - ICCCI 2018 - 6th Int. Conf. on the Characterization and Control of Interfaces for High Quality Advanced Materials and 54th Summer Symposium on Powder Technology CY - Kurashiki, Japan DA - 09.07.2018 KW - Niobium carbide KW - Cermet KW - Microstructure KW - Properties PY - 2018 AN - OPUS4-45643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia A1 - Fontana, P. A1 - Hoppe, Johannes A1 - Bilgin, S. A1 - Meng, Birgit ED - Serrat, C. ED - Casas, J. R. ED - Gibert, V. T1 - Composite Facade Elements with Self-Cleaning Surface made of Ultra-High-Performance Concrete (UHPC) N2 - In the framework of the European project H-House various concrete façade elements were developed with the aim to ensure a long service life by combining a very durable material with self-cleaning properties. The façade elements presented are made of a shell of UHPC filled with blocks of aerated autoclaved concrete as insulating material. Self-cleaning properties were realized amongst others by imprinting a microstructure into the surface during casting. The paper focuses on selected technological aspects of the manufacturing process of prototypes which had to be performed in two concreting sections. Furthermore the challenges faced when upscaling the self-cleaning properties are addressed and the strategy to assess the self-cleaning properties by measuring the contact and the roll-off angel is presented. The results show that a successfull upscalaing process requires detailed planning and that the best results can often be achieved with a moderate work effort or material use. T2 - XV International Conference on Durability of Building Materials and Components (DBMC 2020) CY - Online meeting DA - 20.10.2020 KW - Ultra-High-Performance Concrete KW - Facade Elements KW - Self-Cleaning Properties KW - Adhesive Pull-Strength KW - Microstructure KW - Architectural Concrete PY - 2020 SN - 978-84-121101-8-0 SP - 1289 EP - 1297 PB - International Center for Numerical Methods in Engineering (CIMNE) CY - Spain AN - OPUS4-51967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia A1 - Fontana, P. A1 - Hoppe, Johannes A1 - Bilgin, S. A1 - Meng, Birgit T1 - Composite Facade Elements with Self-Cleaning Surface made of Ultra-High-Performance Concrete (UHPC) N2 - In the framework of the European project H-House various concrete façade elements were developed with the aim to ensure a long service life by combining a very durable material with self-cleaning properties. The façade elements presented are made of a shell of UHPC filled with blocks of aerated autoclaved concrete as insulating material. Self-cleaning properties were realized amongst others by imprinting a microstructure into the surface during casting. The paper focuses on selected technological aspects of the manufacturing process of prototypes which had to be performed in two concreting sections. Furthermore the challenges faced when upscaling the self-cleaning properties are addressed and the strategy to assess the self-cleaning properties by measuring the contact and the roll-off angel is presented. The results show that a successfull upscalaing process requires detailed planning and that the best results can often be achieved with a moderate work effort or material use. T2 - XV International Conference on Durability of Building Materials and Components (DBMC 2020) CY - Online meeting DA - 20.10.2020 KW - Ultra-High-Performance Concrete KW - Facade Elements KW - Self-Cleaning Properties KW - Adhesive Pull-Strength KW - Microstructure KW - Architectural Concrete PY - 2020 AN - OPUS4-51968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Hartrott, P. A1 - Metzger, M. A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - Lifetime assessment of aging materials N2 - Materials subjected to high-temperature service conditions will change their microstructure with time. Associated with this aging process is a change of mechanical properties as well as a change of damage mechanisms. Within the scope of the FVV project Aging and Lifetime, Fraunhofer IWM in Freiburg and BAM in Berlin (both Germany) experimentally characterized the widespread high-temperature aluminum alloy EN AW-2618A in different overaging states. Based on the experimental findings, models for numerical lifetime assessment with the finite-element method were implemented. KW - Aluminum alloy KW - Aging KW - Microstructure KW - Lifetime prediction KW - Damage PY - 2018 U6 - https://doi.org/10.1007/s38313-018-0084-7 SN - 2192-9114 VL - 79 IS - 10 SP - 64 EP - 68 PB - Springer AN - OPUS4-46065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voigt, Marieke A1 - von Werder, Julia A1 - Meng, Birgit ED - Caprai, V. ED - Brouwers, H. J. H. T1 - Investigation of the zonation of thermally treated ultra high performance concrete N2 - Ultra high performance concrete (UHPC) is characterised by its high compressive strength of more than 150 MPa and its high durability. Due to thermal treatment at 90°C a strength comparable to the 28-days-strength can be achieved immediately after the treatment and in some cases can be even further increased up to 30 %. The explanations for the increase in strength are the accelerated hydration of the clinker minerals and the intensified pozzolanic reaction contributing to a denser microstructure and hence, a high performance in compressive strength. Former research shows that thermal treatment can lead to inhomogeneities in form of a visible zonation within the cross-section. The width of the margin increases with shorter pre-storage time before the thermal treatment and with omitting protective measures against desiccation during the treatment. Specimens exhibiting a zonation typically show a lower compressive strength compared to the undisturbed reference whereas changes in chemistry, mineral content and microstructure were not reported in detail. In this study the zonation of thermally treated UHPC is investigated with respect to its chemistry, mineral composition and microstructure to allow predictions on durability and strength development. Measurements show a change in pore sizes, minerals phase composition and element distribution leading to the visible zonation and weaker bending tensile strength compared to the reference. T2 - 2nd International Conference of Sustainable Building Materials CY - Eindhoven, Netherlands DA - 12.08.2019 KW - UHPC KW - Thermal treatment KW - Zonation KW - Desiccation KW - Microstructure KW - Durability PY - 2019 VL - 2 SP - 185 EP - 193 AN - OPUS4-49479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voigt, Marieke A1 - von Werder, Julia A1 - Meng, Birgit T1 - Investigation of the zonation of thermally treated ultra high performance concrete N2 - Ultra high performance concrete (UHPC) is characterised by its high compressive strength of more than 150 MPa and its high durability. Due to thermal treatment at 90°C a strength comparable to the 28-days-strength can be achieved immediately after the treatment and in some cases can be even further increased up to 30 %. The explanations for the increase in strength are the accelerated hydration of the clinker minerals and the intensified pozzolanic reaction contributing to a denser microstructure and hence, a high performance in compressive strength. Former research shows that thermal treatment can lead to inhomogeneities in form of a visible zonation within the cross-section. The width of the margin increases with shorter pre-storage time before the thermal treatment and with omitting protective measures against desiccation during the treatment. Specimens exhibiting a zonation typically show a lower compressive strength compared to the undisturbed reference whereas changes in chemistry, mineral content and microstructure were not reported in detail. In this study the zonation of thermally treated UHPC is investigated with respect to its chemistry, mineral composition and microstructure to allow predictions on durability and strength development. Measurements show a change in pore sizes, minerals phase composition and element distribution leading to the visible zonation and weaker bending tensile strength compared to the reference. T2 - 2nd International Conference of Sustainable Building Materials CY - Einhoven, Netherlands DA - 11.08.2019 KW - UHPC KW - Thermal treatment KW - Zonation KW - Desiccation KW - Microstructure KW - Durability PY - 2019 AN - OPUS4-49472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2023 AN - OPUS4-58285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Kromm, Arne A1 - Haberland, C. A1 - Bruno, Giovanni T1 - Influence of deposition hatch length on residual stress in selective laser melted Inconel 718 N2 - Additive Manufacturing (AM) by Selective Laser Melting (SLM) offers ample scope for producing geometrically complex parts in comparison to the traditional subtractive manufacturing strategies. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - HZB User Meeting 2017 CY - Berlin, Germany DA - 15.12.2017 KW - AM KW - SLM KW - IN 718 KW - Neutron diffraction KW - Residual stress KW - Hatch length KW - Microstructure PY - 2017 AN - OPUS4-43475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Bruno, Giovanni T1 - Residual stress analysis in selective laser melted parts of superalloy IN718 N2 - Additive Manufacturing (AM) by Selective Laser Melting (SLM) offers ample scope for producing geometrically complex parts in comparison to the traditional subtractive manufacturing strategies. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - 19th HERCULES Specialized Course CY - Grenoble, France DA - 15.05.2017 KW - Additive manufacturing KW - Selective laser melting KW - Residual stresses KW - Distortion KW - Microstructure PY - 2017 AN - OPUS4-40388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Gadelmeier, C. A1 - Gratzel, U. A1 - Agudo Jácome, Leonardo T1 - Creep Properties of the Refractory Chemically Complex AlMo 0.5 NbTa 0.5 TiZr Alloy N2 - The development of refractory CCAs has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy, which resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. The aim of this work is to evaluate the alloy’s mechanical behavior under tension in the temperature range 800-1000°C, by applying creep tests under vacuum (excluding oxidation effects). Some little temperature influence on minimum creep rate @ 1000 and 1100 °C was found and at a first glance, and Norton plots shows that deformation is probably both diffusion and dislocation controlled. However, further work is needed to stablish deformation and degradation micro mechanisms in the studied creep regime. T2 - SPP Kick-Off Meeting 2nd Phase CY - Online meeting DA - 14.04.2021 KW - Creep behavior KW - Chemically complex alloy KW - Microstructure PY - 2021 AN - OPUS4-53389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Theissen, W. A1 - Agudo Jácome, Leonardo T1 - Effect of the heat treatment in the microstructure of a refractory chemically complex alloy N2 - A set of some unexpected and interesting microstructures has put the so-called complex concentrated alloys (CCAs) in the eye of the scientific community. The AlMo0.5NbTa0.5TiZr refractory (r)CCA, aimed at substituting Ni-base superalloys in gas turbine applications, belongs to this alloy family. After a two-stage heat treatment, this rCCA morphologically resembles the typical a two-phase microstructure of the latter. The objective of this work consists in determining the effect of the two stages of the heat treatment on the microstructure of the AlMo0.5NbTa0.5TiZr alloy to eventually improve it in terms of homogeneity and porosity. T2 - Third International Conference on High Entropy Materials (2020) CY - Berlin, Germany DA - 27.09.2020 KW - Annealing KW - Hot isostatic pressing KW - Refractory chemically complex alloy KW - Microstructure PY - 2020 AN - OPUS4-53386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steppan, Enrico A1 - Zhang, Lei A1 - Kannengießer, Thomas T1 - Influence of microalloy design on HAZ toughness of S690QL steel N2 - Three high strength Nb-, Ti- and Ti+V- bearing S690QL steels were welded to investigate and compare the effects of microalloy addition on HAZ toughness. Charpy V notch impact tests from three microalloyed welds under different cooling rates have been performed. Fractographic examination shows that several factors including large-sized grain, upper bainite or hard second phase, interact to determine the brittle fracture mode and impaired toughness of Nb bearing weld at high heat input. In contrast to this reduced toughness, Ti bearing welds exhibits satisfied toughness regardless of at a fast or slow cooling rate as a result of limited austenite grain and refined favourable intragranular acicular ferrite structure. Moreover, in the case of such refined structure as matrix, TiN particles are found to be irrelevant to the fracture process and crystallographic misorientation results also confirms that high angle boundaries between fine ferrites plates provide much effective barrier for crack propagation and contribute to improved toughness. T2 - 69th IIW Annual Assembly and International Conference CY - Melbourne, Australia DA - 10.07.2016 KW - Cooling rate KW - High strength steel KW - Microalloy elements KW - HAZ toughness KW - Microstructure PY - 2016 AN - OPUS4-39458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Kranzmann, Axel A1 - Reimers, W. T1 - Microstructure characterization of additive produced parts N2 - Due to the advantages of additive manufacturing (AM), it has been increasingly integrated into many industrial sectors. The application of AM materials for safety-critical parts requires the detailed knowledge about their microstructure stability under thermo-mechanical or mechanical load and knowledge on ageing process mechanisms. Ageing processes are characterized by change of the material microstructure that is to be initially investigated. This work deals with the Investigation of 316L stainless steel manufactured by selective laser melting (SLM). Describing Parameters must be defined and applied on the microstructure of these materials in their initial state and after loads were applied. The findings of this work form the basis for the investigation of AM material ageing. T2 - FEMS Junior EUROMAT 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Additive manufacturing KW - Selective laser melting KW - 316L KW - Material characterization KW - Microstructure PY - 2018 AN - OPUS4-47176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Rockenhäuser, Christian A1 - Schriever, Sina T1 - Microstructural Evolution during Creep of Al-Alloy 2618A N2 - The aluminum alloy 2618A is an Al-Cu-Mg alloy with additions of Fe and Ni, which was designed for long-term operation at elevated temperature in transportation and aerospace industries. Typical applications include aircraft parts and structures (sheet material) or engine components such as turbo charger centrifugal compressor wheels (forged material). Such components are subjected to prolonged aging during service, (e.g. 50 000 h) at temperatures which are close to their age hardening temperature (ca. 190 °C). The microstructural evolution was investigated. T2 - Creep 2017 CY - St. Petersburg, Russia DA - 18.06.2017 KW - Creep KW - Microstructure KW - Coarsening KW - TEM PY - 2017 AN - OPUS4-40756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Avila, Luis A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Rehmer, Birgit T1 - Mechanical Testing and Simulations on AM Ti6Al4V and 316L N2 - First experimental results are shown on mechanical properties of additively manufactured alloy Ti6Al4V. A modelling and simulation approach is presented to describe the anisotropic behavior of 316L at the macro-scale. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - AM KW - Mechanical behavior KW - Microstructure KW - Anisotropy KW - Modeling KW - Simulation PY - 2019 AN - OPUS4-48072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, Ronny A1 - Hälsig, André A1 - Hensel, Jonas T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting 2023 CII and CIX CY - Munich, Germany DA - 06.03.2023 KW - WAAM KW - Residual Stresses KW - High-strength Steels KW - Microstructure KW - Cold cracking safety KW - Wind energy PY - 2023 AN - OPUS4-59261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Čapek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Luzin, V. A1 - Bruno, Giovanni T1 - Fundamentals of diffraction-based residual stress and texture analysis of PBF-LB Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer wise additive manufacturing process which provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative strain-free reference for the material of interest. In this presentation advancements in the field of diffraction-based residual stress analysis of L-PBF Inconel 718 will be presented. The choice of an appropriate set of diffraction-elastic constants depending on the underlying microstructure will be described. T2 - MLZ User Meeting 2022 CY - Munich, Germany DA - 08.12.2022 KW - Diffraction KW - Residual Stress KW - Microstructure KW - Texture KW - Mechanical behavior PY - 2022 AN - OPUS4-56804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schroepfer, Dirk A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim T1 - Local mechanical properties of TIG dissimilar metal welded CoCrFeMnNi high-entropy alloy to austenitic steel AISI 304 N2 - Multiple principal element alloys (MPEA) encompass the well-known high entropy alloys (HEAs). MPEA/HEA represent a new class of materials consisting of at least three alloying elements, each containing 5 to 35 at.-%. This alloying concept thus differs fundamentally from conventional materials such as steel or nickel alloys. For this purpose, the alloying elements are specifically selected, and the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. In particular, conflicting goals, such as the trade-off between strength and ductility in conventional steels, are overcome. In the last 20 years, however, the focus has been on material synthesis. With the increase in available material quantities, the focus is now on pro-cessing issues such as joining and welding processes. The weldability of MPEA has received very little atten-tion so far. Experience with dissimilar metal welds (DMWs) is completely lacking but is essential for the appli-cation of these materials in combination with conventional materials. The present study presents, comprehen-sive experimental results on the weldability of MPEA-DMWs. For that purpose, a Co20Cr20Fe20Mn20Ni20 HEA in cold-rolled and heat-treated condition was joined by means of tungsten inert gas welding (TIG) with the austenitic Cr-Ni steel AISI 304. The DMWs resulted in interesting mechanical properties. They were obtained by instrumented tensile tests as well as the local deformation in the weld area by using digital image correlation (DIC) technique. A significant softening in the heat-affected zone (HAZ) of the MPEAs as well as a slightly reduced tensile strength with a significant decrease of the elongation at fracture were found. The experiments provided proof in principle of the weldability of the MPEAs for DMWs with conventional materials that ensure a corresponding capability for mechanical loading. This allows further considerations on the application of these innovative materials. T2 - IIW Annual Assembly, Meeting of Commission C-II CY - Singapore DA - 18.07.2023 KW - High-entropy alloy KW - Welding KW - Microstructure KW - Mechanical properties KW - Dissimilar metal weld PY - 2023 AN - OPUS4-57978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Skrotzki, Birgit ED - Panfilov, Peter ED - Kodzhaspirov, Georgii T1 - Microstructural evolution during creep of Al-alloy 2618A N2 - The aluminum alloy 2618A is an Al-Cu-Mg alloy with additions of Fe and Ni, which was designed for long-term operation at elevated temperature in transportation and aerospace industries. Typical applications include aircraft parts and structures (sheet material) or engine components such as turbo charger centrifugal compressor wheels (forged material). Such components are subjected to prolonged aging during service, (e.g. 50 000 h) at temperatures which are close to their age hardening temperature (ca. 190 °C). The microstructural evolution during creep exposure is studied. T2 - Creep 2017 CY - St. Petersburg, Russia DA - 19.07.2017 KW - Creep KW - Microstructure KW - Coarsening KW - TEM PY - 2017 SN - 978-5-7422-5799-8 SP - 80 EP - 81 PB - SpbPU Publisher CY - St. Petersburg, Russia AN - OPUS4-40750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Microstructural evolution of the S-phase in aluminium alloy 2618A during ageing and creep N2 - The degradation of alloy 2618A due to coarsening of the S-phase was investigated. Dark-field transmission electron microscopy (DFTEM) results are presented and the discussed focusing on the implications considering the degradation mechanism. T2 - 15th International Conference on Aluminium Alloys (ICAA 15) CY - Chongqing, China DA - 12.06.2016 KW - 2618A KW - Dark-field transmission electron microscopy (DFTEM) KW - Coarsening KW - S-phase KW - Microstructure PY - 2016 AN - OPUS4-36704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Microstructural characterisation of ageing and creep of 2618A N2 - Presentation of microstructural characterisation results for alloy 2618A T2 - Projektausschusssitzung mit Industrivertretern der Forschungsvereinigung Verbrennungskraftmaschinen (FVV) CY - Frankfurt a. M., Germany DA - 07.04.2016 KW - Dark-field transmission electron microscopy (DFTEM) KW - 2618A KW - S-Phase KW - Coarsening KW - Microstructure PY - 2016 AN - OPUS4-36705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Quantitative determination of microstructural parameters from TEM – Part II N2 - Presentation of quantitative microstructural parameter determination from Transmission electron microscopy (TEM) T2 - DFG Priority Program 1713 Docus Group Meeting CY - Berlin, Germany DA - 27.06.2016 KW - Dark-field transmission electron microscopy (DFTEM) KW - 2618A KW - S-Phase KW - Volume fraction KW - Microstructure PY - 2016 AN - OPUS4-36706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian T1 - Microstructural investigations of an Al-2618 alloy N2 - Results of Microstructural investigations of an Al-2618 alloy are summrised and discussed. T2 - FVV Arbeitskreissitzung CY - Berlin, Germany DA - 13.05.2015 KW - Aluminium alloy KW - Transmission electron microscopy KW - Microstructure KW - Degradation PY - 2015 AN - OPUS4-42197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Microstructural characterisation and creep of 2618A N2 - Results concerning the creep behavoiur and microstructure of Aluminium alloy 2618A were presented and discussed. T2 - AK-Sitzung CY - Frankfurt, Germany DA - 15.10.2015 KW - Aluminium alloy 2618A KW - Microstructure KW - Creep KW - Degradation KW - Transmission electron microscopy PY - 2015 AN - OPUS4-42201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Microstructural characterisation of ageing and creep of 2618A N2 - The degradation process of alloy 2618A was investigated and results especially regarding volume fractions are presented. An ageing model for the alloy is tentatively formulated. However, the presence of dislocations remains questionable. T2 - Working Group Meeting Research Association for Combustion Engines CY - Frankfurt, Germany DA - 24.11.2016 KW - Alloy 2618A KW - Dark-field transmission electron microscopy KW - Degradation KW - Microstructure KW - Volume fraction PY - 2016 AN - OPUS4-42246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Microstructural characterisation and creep of alloy 2618A N2 - Dark-field Transmission electron microscopy (DFTEM) results were obtained and presented. The results are discussed with regard to additional microstructural characterisation of the primyra Phase and creep experiments of alloy 2618A. Different methods to determine the volume fractions of precipitate phases are presented. T2 - Working group meeting of the Research Association for Combustion Engines CY - Frankfurt, Germany DA - 07.04.2016 KW - Alloy 2618A KW - Dark-field transmission electron microscopy KW - Microstructure KW - Degradation KW - Volume fraction PY - 2016 AN - OPUS4-42220 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Rhode, Michael T1 - Residual stresses in near-component specimens of a high and a medium entropy alloy due to tig and friction stir welding N2 - The new alloying concept of multi-element systems with defined entropy (HEA - High Entropy Alloy or MEA - Medium Entropy Alloy) is gaining increasing importance in materials research. Significantly improved properties or combinations of properties are shown by some HEA/MEA-systems, which have the potential to substitute conventional alloys such steels and are therefore promising for a wide range of applications, e.g., overcome of the trade-off between high strength and ductility. Thus, primarily the production and resulting microstructures of HEA as well as properties have been investigated so far. Furthermore, processing is a main issue to transfer HEA systems from the laboratory to real components, e.g., for highly stressed components. Since welding is the most important joining process for metals, it is crucial to investigate the influence of welding processing on these material properties to guarantee component integrity. Welding leads to residual stresses, which significantly affect the component integrity. Only a very few studies on the effect of welding on residual stresses in HEA and MEA weld joints are available so far. Hence, the focus of this study is the residual stress formation and distribution in a CoCrFeMnNi HEA and ternary CoCrNi MEA using two different welding processes: Tungsten Inert Gas (TIG) welding and soldi-state Friction Stir Welding (FSW). As a pathway for application of HEA in this investigation for the first time residual stress analyses in realistic near-component specimens were performed. The residual stresses were determined by X-ray diffraction (XRD) on the surfaces of top and root weld side. The results were correlated with the local welding microstructures. The results show that both FSW and TIG generate significant tensile residual stresses on the weld surfaces in and transverse to the welding direction. In the case of FSW of the CoCrFeMnNi HEA, the longitudinal residual stresses are in the range of the yield strength of approx. 300 MPa in the weld zone. T2 - OVGU-Kolloquium (BMDK des IWF) CY - Online meeting DA - 19.05.2022 KW - High Entropy Alloy KW - Welding KW - Residual stresses KW - Microstructure PY - 2022 AN - OPUS4-56671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Richter, T. A1 - Mayr, P. A1 - Nitsche, A. A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Hydrogen diffusion in creep-resistant 9%-Cr P91 steel weld metal N2 - 9 %-Cr steel P91 is widely used in power plants due to the excellent creep-resistance. Components of this steel are typically welded and demand for careful welding fabrication, whereas a so-called post weld heat treatment (PWHT), must be conducted to increase the toughness and decrease the hardness of the martensitic as-welded (AW) microstructure. Before the PWHT, a hydrogen removal (or dehydrogenation) heat treatment is necessary as hardened AW martensitic microstructure is generally prone to delayed hydrogen assisted cracking (HAC). The microstructure and temperature dependent hydrogen diffusion is an important issue as it determines how long a potential crack-critical hydrogen concentration could remain in the microstructure. In this context, reliable hydrogen diffusion coefficients of P91 weld metal are rare. Hence, the diffusion behavior of P91 multi-layer weld metal was investigated in two different microstructure conditions: AW and further PWHT (760 °C for 4 h). Two different experimental techniques were used to cover a wide range of hydrogen diffusion temperatures: the electrochemical permeation technique (PT) at room temperature and the carrier gas hot extraction (CGHE) for a temperature range from 100 to 400 °C. From both techniques typical hydrogen diffusion coefficients were calculated and the corresponding hydrogen concentration was measured. It was ascertained that both heat treatment conditions show significant differences in hydrogen diffusivity. The biggest deviations were identified for room temperature. In this case, the AW condition shows significant hydrogen trapping and up to seven times lower diffusion coefficients. Additionally, PT investigations showed a preferred diffusion direction of hydrogen in the weld metal expressed by the diffusion coefficients and the permeability for both heat treatment conditions. The CGHE generally revealed lower diffusion coefficients for the AW microstructure up to 200 °C. In addition, the AW condition showed hydrogen concentrations up to 50 ml/100 g (considering electrochemical charging). Nonetheless, this hydrogen was not permanently (reversibly) trapped. Nonetheless, this temperature is approximately 100 °C below recommended dehydrogenation heat treatment (DHT). This has two main consequences: (I) in case of welding is interrupted or no DHT is conducted, a HAC susceptibility of hardened martensitic P91 weld metal cannot be excluded and (II) DHT can be conducted at temperatures around 200 °C below the recommended temperatures. T2 - IIW Annual Assembly, Meeting of Commission IX-C "Creep and heat resistant welds" CY - Bratislava, Slovakia DA - 07.07.2019 KW - Hydrogen KW - Diffusion KW - Weld metal KW - Microstructure KW - Post weld heat treatment PY - 2019 AN - OPUS4-48449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Steppan, Enrico A1 - Steger, Jörg A1 - Kannengießer, Thomas T1 - Trapping in T24 steel weld joints – Effects on activation energy for hydrogen diffusion during TDA N2 - Failure cases in the past decade exhibited severe cracking in T24 welds and showed that generally hydrogen-assisted cracking (HAC) occurring up to 200°C cannot be excluded. A basic understanding is necessary on how hydrogen diffusion is influenced by the weld process. In this regard, both weld microstructures HAZ and weld metal have particular influence on hydrogen diffusion compared to the base material. In general, hydrogen diffusion at a certain temperature is described by diffusion coefficients representing an effective value of combined lattice diffusion and effects of reversible hydrogen traps. Those traps are typically precipitates, interstitials, grain boundaries and so on. A common approach to describe the trap character and its effect on diffusion is the determination of so-called activation energy. This can be done by respective thermal desorption analysis (TDA) with linear heating. In the present study, different T24 as-welded microstructures (BM, HAZ, WM) were investigated. For that purpose, electrochemically hydrogen charged specimens were analyzed by TDA with linear heating using a mass spectrometer for detection of ultra-low hydrogen amounts. The results showed that typically the as-welded HAZ had higher energy traps than the tempered base material. Nonetheless two important effects were ascertained: (1) it is strictly necessary to monitor the sample temperature due to its great impact on the hydrogen desorption peak temperature and (2) the real heating rate in the specimen vs. the applied heating rate has to be considered. Both influence the calculated activation energy, i.e. the assigned hydrogen trap character (moderate or strong trap), which changed up to a factor of two in terms of the calculated activation energy. This effect can be much more important compared to the microstructure effect itself. Hence, suitable experimental boundary conditions should be mandatory for the determination of hydrogen trap kinetics. T2 - Intermediate Meeting of IIW Commission C-II-A "Metallurgy of Weld Metal" CY - Trollhättan, Sweden DA - 06.03.2017 KW - Hydrogen KW - Trapping and diffusion KW - Thermal desorption analysis KW - Microstructure KW - Activation energy PY - 2017 AN - OPUS4-39401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Mente, Tobias A1 - Steppan, Enrico A1 - Steger, Joerg A1 - Kannengießer, Thomas T1 - Hydrogen trapping in T24 steel weld joints - microstructure influence vs. experimental design effect on activation energy for diffusion N2 - In general, hydrogen assisted cracking is a result of a critical combination of local microstructure, mechanical load and hydrogen concentration. In that connection, welded microstructures of low-alloyed creep-resistant steels can show different hydrogen trapping kinetics. That influences the adsorbed hydrogen concentration as well as the diffusion itself in terms of moderate or strong trapping. A common approach to describe trapping is by the activation energy that is necessary to release hydrogen from a specific trap site. In the present study, T24 base material and weld metal were investigated. For that purpose, electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis(TDA) with linear heating using a mass spectrometer. The results showed a microstructure effect on hydrogen trapping kinetics at elevated temperatures. Additionally, it is necessary to monitor the specimen temperature. A comparison between idealized temperature profile and real specimen temperature showed that the calculated activation energy varied up to a factor of two. Thus, the assigned trap character(moderate or strong) changed. In case of high temperature peaks, this effect could be more important compared to the microstructure effect itself. T2 - 70th IIW Annual Assembly, Commission II-A CY - Shanghai, People's Republic of China DA - 25.06.2017 KW - Creep resisting materials KW - Welding KW - Hydrogen diffusion KW - Thermal desorption analysis KW - Microstructure KW - Experimental design PY - 2017 AN - OPUS4-40954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schroepfer, Dirk A1 - Michael, Thomas T1 - Dissimilar metal TIG weld joints of multiple principal element alloys (MPEA) to austenitic steel 304 N2 - Multi-element alloys (MPEA - Multiple Principal Element Alloys) represent a new class of materials consisting of at least three alloying elements, each with 5 to 35 atomic %. This material class includes high-entropy alloys (HEA, with n ≥ 4 elements). The underlying alloying concept differs fundamentally from conventional materials such as the Fe-based steel. For this purpose, the alloying elements are specifically selected, and the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. The aim is to identify highly innovative MPEA with individually adjustable properties for industrial applications. In the last 20 years, however, the focus has been on pure material synthesis. With the increase in available material quantities, the focus is on processing issues such as joining and welding processes. In that connection, the weldability of MPEAs has received very little attention so far. Experience with dissimilar metal welds (DMWs) is completely lacking but is essential for the application of these materials if joint to conventional materials. This study presents selected experimental results on the weldability of MPEA-DMWs and the resulting microstructures. For this purpose, the equiatomic CoCrFeMnNi (HEA) was investigated in cold-rolled (CR) and heat-treated (HT) condition and joined by tungsten inert gas (TIG) welding to an austenitic stainless steel 304. The DMWs showed defect-free conditions (no lack of fusion, cracks and so on), whereas the cold-rolling increases the microhardness. The global mechanical properties were obtained by instrumented tensile tests of cross-weld samples and showed sufficient yield and tensile strength comparable to that of the individual base materials (BM). The local strain conditions were determined by digital image correlation and showed the highest local strains to occur in the intermixed weld metal. Indeed, the preferred fracture location of the cross-weld tensile samples was in the weld metal. Finally, the experiments proofed the weldability of the MPEAs to conventional 304. This enables targeted further considerations for example as structural materials. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - Multi-principal element alloys KW - TIG welding KW - Dissimilar metal weld (DMW) joint KW - Microstructure KW - Mechanical properties KW - Digital Image Correlation (DIC) PY - 2023 AN - OPUS4-58222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Paulick, C. T1 - Development of ceramic helical springs for sensor applications N2 - At high temperatures and in harsh environments ceramic springs are often superior to metallic ones and allow for innovative solutions. A further application was proposed by using ceramic springs as capacitive force sensor. Lower and upper coil surfaces are coated by electrically conducting layers. Deformation of such spring results in a change of capacity. Sensor application calls for helical springs with rectangular cross-section, a linear stress-strain characteristic over entire deformation range and low manufacturing tolerances relating to inner and outer diameter, coil cross section and spring pitch. Furthermore, complex spring design with integrated connecting elements has to be realized. Alumina, zirconia (Y-TZP) and silicon nitride springs were produced by hard machining starting from sintered hollow cylinders. After external and internal cylindrical grinding the hollow cylinders were filled with hard wax, followed by multi-stage cutting of spring coils with custom-made cutting discs. Finally, hard wax was removed by melting and burnout. Best surface and edge qualities of springs were reached using Y-TZP material and hot isostatic pressed alumina. Y-TZP springs produced with material-specifically selected cutting discs and optimized process parameters show sharp coil edges without spallings and mean roughness values of inner surfaces < 0.2 μm. Manufacturing tolerances of spring diameters, spring pitch, height and width of coil cross section are in the range of ± 10 microns. Good reproducibility of spring geometry by optimized hard machining technology allows for production of Y-TZP springs with spring constants differing less than ± 1 % within a series. According to DIN 2090 spring constant for rectangular coil cross section is proportional to the square of height and width of coil cross section and indirectly proportional to number of active coils and to the cube of the mean spring diameter. Hence, spring constants can be tailored over a range of many orders of magnitude by changing the spring dimensions. Good agreement was reached between calculated target spring constants and measured values on produced springs. Alumina and zirconia springs were characterized relating to deformation behavior under dynamic compression load with various deformation speeds and under static tensile loads over long periods of time. Contrary to alumina springs, a non-linear stress-strain behavior of TZP springs was proved in both test series. It is supposed, that pseudoelasticity caused by stress-induced transformation of tetragonal to monoclinic phase is responsible for this special feature of TZP springs. Therefore, TZP material cannot be used for capacitive spring sensors. T2 - European Ceramic Society Conference (ECerS) CY - Torino, Italy DA - 16.06.2019 KW - Ceramic spring KW - Sensor KW - Spring constant KW - Failure test KW - Microstructure PY - 2019 AN - OPUS4-48610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Payton, E. A1 - Winkelmann, Aimo T1 - Advanced EBSD Pattern Interpretation through Iterative Post-Processing N2 - Since the BSE signal depends on many factors, like the chemistry of the phase and the acceleration voltage, the size and position of the detector array is (slightly) different from phase to phase so that an (iterative) post-processing of the stored patterns is highly recommended. The derived BSE signal can be used for phase assignment in high resolution and high speed maps when EBSD fails and/or EDS (energy dispersive spectroscopy) needs too much time for a suitable and parallel signal acquisition. KW - Electron backscatter diffraction KW - Phase identification KW - Microstructure KW - SEM PY - 2013 U6 - https://doi.org/10.1017/S1431927613005631 VL - 19 IS - Suppl. 2 SP - 728 EP - 729 AN - OPUS4-37986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Microstructure characterization of the Treysa meteorite N2 - Microstructure descripton of heat-affected zone, fusion crust and main metal of the Treysa iron using scanning electron microscopy, EBSD and EDS. T2 - 8. Deutsches Meteoriten Kolloquium, CY - Zella Willingshausen, Germany DA - 02.04.2016 KW - Electron backscatter diffraction KW - EDX KW - Light microscopy KW - Microstructure KW - Oxidation PY - 2016 U6 - https://doi.org/10.13140/RG.2.1.3387.8161 AN - OPUS4-37769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Birgit A1 - Simon, Sebastian A1 - Sigmund, Sandra A1 - Ziemann, M. A. A1 - von Werder, Julia T1 - Characterization of Alkali-Silica Reaction Products by means of Raman Spectroscopy before and after Application of Accelerated Tests N2 - Alkali silica reaction (ASR) is a major concrete durability problem resulting in significant maintenance and reconstruction costs for concrete infrastructures all over the world. To determine whether an aggregate is potentially reactive, accelerated concrete tests are used. Aim of this study is the chemical and microstructural characterization of ASR-products formed under the performance conditions of motorway pavements and during subsequent tests on the remaining ASR susceptibility. Samples were taken from concrete motorway pavements. Some of the samples already showed first indications for beginning damages whereas others showed deteriorations only after applying a performance testing procedure for the estimation of future risk of ASR damage. In a first step ASR-products were identified by polarized light microscopy in thin sections. The reaction products where then analyzed by Raman Spectroscopy and finally the chemical composition of the ASR-products was identified by SEM with EDX. The results indicate that most reaction products show an increasing Ca/Si-ratio with progressive crack length. If an ASR-product develops inside an aggregate and moves through the cement paste, it has a high (Na+K)/Si-ratio at the beginning which decreases with increasing distance from its place of origin. The Raman spectra of the ASR-products are characterized by two broad bands indicating specific Q-species of different amorphous gel networks. Within the scope of the analysis distinctions in the microstructure and the chemical composition of the ASR-gels were detected relating to various conditions of accelerated testing. T2 - 15th International Congress on Chemistry of Cement CY - Prague, Czech Republic DA - 16.09.2019 KW - Alkali-silica reaction KW - Raman microscopy KW - Microstructure KW - Concrete motorway pavements KW - Performance test PY - 2019 AN - OPUS4-49527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Roveda, Ilaria A1 - Serrano-Munoz, Itziar A1 - Haubrich, J. A1 - Requena, G. T1 - Prediction of the fatigue limit of additively manufactured metallic materials N2 - Structural alloys are largely employed in key industrial sectors and their demand is predicted to rise rapidly for the next decades. Most of these materials require a large amount of energy for extraction and manufacturing, which causes the emission of greenhouse gases and other pollutants. Therefore, strategies for improving the sustainability of structural metallic alloys are urgently needed. Additive Manufacturing (AM), in particular Laser Powder Bed Fusion (PBF-LB/M), aims to be a sustainable manufacturing process, as it allows the build-up of complex geometry in near net-shape from 3D models, while minimizing material waste and the energy required for the process and post-process treatments. Nevertheless, the application of additively manufactured parts in structural safety-relevant applications is still hindered by the poor fatigue performance. The cause of this has been mainly attributed to the presence of manufacturing defects and surface roughness. Therefore, a huge effort has been made to optimize the process parameters and to introduce post-process treatments to minimize the defect content. However, material flaws cannot be fully eliminated, but these can be considered in a damage tolerance framework for the prediction of the fatigue performance of additively manufactured metallic materials, which is essential for part design and qualification. This work aims at presenting different modelling strategies for the prediction of the fatigue limit of AM metals. Simple empirical models and more complex models based on fatigue short crack propagation are proposed. The investigated material is an AlSi10Mg alloy fabricated by PBF-LB/M and subjected to two different low-temperature heat-treatments (265°C for 1 h and 300°C for 2h). The results show that the models can provide good approximation of the fatigue limits and help in the interpretation of the scatter of fatigue data. T2 - ASTM International Conference on Advanced Manufacturing CY - Washington DC, USA DA - 30.10.2023 KW - Additive Manufacturing KW - AlSi10Mg KW - Fatigue KW - Residual stress KW - Microstructure PY - 2023 AN - OPUS4-58866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Werner, Tiago A1 - Zerbst, Uwe A1 - Sommer, Konstantin A1 - Sprengel, Maximilian A1 - Bergant, M. A1 - Evans, Alex A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Yawny, A. T1 - Damage Tolerant Approach in Additively Manufactured Metallic Materials N2 - Damage tolerance counts as one of the most widespread approach to fatigue assessment and surely as one of the most promising in understanding the process-structure-property-performance relationships in additively manufactured metallic materials. Manufacturing defects, surface roughness, microstructural features, short and long crack fatigue propagation, residual stresses and applied loads can be taken into consideration in a fracture mechanics-based fatigue assessment. Many aspects are crucial to the reliable component life prediction. Among those a prominent role is played by an accurate measurement and modelling of the short crack fatigue behavior, and reliable statistical characterization of defects and residual stresses. This work aims at addressing the issues related to both experimental testing, fatigue and fatigue crack propagation, and fracture mechanics-based modelling of fatigue lives. Examples will be provided on an additively manufactured AISI 316 L. T2 - TMS2021 VIRTUAL CY - Online meeting DA - 15.03.2021 KW - AISI 316L KW - Additive Manufacturing KW - Damage Tolerance KW - Microstructure KW - Defects KW - Residual Stress PY - 2021 AN - OPUS4-52293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lorenzoni, Renata A1 - Cunningham, Patrick A1 - Fritsch, Tobias A1 - Schmidt, Wolfram A1 - Kruschwitz, Sabine T1 - Microstructure of biochar-based concrete: MIP, gas sorption, NMR, and μ-CT analysis N2 - The global demand for concrete is growing, and with it, its carbon footprint. Current literature proposes biochar, a product of pyrolysis, as a possible car-bon sink to reduce the carbon footprint of concrete. This work investigates the microstructure of Portland cement pastes with 0%, 5%, and 25% of the cement replaced with wood biochar, since this should influence its macro-scopic mechanical properties. MIP, gas sorption, NMR, and µ-CT were used to analyze the pore space of the three materials. The combination of these methods, each with different resolution, enables a multi-scale investigation of biochar impact on the microstructure of cement pastes. NMR confirmed that biochar can absorb moisture and, thus, reduces the effective water-to-cement ratio. MIP and gas sorption results show 0% and 5% volume re-placement have similar gel pore structure. The results from µ-CT investiga-tions suggest that biochar may reduce the formation of larger pores. The in-clusion of non-reactive porous particles such as biochar increase the porosity of the material and should act as a weakness in terms of mechanical proper-ties. Overall, this study highlights the need to carefully tailor replacement rates to control the impact of biochar on the microstructure concrete mixtures and sees a strong need for further studies on mechanical properties. T2 - 5th International Conference on Bio-Based Building Materials CY - Vienna, Austria DA - 20.06.2023 KW - Biochar KW - Microstructure KW - Cement KW - Porosity PY - 2023 AN - OPUS4-57948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemiasheuski, Anton A1 - Bajer, Evgenia A1 - Oder, Gabriele A1 - Göbel, Artur A1 - Hesse, Rene A1 - Bettge, Dirk T1 - Development of an Automated 3D Metallography System (RASI) and its Application in Microstructure Analysis N2 - Many microstructural features exhibit non-trivial geometries, which can only be derived to a limited extent from two-dimensional images. E.g., graphite arrangements in lamellar gray cast iron have complex geometries, and the same is true for additively manufactured materials and three-dimensional conductive path structures. Some can be visualized using tomographic methods, but some cannot be due to weak contrast and/or lack of resolution when analyzing macroscopic objects. Classic metallography can help but must be expanded to the third dimension. The method of reconstructing three-dimensional structures from serial metallographic sections surely is not new. However, the effort required to manually assemble many individual sections into image stacks is very high and stands in the way of frequent application. For this reason, an automated, robot-supported 3D metallography system is being developed at BAM, which carries out the steps of repeated preparation and image acquisition on polished specimen. Preparation includes grinding, polishing and optionally etching of the polished surface. Image acquisition comprises autofocused light microscopic imaging at several magnification levels. The image stacks obtained are then pre-processed, segmented, and converted into 3D models, which in the result appear like microtomographic models, but with high resolution at large volume. Contrasting by classical chemical etching reveals structures that cannot be resolved using tomographic methods. The integration of further imaging and measuring methods into this system is underway. Some examples will be discussed in the presentation. T2 - Euromat 2023 CY - Frankfurt a. M., Germany DA - 04.07.2023 KW - Metallography KW - 3D Reconstruction KW - Roboter KW - Automation KW - Microstructure PY - 2023 AN - OPUS4-58202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kreutzbruck, Marc A1 - Stegemann, Robert T1 - Prospects of the metal magnetic memory technique N2 - Prospects and Restrictions of the Metal Magnetic Memory Technique T2 - 69th-IIW-Meeting CY - Melbourne, Australia DA - 12.07.2016 KW - Metal magnetic memory KW - Magnetic field KW - GMR sensor KW - Microstructure PY - 2016 AN - OPUS4-38133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Güther, Wolfgang A1 - Rabe, Torsten T1 - Utilization of an ultra sound atomizer for spray granulation of oxide ceramic fine powder N2 - Spray drying based granulation processes aim for flowable granules neither containing voids nor hard shells thus leading to a homogenous microstructure in the green and sinter bodies without strength reducing large pores. The increase of the specific surface area due to the utilization of finer powders as raw materials makes the production of granules of demanded quality more sophisticated. Innovations regarding additives as well as process engineering are therefore required. While conventional spray granulation processes of ceramic materials are based on rotational, one stream or two stream nozzles for nebulization, the investigations in the ZIM project concentrate on the applicability of an ultra sound atomizer unit. A spray dryer comprised of the aforementioned ultra sound atomization unit implemented in a commercial spray dryer (Niro, Denmark) was used as test system. Potential advantages of the ultra sound nebulization are investigated for model systems of alumina, zirconia and a ZTA composite while focusing on solids content, yield, pressability and granule properties (size, size distribution, flowability, shape and microstructure) as well as the final sinter body properties (density, microstructure and flexural strength). First ultra sound spray drying experiments yielded granules with excellent processability. Spray drying of identical slurries, as before tested and optimized for a two stream nozzle atomization process, resulted in a more suitable size distribution for dry pressing (less particles below 20 µm) and a higher yield. Furthermore, sinter bodies produced of ultra sound granules seem to have less large pores and a more homogenous microstructure T2 - 92. Jahrestagung der deutschen keramischen Gesellschaft CY - Berlin, Germany DA - 20.03.2017 KW - Ceramics KW - Spray drying KW - Ultra sound KW - Atomization KW - Microstructure PY - 2017 AN - OPUS4-39588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - NbC-based cermets: influence of secondary carbide addition and metal binder N2 - Full densification of Fe, Co and Ni bonded NbC based cermet’s was achieved by pressure less liquid phase sintering in vacuum for one hour at 1420°C. The hardness and toughness of the NbC matrix cermet’s can be mainly tailored by the binder composition and secondary carbide additions. Ni binder based NbC cermet’s allow the combination of high hardness and improved toughness. The addition of lesser amounts of VC/Cr3C2 in a NbC partially substituted WC-Co cemented carbide increased significantly the hardness in combination with a moderate fracture toughness. T2 - International Symposium on Wear Resistant Alloys for the Mining and Processing Industry CY - Sao Paulo, Brazil DA - 04.05.2015 KW - Niobium carbide KW - Hardmetal KW - Cemented carbide KW - Sintering KW - Grain growth KW - Microstructure KW - Hardness KW - Fracture toughness PY - 2018 SN - 978-0-692-05382-9 SP - 521 EP - 534 AN - OPUS4-44206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - NbC grain growth control and mechanical properties of Ni bonded NbC cermets prepared by vacuum liquid phase sintering N2 - The current study reports on the effect of the sintering temperature and secondary carbide (VC, Mo2C and TiC) additions on the microstructure and concommitant Vickers hardness (HV30) and fracture toughness of Ni-bonded NbC cermets. All cermets were prepared by pressureless sintering in vacuum. Detailed microstructural investigation was performed by electron probe microanalysis (EPMA) and X-ray diffraction (XRD) analysis. Sintering results indicated that both the sintering temperature and secondary carbide additions had a significant effect on the properties of NbC-Ni cermets. Nickel pools and residual pores were observed in the cermets sintered at temperatures ≤ 1340 °C. Increasing of the sintering temperature up to 1420 or 1480 °C resulted in fully densified NbC-Ni based cermets composed of homogeneous contrast cubic NbC grains for the single carbide (VC or Mo2C) modyfied system, whereas core-rim structured NbC grains were observed with the additon of TiC + VC or TiC+Mo2C. The secondary carbide doped cermets with 5–10 vol.% VC/Mo2C and 10 vol.% TiC showed a significantly improved hardness and fracture toughness, as compared to the plain NbC-Ni cermets. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Cermet KW - Hard materials KW - Sintering KW - Microstructure KW - Core-rim KW - Mechanical properties PY - 2017 SP - HM 13/1 EP - HM 13/11 AN - OPUS4-40592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Effect of carbon content on the microstructure and mechanical properties of NbC-Ni based cermets N2 - The aim of this work was to correlate the carbon content in NbC-Ni starting powders with the resulting microstructure, hardness and fracture toughness of Ni-bonded NbC cermets. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Cermet KW - Liquid phase sintering KW - Microstructure KW - Hardness KW - Carbon PY - 2017 SP - HM 109/1 EP - HM 109/11 AN - OPUS4-40595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Effect of carbon content on the microstructure and mechanical properties of NbC-Ni based cermets N2 - The aim of this work was to correlate the carbon content in NbC-Ni starting powders with the resulting microstructure, hardness and fracture toughness of Ni-bonded NbC cermets. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Cermet KW - Liquid phase sintering KW - Microstructure KW - Hardness KW - Carbon PY - 2017 AN - OPUS4-40647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -