TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Roßberg, S. A1 - Pensel, P. A1 - Halle, T. A1 - Burkert, A. T1 - Precipitation behavior and corrosion resistance of nickel-free, high-nitrogen austenitic stainless steels N2 - Nickel-free, nitrogen alloyed austenitic stainless-steels, with about 19 wt.-% Mn and 0,8 wt. % N, are an interesting alternative to classic CrNi austenitic stainless steels due to their superior mechanical properties (Rm > 900 MPa, A5 > 50 %, Av > 350 J) in the solution annealed condition. The formation of chromium-rich nitrides during suboptimal heat treatment, processing or application leads to an inhomogeneous distribution of alloying elements in the microstructure, which reduces the corrosion resistance. Consequently, an accurate knowledge of the sensitization behavior is indispensable for the use of nickel-free, high-nitrogen austenitic stainless steels. The relationship between artificial aging, phase formation and corrosion resistance was investigated on the alloys X8CrMnN18-19 (1.3815) and X8CrMnMoN18-19-2 (1.4456), both alloyed with 0,8 wt.-% Nitrogen, in the present work. The microstructural evolution was studied by LM and SEM while the corrosion resistance was characterized with the electrochemical potentiodynamic reactivation (EPR) and the KorroPad indicator-test. Both alloys showed increased corrosion susceptibility within critical aging parameters. Finally, a sensitization diagram was described successfully for both alloys showing the positive effect of molybdenum. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Corrosion KW - KorroPad KW - Stainless steel KW - Corrosion resistance KW - Heat treatment KW - ThermoCalc KW - Pitting corrosion KW - Nitrogen PY - 2018 AN - OPUS4-45954 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Kauss, N. A1 - Halle, T. T1 - Einfluss der Wärmebehandlung auf Mikrostruktur und Korrosionsverhalten kohlenstoffhaltiger nichtrostender Stähle T2 - Tagungsband zum 20. Werkstofftechnischen Kolloquium N2 - Das Korrosionsverhalten von kohlenstoffhaltigen martensitischen nichtrostenden Stählen variiert in Abhängigkeit der Wärmebehandlung (WB) und der damit eingestellten Mikrostruktur deutlich stärker als bei kohlenstoffarmen ferritischen und austenitischen nichtrostenden Stählen. Bei erhöhtem Kohlenstoffgehalt bestimmt die diffusionsgesteuerte Bildung und Auflösung von Chromkarbiden die Verteilung von Chrom und Kohlenstoff im Gefüge. Bisher lag der Fokus von Forschungsarbeiten zum Einfluss der WB auf dem Anlassen im allgemein bekannten Sensibilisierungsbereich dieser Werkstoffgruppe zwischen 200 °C und 700 °C und der dort auftretenden Chromverarmung. Mit der gezielten WB des X46Cr13 (1.4034) wird gezeigt, dass Temperatur und Dauer beim Austenitisieren sowie die anschließende Abkühlung beim Härten das Korrosionsverhalten schon vor dem Anlassen signifikant beeinflussen. Auf der Basis von thermodynamischen Berechnungen wurden definierte WB ausgewählt, um gezielt unterschiedliche Volumengehalte von Chromkarbiden im Gefüge und somit auch unterschiedliche Chrom bzw. Kohlenstoffgehalte im Mischkristall zu erzeugen. Anschließend wurden die resultierenden Gefügezustände hinsichtlich Chromkarbidanteil und Härte verglichen und das Korrosionsverhalten mit der elektrochemisch potentiodynamischen Reaktivierung (EPR) sowie durch einen Schnelltest mit der KorroPad-Prüfung untersucht. Dabei konnte ein direkter Zusammenhang zwischen WB, Mikrostrukturänderungen und Korrosionsverhalten festgestellt werden. Mit steigender Austenitisierungstemperatur wird der Anteil an Chromkarbiden reduziert und der Kohlenstoff- und Chromgehalt der Matrix erhöht, bis eine vollständige Auflösung der Chromkarbide gegeben und die chemische Nennzusammensetzung der Legierung im Mischkristall erreicht ist. In der direkten Folge wird die Ausbildung der für nichtrostende Stähle charakteristischen Passivschicht erleichtert und das Lochkorrosionsverhalten verbessert. Die Abkühlrate hat neben den Austenitisierungsparametern ebenfalls einen großen Einfluss auf das Korrosionsverhalten. So führt eine langsame Abkühlung an Luft zu einer Chromverarmung im Gefüge, die eine deutlich erhöhte Lochkorrosionsanfälligkeit zur Folge hat. In Abhängigkeit der WB von kohlenstoffhaltigen nichtrostenden Stählen können Mikrostruktur, Härte und Korrosionsbeständigkeit in einem weiten Bereich variieren. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Nichtrostender Stahl KW - Wärmebehandlung KW - EPR KW - KorroPad KW - Korrosionsbeständigkeit KW - ThermoCalc KW - Sensibilisierung KW - Martensitischer nichtrostender Stahl KW - Passivschicht PY - 2018 SN - 978-3-00-058901-0 SN - 1439-1597 VL - 72 SP - 711 EP - 720 PB - Eigenverlag CY - Chemnitz AN - OPUS4-44559 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosemann, Paul A1 - Müller, C. A1 - Kauss, N. A1 - Halle, T. T1 - Einfluss der Wärmebehandlung auf die Korrosionsbeständigkeit von Schneidwaren JF - HTM Journal of Heat Treatment and Materials N2 - Härte und Korrosionsbeständigkeit sind die wichtigsten Qualitätsmerkmale von Schneidwaren. Diese werden nur durch eine optimal durchgeführte Wärmebehandlung des martensitischen nichtrostenden Stahls 1.4116 (X50CrMoV15) erreicht. In der industriellen Fertigung wird die Korrosionsbeständigkeit von Schneidwaren durch Wechseltauchversuche überprüft, die herstellerübergreifend eine große Schwankung der Korrosionsbeständigkeit belegen. In den letzten Jahren wurden neue elektrochemische Untersuchungsmethoden für die Werkstoffgruppe der martensitischen nichtrostenden Stähle entwickelt, welche die geringe Lochkorrosionsbeständigkeit von Schneidwaren auf das Phänomen der Chromverarmung zurückzuführen. Derzeit wird in der wissenschaftlichen und in der industriellen Gemeinschaft der Schritt des Anlassens als Hauptursache der Chromverarmung angesehen. Bei Schneidwaren sind die Anlasstemperaturen aber zu gering, um die auftretende Chromverarmung zu erklären. Aus diesem Grund wurden drei verschiedene Wärmebehandlungsparameter (Austenitisierungsdauer, Abkühlgeschwindigkeit und Anlasstemperatur) systematische untersucht, um deren Beitrag zur Chromverarmung darzustellen. Dazu wird die Untersuchungsmethode der elektrochemisch potentiodynamischen Reaktivierung (EPR) eingesetzt, die sehr sensibel auf Veränderungen im Gefüge reagiert und den Grad an Chromverarmung ermittelt. Außerdem wurde die KorroPad-Prüfung durchgeführt und kritische Lochkorrosionspotentiale ermittelt, um den Zusammenhang zwischen Chromverarmung und Lochkorrosionsbeständigkeit herzustellen. Die Ergebnisse aller Untersuchungen verdeutlichen wie eng das Prozessfenster ist, in dem Schneidwaren mit hoher Korrosionsbeständigkeit hergestellt werden können. T2 - 72. HärtereiKongress CY - Cologne, Germany DA - 26.10.2016 KW - Schneidwaren KW - Wärmebehandlung KW - nichtrostender Stahl KW - martensitisch KW - Lochkorrosion KW - EPR KW - KorroPad PY - 2017 DO - https://doi.org/10.3139/105.110317 SN - 1867-2493 VL - 72 IS - 2 SP - 87 EP - 98 PB - Carl Hanser CY - München AN - OPUS4-41241 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Halle, T. T1 - Sensibilisierungsverhalten vom stickstofflegierten, austenitischen, nichtrostenden Stahl 1.4456 T2 - Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik N2 - Austenitische nichtrostende Stähle kommen seit vielen Jahren in den verschiedensten industriellen Zweigen zum Einsatz (Pharma-, Medizin- und Lebensmittelindustrie, Bauwesen, Energie- und Antriebstechnik). Druckaufgestickte nichtrostende Austenite mit ca. 19 Gew.-% Mangan und 0,8 Gew.-% Stickstoff, sind als nickelfreie Variante seit einigen Jahren großtechnisch auf dem Markt verfügbar. In diesen Stählen wird die austenitische Matrix ohne die Legierungszugabe von Nickel sichergestellt, während gleichzeitig die korrosive Beständigkeit und die mechanischen Eigenschaften verbessert werden. Wie bei allen nichtrostenden Stählen beeinflussen die chemische Zusammensetzung und die Wärmebehandlung entscheidend das Gefüge und die Eigenschaften. Durch Lösungsglühen, Abschrecken und gezieltes Kaltverfestigen können bei diesen Stählen hervorragende mechanische Kennwerte erreicht werden (Rm von 900 MPa bis 2.000 MPa, A5 > 50 %, Av > 350 J). In der Regel dient das Lösungsglühen der Beseitigung unerwünschter Ausscheidungsphasen (Cr2N, M23C6 und Sigma-Phase) und der homogenen Verteilung der Legierungselemente im Austenit, was auch die Voraussetzung für eine hohe Korrosionsbeständigkeit darstellt. Wird die homogene Verteilung der Legierungselemente (Cr, Mo und N) durch suboptimale Wärmebehandlungs-, Verarbeitungs- oder Einsatzbedingungen beeinträchtigt, kann die korrosive Beständigkeit nicht auf Dauer gewährleistet werden. Daher ist die genaue Kenntnis vom Sensibilisierungsverhalten dieser hochstickstofflegierten Stähle unerlässlich. Am stickstofflegierten Werkstoff 1.4456 (X8CrMnMoN18-18-2) wird das Sensibilisierungsverhalten am lösungsgeglühten Zustand durch die gezielte Variation der Warmauslagerungsparameter untersucht. Dabei wird im Temperaturbereich von 500 °C bis 900 °C die Glühdauer systematisch variiert, um zu ermitteln, wann Ausscheidungen im Gefüge auftreten und ob diese die Korrosionsbeständigkeit beeinträchtigen. Die verschiedenen Sensibilisierungszustände werden mit dem EPR Verfahren, der KorroPad-Prüfung und dem REM vergleichend untersucht. Zur besseren Interpretation der experimentellen Ergebnisse werden auch thermodynamische Berechnungen genutzt, welche die Existenzbereiche der verschiedenen Ausscheidungsphasen vorhersagen. Damit kann die Veränderung der Korrosionsbeständigkeit mit dem Auftreten der verschiedenen Phasen korreliert und die Anwendbarkeit der experimentellen Methoden für stickstofflegierte Stähle nachgewiesen werden. T2 - 16. Sommerkurs Werkstoffe und Fügen CY - Magdeburg, Germany DA - 08.09.2017 KW - Nichtrostender Stahl KW - Wärmebehandlung KW - Korrosion KW - Stickstoff KW - EPR KW - KorroPad KW - ThermoCalc PY - 2017 SN - 978-3-944722-58-0 DO - https://doi.org/10.24352/UB.OVGU-2017-75 SP - 79 EP - 86 AN - OPUS4-41890 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Kauss, N. A1 - Müller, C. A1 - Halle, T. T1 - Heat treatment and corrosion resistance of cutlery N2 - Hardness and pitting corrosion resistance are the major quality criteria of cutlery. Both are achieved by the heat treatment (austenitization, quenching and tempering) of the normally used martensitic stainless steels. The established quality control method regarding the pitting corrosion resistance is an alternating immersion test in 1 % NaCl solution at 60 °C according to DIN EN ISO 8442. This standard test shows a high deviation, which limits any optimization of the heat treatment process. New approaches for corrosion testing of martensitic stainless-steels were developed and used in the last years to connect the weak pitting corrosion resistance of martensitic stainless-steels with the phenomenon of chromium depletion. The tempering temperatures used in the industrial heat treatment of cutlery are too low to explain the appearance of chromium depletion. For this reason, a systematic investigation of three heat treatment parameters (austenitization time, cooling speed and tempering temperature) were performed on the martensitic stainless-steels X50CrMoV15 (1.4116) to detect their contribution to chromium depletion. The electrochemical potentiodynamic reactivation (EPR), which is very sensitive to any change of the microstructure, was used to quantify the degree of chromium depletion. The KorroPad indicator-test was applied to correlate low pitting corrosion resistance to the presence of chromium depletion. The results of all investigations allow conclusions about the very small process window, which is necessary to achieve cutlery with high pitting corrosion resistance. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Corrosion KW - KorroPad KW - Stainless steel KW - Corrosion resistance KW - Heat treatment KW - EPR KW - Pitting corrosion KW - Martensitic stainless steels KW - REM PY - 2018 AN - OPUS4-45952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kauss, Norman A1 - Heyn, A. A1 - Halle, T. A1 - Rosemann, Paul T1 - Detection of sensitisation on aged lean duplex stainless steel with different electrochemical methods JF - Electrochimica Acta N2 - Ageing at 600 °C (from 0.1 h up to 20 h) leads to the formation of precipitations at the ferrite-ferrite (α/α) and ferrite-austenite (α/γ) grain boundaries of the lean duplex stainless steel (LDSS) X2CrNiN22-2. This leads to sensitisation due to chromium depletion and decreased pitting corrosion resistance proven by the results of various electrochemical methods (DL-EPR and determination of CPT, Epit). These results were compared with the KorroPad method, which uses an agar-based gel-electrolyte for the detection of stainless steel surfaces prone to pitting corrosion. However, the standard configuration of the KorroPad showed no differentiation for the various ageing conditions. Therefore, modified versions of the KorroPad with two, five and ten times higher NaCl and potassium ferrocyanide III (K3[Fe(CN)6]) concentrations were successfully used to visualise the behaviour detected by DL-EPR, Epit and CPT. Therefore, the KorroPad method can also detect a microstructure related reduction of pitting corrosion resistance, which can drastically reduce the experimental effort to generate sensitisation diagrams for stainless steels. KW - Lean duplex KW - Stainless steel KW - Sensitisation KW - Polarisation KW - Critical pitting temperature KW - Pitting corrosion KW - KorroPad KW - Ageing treatment PY - 2019 DO - https://doi.org/10.1016/j.electacta.2019.05.081 SN - 0013-4686 SN - 1873-3859 VL - 317 SP - 17 EP - 24 PB - Elsevier AN - OPUS4-48374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dieck, S. A1 - Ecke, M. A1 - Rosemann, Paul A1 - Halle, T. T1 - Reversed austenite for enhancing ductility of martensitic stainless steel T2 - Proceedings of the International Conference on Martensitic Transformations: Chicago. The Minerals, Metals & Materials Series. N2 - Quenching and partitioning (Q&P) heat Treatment increases the deformability of high-strength martensitic steels. Therefore, it is necessary to have some metastable austenite in the microstructure, which transforms in martensite during plastic deformation (TRIP effect). The austenitic-martensitic microstructure is gained by an increased austenitization temperature, water quenching and additional partitioning. The partitioning enables local carbon diffusion, which stabilizes retained austenite and leads to partial reversion of martensite to austenite. The influence of partitioning time was studied for the martensitic stainless steel AISI 420 (X46Cr13, 1.4034). In line with these efforts, metallographic, XRD and EBSD measurements were performed to characterize the microstructural evolution. The mechanical properties were tested using tension and compression loading. Additional corrosion investigations showed the benefits of Q&P heat treatment compared to conventional tempering. The reversion of austenite by the partitioning treatment was verified with EBSD and XRD. Furthermore, the results of the mechanical and corrosion testing showed improved properties due to the Q&P heat treatment. T2 - International Conference on Martensitic Transformations CY - Chicago, IL, USA DA - 09.07.2017 KW - Heat treatment KW - High ductility KW - Martensitic stainless steels KW - Quenching and partitioning KW - Transformation induced plasticity KW - KorroPad KW - EBSD KW - Mechanical testing PY - 2018 SN - 978-3-319-76968-4 DO - https://doi.org/10.1007/978-3-319-76968-4_19 SP - 123 EP - 128 PB - Springer AN - OPUS4-44689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dieck, S. A1 - Ecke, M. A1 - Rosemann, Paul A1 - Halle, T. T1 - Enhanced properties of martensitic stainless steel due to austenite reversion N2 - The novel heat treatment concept of “Quenching and Partitioning” (Q&P) enables producing low alloyed martensitic steels with high strength and formability. Therefore austenite, retaining from a quenching temperature between Mf and Ms, is stabilised by carbon diffusion. This stabilised austenite transforms in martensite (TRIP effect) under mechanical loading. Current investigations on the Q&P heat treatment of martensitic stainless steels reveal a further enhancement of mechanical properties due to higher amounts of austenite. Thus a tensile strength of 1.800 MPa and a maximum elongation of 20 % are possible, while mechanical properties under compression are much higher due to a distinct SD effect. The presentation aims to gain a further understanding of the Q&P heat treatment and the resulting mechanical properties for the steel X46Cr13, especially the mechanical behaviour under dynamic mechanical loading condition. Results of drop work and Split Hopkinson Pressure Bar test confirms the findings of quasi static compression test. Furthermore, Charpy impact tests show higher impact toughness compared to the common heat treatment of quenching and tempering (Q&T). Complementary investigations indicate a higher corrosion resistance of Q&P compared to Q&T. T2 - 12th International Nordmetall Colloquium CY - Chemnitz, Germany DA - 05.12.2017 KW - Corrosion resistance KW - Heat treatment KW - Martensite KW - Quenching and partitioning KW - Stainless steel KW - KorroPad PY - 2017 AN - OPUS4-43339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dieck, S. A1 - Ecke, M. A1 - Rosemann, Paul A1 - Halle, T. T1 - Verbesserung der Eigenschaften vom martensitischen, nichtrostenden Stahl X46Cr13 durch Q&P-Wärmebehandlung T2 - Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik N2 - Das innovative Wärmebehandlungskonzept des „Quenching and Partitioning“ (Q&P) ermöglicht die Herstellung hochfester, martensitischer Stähle mit hoher Verformbarkeit und Duktilität. Dabei wird Restaustenit im Prozessabschnitt des Partitionierens durch Kohlenstoffdiffusion stabilisiert. Dies ermöglicht die dehnungsinduzierte Phasenumwandlung von Austenit in Martensit und erhöht die Verformbarkeit, ohne dabei die Festigkeit zu reduzieren. Bisher wenig erforscht ist die Anwendung des Q&P-Prozesses bei korrosionsbeständigen Stählen. Die vorliegende Arbeit ergänzt erste Untersuchungen von YUANG und RAABE um wichtige werkstofftechnische Kennwerte sowie um die erreichbare Korrosionsbeständigkeit. Es konnte gezeigt werden, dass im Vergleich zur standardmäßig angewandten Wärmebehandlung die mechanischen und korrosiven Eigenschaften enorm durch den Q&P-Prozess gesteigert werden. T2 - Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff- und Fügetechnik CY - Magdeburg, Germany DA - 08.09.2017 KW - Martensitischer nichtrostender Stahl KW - Wärmebehandlung KW - Q+P KW - Korrosion KW - KorroPad PY - 2017 SN - 978-3-944722-58-0 DO - https://doi.org/10.24352/UB.OVGU-2017-75 SP - 95 EP - 104 AN - OPUS4-41892 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -