TY - CONF A1 - Theiler, Géraldine A1 - Cano Murillo, Natalia A1 - Hausberger, A. T1 - Fretting behavior of elastomer materials in hydrogen N2 - Safety and reliability are the major challenges to face for the development and acceptance of hydrogen technology. It is therefore crucial to study deeply material compatibility, in particular polymer materials that are directly in contact with hydrogen. This paper presents an experimental study on the fretting wear behavior of two types of cross-linked hydrogenated acrylonitrile butadiene rubbers against 316L steel ball in hydrogen environment. Furthermore, aging experiments were conducted for 7 days under static conditions in 100 MPa hydrogen. the influences of hydrogen pressure as well as the aging exposure on the fretting behavior are discussed by means of surface analyses along with the material properties. T2 - 63. Tribologie-Fachtagung 2022 CY - Göttingen, Germany DA - 26.09.2022 KW - Hydrogen KW - Polymer materials KW - Fretting KW - Wear PY - 2022 SN - 978-3-9817451-7-7 SP - 58/1 EP - 58/3 AN - OPUS4-56022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine T1 - Sliding behaviour of polymer materials in hydrogen N2 - This lecture deals with the sliding behaviour of polymer materials in hydrogen environment. After a short introduction of the hydrogen activities at BAM, the tribological performances of polymer materials in gaseous hydrogen are presented and compared with air and vacuum environment. The second part focusses on the influence of the counterface materials in hydrogen. Finally, the last section is dedicated to experiments liquid hydrogen. T2 - Invited lecture, TRIBOS+ program at Lulea University of Technology CY - Lulea, Sweden DA - 30.06.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-53708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine T1 - On the tribological behaviour of polymer composites in vacuum N2 - This lecture deals with the sliding behaviour of polymer composites in vacuum environment. At first, the effect of the polymer matrix and solid lubricants such as graphite and MoS2 are presented. The second part focusses on the influence of the residual pressure with experimental results obtained in high and ultrahigh vacuum. T2 - Invited lecture, TRIBOS+ program at Lulea University of Technology CY - Lulea, Sweden DA - 29.06.2021 KW - Polymers KW - Vacuum KW - Friction KW - Wear PY - 2021 AN - OPUS4-53710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Benchmarking of polymer materials for tribological applications in hydrogen N2 - The focus of this study is to evaluate of hydrogen on the friction and wear behavior of a wide range of polymer materials. Thereby, the tribological performance of filled and unfilled polymers from different suppliers were compared at room temperature in air and hydrogen gas (H2) as well as in liquid hydrogen at -253°C (LH2). T2 - 62. Tribologie-Fachtagung der Gesellschaft für Tribologie e. V. CY - Online meeting DA - 27.09.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-53700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Tribology of polymeric materials in gaseous and liquid hydrogen N2 - This presentation gives an overview of the tribological behaviour of polymeric materials in gaseous and luquid hydrogen. T2 - HYDROGENIUS-BAM Joint Hydrogen Symposium CY - Online meeting DA - 06.07.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-53701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine T1 - Friction and wear of polymer materials at cryogenic temperatures N2 - This lecture deals with the friction and wear of polymeric materials at cryogenic temperatures. The first part is dedicated to the low temperature properties of polymers and cryogenic environment as well as an introduction to cryotribology and friction models. The second part presents some experimental results, focusing on the effect of polymer composition, cryogenic media and stick-slip behaviour. T2 - Invited lecture, TRIBOS+ program at Lulea University of Technology CY - Lulea, Sweden DA - 29.06.2021 KW - Polymers KW - Cryogenic temperature KW - Friction KW - Wear PY - 2021 AN - OPUS4-53706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Benchmarking of polymer materials for tribological applications in hydrogen N2 - The focus of this study is to evaluate the influence of hydrogen on the friction and wear behavior of a wide range of polymer materials. Thereby, the tribological performance of filled und unfilled polymers from different suppliers were compared at room temperature in air and hydrogen gas (H2) as well as in liquid hydrogen at -235°C (LH2). T2 - 23rd International Conference on Wear of Materials CY - Online meeting DA - 26.04.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-52651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Sliding performance of polymer materials in hydrogen and methane N2 - In this talk, the sliding performance of polymer materials in hydrogen and methane are presented. The influence of the environmental conditions is discussed in terms of material composition, counterface, transfer film formation, and triboreactions. T2 - International Tribology Conference/ITC CY - Sendai, Japan DA - 17.09.2019 KW - Friction KW - Wear KW - Polymer composites KW - Hydrogen KW - Methane PY - 2019 AN - OPUS4-49148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Géraldine A1 - Harsha, A. P. A1 - Gradt, Thomas T1 - On the sliding wear behavior of PEAK composites in vacuum environment N2 - The tribological behavior of neat and filled PEEK and PEKK composites were compared in air and vacuum conditions. Very low friction and wear coefficient were obtained at low sliding speed while severe wear occurred at high speed. Experimental results are discussed by analysing the transfer film and wear debris. KW - PEAK KW - Composites KW - Wear KW - Friction KW - Vacuum PY - 2019 U6 - https://doi.org/10.1115/1.4042271 SN - 0022-2305 SN - 0742-4787 VL - 141 IS - 4 SP - 044502-1 EP - 044502-7 PB - ASME AN - OPUS4-47298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Friction and wear characteristics of polymers in gaseous and liquid hydrogen N2 - The tribological characteristics of pure and graphite filled polymers were investigated in gaseous hydrogen at ambient temperatures and in LH2 at -253°C. It could be shown that the tribological properties of PI and PEEK materials is related to the formation of a transfer film. The influence of both hydrogen and cryogenic temperatures will be discussed in the presentation. T2 - 21th International Colloquium Tribology CY - Stuttgart/Ostfildern, Germany DA - 09.01.2018 KW - Friction KW - Wear KW - Hydrogen KW - PEEK PY - 2018 AN - OPUS4-43902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Friction and wear characteristics of polymers in gaseous and liquid hydrogen N2 - The tribological characteristics of pure and graphite filled polymers were investigated in gaseous hydrogen at ambient temperatures and in LH2 at -253°C. It could be shown that the tribological properties of PI and PEEK materials is related to the formation of a transfer film. The influence of both hydrogen and cryogenic temperatures will be discussed in the presentation. T2 - 21th International Colloquium Tribology CY - Stuttgart/Ostfildern, Germany DA - 09.11.2018 KW - Friction KW - Wear KW - Hydrogen KW - PEEK PY - 2018 SP - 1 EP - 2 AN - OPUS4-43903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Friction and wear behaviour of polymers in liquid hydrogen N2 - The tribological behaviour of polymer composites were investigated in liquid hydrogen at -253°C and compared with previous results obtained in gaseous hydrogen at ambient temperature. KW - Polymers KW - Friction KW - Wear KW - Hydrogen KW - Cryogenic temperature PY - 2018 U6 - https://doi.org/10.1016/j.cryogenics.2018.05.002 SN - 0011-2275 VL - 93 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-44886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Friction and wear characteristics of polymers in gaseous and liquid N2 - In the present work it was shown that the the aim of the presented tests is to investigate polymer composites for their suitability for friction systems in gaseous and liquid hydrogen. T2 - 59. Tribologie-Fachtagung CY - Göttingen, Germany DA - 24.09.2018 KW - Friction KW - Wear KW - Polymer composites KW - Hydrogen KW - Cryogenic temperature PY - 2018 SN - 978-3-9817451-3-9 SP - 60/1 EP - 60/4 AN - OPUS4-46178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Friction and wear characteristics of polymers in gaseous and liquid hydrogen N2 - The presentation deals with the investigation of polymer composites for their suitability for friction systems in gaseous and liquid hydrogen. T2 - 59. Tribologie-Fachtagung CY - Goettingen, Germany DA - 24.09.2018 KW - Friction KW - Wear KW - Polymer composites KW - Hydrogen KW - Cryogenic temperature PY - 2018 AN - OPUS4-46184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -