TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Lippitz, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Schmid, Thomas A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Zirconium permanent modifiers for graphite furnaces used in absorption spectrometry: understanding their structure and mechanism of action N2 - The mechanism of action of zirconium permanent modifiers on graphite surfaces was investigated in order to understand its influence on the analytical signal in atomic and molecular absorption spectrometry (AAS/MAS). For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEMEDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. We propose here a mechanism, where ZrO2 acts as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. No evidence of the formation of zirconium carbide was found. Consequently, as the CaF formation is catalysed by a heterogeneous catalyst, surface modifications with ZrO2 nanoparticles and ZrO xerogels were investigated in order to increase the surface area. Their influence was evaluated in the molecule formation of CaF, CaCl, CaBr, and CaI. Graphite furnace modification with zirconium oxide nanoparticles proves to be the best choice for fluorine analysis with a signal enhancement of more than eleven times with respect a non-coated graphite furnace. However, the influence of zirconium modifications in the analytical signals of Cl, and I is lower than the F signals or even negative in case of the Br. Understanding zirconium modifiers as heterogeneous catalysts offers a new perspective to AAS and MAS, and reveals the potential of surface analytical methods for development of improved permanent modifiers and graphite furnace coatings. KW - Zirconium KW - HR-CS-MAS KW - Graphite furnace KW - Nanoparticles KW - Xerogel KW - Calcium monofluoride KW - Absorption spectrometry PY - 2018 UR - https://pubs.rsc.org/en/content/articlelanding/2018/ja/c8ja00190a U6 - https://doi.org/10.1039/C8JA00190A SN - 0267-9477 VL - 33 IS - 12 SP - 2034 EP - 2042 PB - Royal Society of Chemistry AN - OPUS4-46775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abboud, M. A1 - Motallebzadeh, A. A1 - Duygulu, O. A1 - Maaß, Robert A1 - Özerinc, S. T1 - Microstructure and nanomechanical behavior of sputtered CuNb thin films N2 - We report on the mechanical properties of Cu–Nb alloys produced by combinatorial magnetron sputtering. Depending on the composition, the microstructure is either fully amorphous (~30–65 at.% Cu), a dispersion of Cu crystallites in an amorphous matrix (~70 at.%), or a dominant crystalline phase with separated nanoscale amorphous zones (~80 at.% Cu). Nanomechanical probing of the different microstructures reveals that the hardness of the fully amorphous alloy is much higher than a rule of mixture would predict. We further demonstrate a remarkable tunability of the resistance to plastic flow, ranging from ca. 9 GPa in the amorphous regime to ca. 2 GPa in the fully crystalline regime. We rationalize these findings based on fundamental structural considerations, thereby highlighting the vast structure-property design space that this otherwise immiscible binary alloy provides. KW - Deposition microstructure KW - Metallic glasses KW - Thin films KW - Mechanical properties KW - Nanocrystalline structure PY - 2021 U6 - https://doi.org/10.1016/j.intermet.2021.107249 SN - 0966-9795 VL - 136 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-52777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdel-Wakil, W. A1 - Fahmy, Alaa A1 - Kamoun, E. A1 - Hassan, W. A1 - Abdelhai, Q. A1 - Salama, T. T1 - A New Route for Synthesis of Polyurethanevinyl Acetate Acrylate Emulsions as Binders for Pigment Printing of Cotton Fabrics N2 - Herein, two polyurethane oligomers were successfully synthesized using a prepolymer mixing process. The prepolymers were synthesized based on the step-growth addition polymerization of polypropylene glycol, Methylene diphenyl diisocyanate and 2-hydroxyethyl methacrylate or 2-hydroxyethyl acrylate. Isopropanol was functioned as the isocyanate blocking agent. Thereafter, different terpolymer emulsions were prepared by the emulsion graft copolymerization with the vinyl acetate monomer in presence of 2-ethylhexyl acrylate as a vinyl monomer. The chemical structures of the synthesized oligomeric monomers were probed by FTIR spectroscopy and found to vary with the content of acrylic monomer used in the oligomer synthesis phase (i.e.hydroxyethyl acrylate or hydroxyethyl methacrylate). The topography, thermal stability, and particle size of terpolymers were investigated by SEM, TGA, and zeta potential, respectively. The TGA results demonstrated marked enhancement in thermal stability of the synthesized terpolymers up to ca. 600°C, which was concurrent with enhanced surface homogeneity and film properties as evidenced by the SEM images. These terpolymers showed also property enhancement as binders for textile pigment printing in terms of rubbing resistance, color strength and fastness to washing when compared to the commercial binders. These judgments would provide a new competent synthesis route by introducing polyurethane acetate vinyl acrylate as the binder for use in pigment printing of cotton fabrics. KW - Vinyl monomer KW - Polyurethane acetate vinyl acrylate KW - Surface coating KW - Terpolymer KW - Textile binder PY - 2020 U6 - https://doi.org/10.21608/ejchem.2020.21712.2292 VL - 63 IS - 3 SP - 1063 EP - 1073 AN - OPUS4-52300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdelkhalik, A. A1 - Askar, Enis A1 - Markus, D. A1 - Brandes, E. A1 - El-Sayed, I. A1 - Hassan, M. A1 - Nour, M. A1 - Stolz, T. T1 - Explosion regions of propane, isopropanol, acetone, and methyl acetate/inert gas/air mixtures N2 - The explosion regions for propane, isopropanol, acetone, and methyl acetate with air in the presence of nitrogen, argon, helium, and carbon dioxide were determined experimentally according to EN 14756/EN1839, method T. Except for propane, all the measurements were executed at 323 K and 1 bar. Propane experiments were carried out at 293 K and 1 bar. The results show that for the same type of inert gas, propane, isopropanol, and acetone have great closeness concerning the concentration of the inert gas at the apex of the explosion envelope in a ternary diagram with air as oxidizer. This leads to consistency in the limiting oxygen concentration (LOC) and minimum required amount of inert gas (MAI) values. Concerning methyl acetate, the apex was always reached at higher percentages of inert gases compared with the other fuels. This can be attributed to the presence of two oxygen atoms inside the chemical structure. Calculation of the explosion regions was carried out based on calculated adiabatic flame temperature (CAFT) method. The flame temperatures for the experimentally determined fuel/air/N2 mixtures were calculated. Then, these temperatures were used to predict the explosion limits of similar mixtures with other inert gases than nitrogen. The modeling results show reasonable agreement with the experimental results. KW - Flammability limits KW - Model of constant adiabatic flame temperatures (CAFT) KW - Inertisation KW - Explosion protection PY - 2016 U6 - https://doi.org/10.1016/j.jlp.2016.04.001 SN - 0950-4230 VL - 2016/43 SP - 669 EP - 675 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-37996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdelkhalik, A. A1 - Askar, Enis A1 - Markus, D. A1 - Brandes, E. A1 - Stolz, T. T1 - Explosion regions of acetone and alcohol/inert gas/air mixtures at high temperatures and atmospheric pressure N2 - The explosion regions of 1-propanol, 2-propanol, acetone and 1-butanol in air were measured in the presence of CO2, He, N2 and Ar in accordance with EN1839 method T at high temperatures and at atmospheric pressure. The experimental results show that 1-propanol, 2-propanol and acetone have very similar lower explosion limits (LELs). 1-Butanol shows a slightly wider explosion area near the LEL line. In addition, the explosion regions of all combustible/inert gas/air mixtures were calculated with the method of constant adiabatic flame temperature profiles (CAFTP), using the flame temperature profile along the explosion region boundary curve of each combustible/N2/air mixture as a reference to determine the explosion regions of combustible/inert gas/air mixtures with inert gases other than N2 at different initial temperatures. To calculate the explosion regions for systems containing He, the calculation method was modified to include the very different physical transport properties of He. Moreover, the procedure for calculating the apexes in the ternary explosion diagrams was modified. The calculation results show good agreement with the experimental results. KW - Explosion limits KW - Elevated temperatures KW - Alcohols KW - CAFTP KW - Acetone PY - 2019 U6 - https://doi.org/10.1016/j.jlp.2019.103958 SN - 0950-4230 VL - 62 SP - 103958, 1 EP - 8 PB - Elsevier AN - OPUS4-49030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdelkhalik, A. A1 - Askar, Enis A1 - Markus, D. A1 - Stolz, T. A1 - Brandes, E. A1 - Zakel, S. T1 - Explosion regions of 1,3-dioxolane/nitrous oxide and 1,3-dioxolane/air with different inert gases - Experimental data and numerical modelling N2 - In this study, experimental determination and modelling investigations for the explosion regions of 1,3-dioxolane/inert gas/N2O and 1,3-dioxolane/inert gas/air mixtures were carried out and compared. The experimental measurements were carried out at 338 K and atmospheric pressure according to EN1839 method T using the inert gases N2, CO2, He and Ar. The results showed that the ratio of the lower explosion limit in N2O (LELN2O) to the lower explosion limit in air (LELair) is 0.52 and the ratio of the maximum oxygen content in air (MOCair) to the limiting oxidizer fraction in nitrous oxide (LOFN2O) is 0.36 ± 0.02 independent of the inert gas. When comparing the inert gas amount at the apex based on the pure oxidizing component, which is O2 in case of air, N2O-containing mixtures need less inert gas to reach the limiting oxidizer quantity whereas the efficiency of inert gases is in the same order. The coefficients of nitrogen equivalency however were found to differ to some extent. The explosion regions of 1,3-dioxolane/inert gas/oxidizer mixtures were modelled using the calculated adiabatic flame temperature profile (CAFTP) method as well as corrected adiabatic flame temperatures. The results indicate good agreement with experimental data for CO2, N2 and Ar- containing mixtures. The noticeable deviations that occur when He is the inert gas are due to the lacking transport data of that mixture. KW - Explosion limits KW - Flammability KW - CAFTP KW - Adiabatic Flame Temperatures PY - 2021 U6 - https://doi.org/10.1016/j.jlp.2021.104496 SN - 0950-4230 VL - 71 SP - 4496 PB - Elsevier Ltd AN - OPUS4-52849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abderrazak, H. A1 - Marestin, C. A1 - Ibtissem, J. A1 - Mercier, R. A1 - Casablanca, H. A1 - Souissi, R. A1 - Weidner, Steffen A1 - Jaffrezic, N. A1 - Chatti, Saber T1 - Synthesis of new bio based adsorbent phases N2 - Over the years, industrial and human activities and agricultural practices have caused a serious threat to human health and the environment. Indeed, it has been demonstrated that these activities are responsible for the presence of pollutants in the soil, air and water. Water is one of the most strategic issues today, as it is associated with the living world. Therefore, water pollution is becoming a universal scourge that leads to environmental degradation, decrease of water quality and threatens public health. Water pollution is mainly due to the discharge of certain harmful chemical compounds that are not very or not at all biodegradable (phenolic compounds, heavy metals, hydrocarbons, dyes, pesticides, etc.) by various industries: chemical, pharmaceutical, textile, food processing, etc. The impact of these industrial effluents on fauna and flora is very harmful. A sensitization of the socio-economic actors and the public, accompanied by a severe regulation in relation to the discharges, would contribute to fight against this drift, but also, by the development of effective methods allowing to remove these pollutants, not only in an analytical purpose but also of depollution. Thus and within the framework of the preservation of an environment with regard to any anthropogenic activity, our research topic relates to the use of original biosourced polymeric phases for the extraction of the organic compounds and the heavy metals in aqueous mediums. Therefore, we have proceeded to the synthesis and characterization of a large variety of monomers, polymers and cross-linked materials. These products, partially derived from biomass, contain various functional groups with the ability to interact with chemical components without discriminating effect. The developed polymer phases have been successfully used for the adsorption of some organic pollutants and heavy metals in synthetic aqueous solutions. T2 - 12. Journees maghreb-europe. Matériaux et Applications aux Dispositifs et Capteurs CY - Monastir, Tunisia DA - 08.11.2022 KW - Organic-inorganic adsorbents KW - Semi-Interpenetrating Network KW - Poly(ether-sulfone) KW - Reversible adsorption. PY - 2022 AN - OPUS4-56286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Microstructure-Property-Correlation of a Mo-Ti-B alloyed iron aluminide N2 - Iron aluminides depict a sustainable and light-weight material class which could be employed in many applications requiring high strength at intermediate to high temperatures. According to first results, the alloy Fe-26Al-4Mo-0.5Ti-1B surpasses conventional materials in wet corrosion resistance and creep resistance up to 650 °C. For these reasons, the AiF research project “WAFEAL – Materials applications for iron aluminides” was initiated to transfer these findings into a standardised materials dataset and to derive best practices for processing. In the first place, a set of different microstructures adjusted by varying casting methods, wall thicknesses and heat treatments was investigated and correlated with hardness on macro and micro scale. Correlations were drawn between solidification rates and resulting grain sizes and hardness. The effect of vacancy hardening was only verified for wall thickness as low as 2.5 mm. Moreover, a common decrease of macrohardness after a heat treatment at 1000 °C for 100 h was observed irrespective of casting process or wall thickness. This effect was linked with an unexpected decrease of the complex boride phase fraction which acts as a hardening phase. T2 - Intermetallics 2021 CY - Bad Staffelstein, Germany DA - 04.10.2021 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Heat treatment KW - Wall thickness KW - Centrifugal casting KW - Die casting KW - Investment casting KW - Microstructure KW - Hardness KW - Complex borides PY - 2021 AN - OPUS4-53617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Ambient and high-temperature mechanical properties of intermetallic Fe3Al alloys with complex borides N2 - Due to the increasing scarcity of critical raw materials current high-temperature materials are sought to be replaced by alloys based on more abundant metals. One possibility within the class of intermetallics are iron aluminides, which combine sustainability and cost-efficiency with the prospect of mass savings. Iron aluminides show competitive specific strength up to 700 °C and excellent creep and wet corrosion resistance by small additions of Mo, Ti and B. Nevertheless, a Mo content of above 2 at.% which is needed for optimum corrosion resistance results in enhanced brittleness, especially at room temperature. This is why alloys with these Mo fractions were only mechanically tested under compressive loading so far. Still, testing of static and creep properties under tensile loading is required for reliable component design. Besides high standards for crack-free processing, data acquisition for tensile loads is especially complicated by environmental embrittling effects for iron aluminides. To cope with these challenges, the AiF research project “WAFEAL – Materials applications for iron aluminides” was initiated. The main goal is to collect standardised data on ambient and high-temperature tensile properties and creep properties. Samples with a nominal composition of Fe-26Al-4Mo-0.5Ti-1B [at.%] were manufactured via centrifugal casting in ceramic shell moulds followed by machining. Heat treatment for homogenisation and final polishing were carried out where appropriate. A summary of the achieved tensile and creep properties such as yield and tensile strength, maximum elongation, secondary creep rate and stress exponents will be given. Results will be also discussed regarding the influence of temperature, stress level and microstructure on the damage mechanisms. Furthermore, the effect of different alloy concentrations on the mechanical response at different temperatures will be outlined within a small experimental series. T2 - MSE Congress 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Tensile data KW - High temperature mechanical properties KW - Creep data KW - Fractography PY - 2022 AN - OPUS4-55993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Microstructural evolution of Fe-26Al-4Mo-0.5Ti-1B with varying wall thicknesses N2 - With an increasing demand in more efficient fuel consumption to reduce CO2 emissions, weight reductions in high-temperature materials at affordable costs gain increasing attention. One potential candidate is the intermetallic material class of iron aluminides, combining the advantages in mass savings, high temperature performance and recyclability of resources. The alloy Fe-26Al-4Mo-0.5Ti-1B was selected to study the microstructural features evolving from two casting processes, five wall thicknesses and three final conditions. Conclusions are drawn upon the correlations of processing variables, grain sizes and hardness. T2 - DGM Fachausschuss "Intermetallische Phasen" CY - Online meeting DA - 09.02.2021 KW - Intermetallics KW - Iron aluminides KW - Fe-Al alloys KW - Wall thickness KW - Microstructure PY - 2021 AN - OPUS4-52288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abel, Andreas A1 - Rosalie, Julian M. A1 - Reinsch, Stefan A1 - Zapala, Pawel A1 - Michels, Heiner A1 - Skrotzki, Birgit T1 - Influence of Mo and B additions in intermetallic near-Fe3Al alloys on microstructure and mechanical properties N2 - Iron aluminides, already reported in the late 19th century, did not cease to attract the interest of scientists and engineers ever since. Besides good oxidation resistance, low density and resource availability, potentials for hightemperature strengths that compete with high-alloy steels were unlocked by low alloy contents. Still, research on alloy design continues, as alloying usually comes at the price of brittleness in low-temperature regimes. A potential candidate is the quinary Fe–Al–Mo–Ti–B system which is strengthened by solid solution and eutectic borides. It was shown to have good strength and outstanding creep resistance under compressive loading up to elevated temperatures. Although the individual effect of alloy additions is well understood in iron aluminides, little is known about the combined effects of alloying concentrations on microstructure, phase stability and mechanical properties. Therefore a systematic study of two Ti-doped near-Fe3Al alloys with varying contents of Mo (2–4 at.%) and B (0.5–1 at.%) was conducted. In total eight different alloys were fabricated by investment casting into ceramic shell molds. Alloys were characterized and compared by grain size, phase transitions, microstructure evolution as well as elemental compositions and volume fractions of phases. For mechanical characterization, macrohardness and microhardness tests as well as tensile tests at ambient and high tempera tures were conducted. Independent of alloy additions, alloys with 24–25 at.% Al exhibit superior proof strength due to a higher matrix hardness. Decreasing B content generally decreases strength by lower secondary phase fractions which contribute via particle hardening. Reducing Mo content decreases both the solute concentration in the matrix and secondary phase fractions. Surprisingly, strength is similar or even superior to alloys with higher Mo content. Strength relations are discussed with a focus on solid-solution hardening theory and other competing strengthening mechanisms. KW - Materials Chemistry KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials KW - General Chemistry PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-585284 VL - 163 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-58528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Skrotzki, Birgit T1 - Materials Applications FeAl (WAFEAL) N2 - The increasing importance of resource availability and closed-loop material cycles are driving materials research to reduce alloying content in conventional materials or even substitute them with more sustainable alternatives. Intermetallic iron aluminide alloys (FeAl) present a potential alternative. Many alloy concepts for improved high-temperature properties or ductility have already been successfully implemented in casting technologies on a laboratory scale. However, successful testing of FeAl alloys on an industrial scale was still pending at the beginning of the project. Therefore, the aim of the project was to develop simulation-based casting concepts for industrial casting processes using the base alloy Fe-26Al-4Mo-0.5Ti-1B and to narrow down process limits by means of hot cracking tests. Findings were transferred into practice-oriented guidelines for casting of iron aluminides, which is accessible to future applicants in SMEs. The focus was placed on centrifugal casting combined with investment casting or die casting. In addition to numerous design and casting process parameters, heat treatments and alloying additions (Al, Mo, B) were varied to determine the influence of alloying elements on castability, microstructure and mechanical properties. Data from microstructure analyses (microscopic imaging, determination of grain sizes as well as phase compositions and volume fractions, fractography), mechanical tests (hardness measurements, compression tests, ambient and high-temperature tensile tests, creep tests) as well as measurements of thermophysical properties could be generated on the base alloy. Correlations of materials data with process variables allowed conclusions to be drawn on strengthening mechanisms and ductility of the alloy and how they can be controlled in terms of processing and component design. Successful casting of highly complex components with thin wall thicknesses and optimised alloy compositions points out prospects for new fields of application. T2 - FVV Transfer + Netzwerktreffen | Informationstagung – Frühjahr 2023 CY - Würzburg, Germany DA - 29.03.2023 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Microstructure-property-correlation KW - High temperature mechanical properties KW - Creep data KW - Tensile data KW - Fractography KW - Casting PY - 2023 AN - OPUS4-57248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Materials applications of iron aluminide (FeAl), (WAFEAL) T1 - Werkstoffanwendungen für Eisenaluminide (FeAl), (WAFEAL) N2 - The increasing importance of resource availability and closed-loop material cycles are driving materials research to reduce alloying content in conventional materials or even substitute them with more sustainable alternatives. Intermetallic iron aluminide alloys (FeAl) present a potential alternative. Many alloy concepts for improved high-temperature properties or ductility have already been successfully implemented in casting technologies on a laboratory scale. However, successful testing of FeAl alloys on an industrial scale was still pending at the beginning of the project. Therefore, the aim of the project was to develop simulation based casting concepts for industrial casting processes using the base alloy Fe-26Al-4Mo-0.5Ti-1B and to narrow down process limits by means of hot cracking tests. Findings were transferred into practice-oriented guidelines for casting of iron aluminides, which is accessible to future applicants in SMEs. The focus was placed on centrifugal casting combined with investment casting or die casting. In addition to numerous design and casting process parameters, heat treatments and alloying additions (Al, Mo, B) were varied to determine the influence of alloying elements on castability, microstructure and mechanical properties. Data from microstructure analyses (microscopic imaging, determination of grain sizes as well as phase compositions and volume fractions, fractography), mechanical tests (hardness measurements, compression tests, ambient and high-temperature tensile tests, creep tests) as well as measurements of thermophysical properties could be generated on the base alloy. Correlations of materials data with process variables allowed conclusions to be drawn on strengthening mechanisms and ductility of the alloy and how they can be controlled in terms of processing and component design. Successful casting of highly complex components with thin wall thicknesses and optimised alloy compositions points out prospects for new fields of application. N2 - Die zunehmende geopolitische Bedeutung der Ressourcenverfügbarkeit sowie die Anforderungen an einen geschlossenen Materialkreislauf treiben die Materialforschung voran, um konventionelle Werkstoffe mit weniger kritischen Zusätzen zu legieren oder sogar vollständig mit nachhaltigeren Alternativen zu substituieren. Eine potenzielle Alternative stellen die intermetallischen Eisenaluminid-Legierungen (FeAl) dar. Im Labormaßstab wurden bereits viele Legierungskonzepte für verbesserte Hochtemperatureigenschaften oder Duktilität erfolgreich gießtechnisch umgesetzt. Eine erfolgreiche Erprobung von FeAl-Legierungen im industriellen Maßstab stand zu Beginn des Projekts aber weiterhin aus. Ziel des Vorhabens war daher die Entwicklung von simulationsgestützten Gießkonzepten in industrienahe Gießprozesse anhand der Modelllegierung Fe-26Al-4Mo-0,5Ti-1B und die Eingrenzung der prozesstechnischen Verfahrensgrenzen durch Warmrissversuche. Erkenntnisse hieraus wurden in einen praxisorientierten, für zukünftige Anwender in KMUs zugänglichen Handlungskatalog für die gießgerechte Auslegung von Bauteilen aus Eisenaluminiden überführt. Fokus wurde insbesondere auf das Feinguss- und Kokillengussverfahren im Schleuderguss gesetzt. Neben zahlreicher Konstruktions- und Gießprozessparameter wurden auch Wärmebehandlungen und Legierungszusätze (Al, Mo, B) variiert, um den Einfluss von Legierungselementen auf Gießbarkeit, Mikrostruktur und mechanische Kennwerte zu bestimmen. Eine umfangreiche Basis an Daten aus Mikrostrukturanalysen (Mikroskopische Bildgebung, Bestimmung von Korngrößen sowie Phasenzusammensetzungen und -anteilen, Fraktographie), mechanischen Tests (Härtemessungen, Druckversuch, Zugversuch, Warmzugversuch, Kriechversuch) sowie Messungen thermophysikalischer Eigenschaften konnte für die Modelllegierung erzeugt werden. Korrelationen dieser Informationen mit Prozessvariablen erlaubten Schlussfolgerungen zu Härtungsmechanismen und Duktilität in der Legierung und wie sie prozesstechnisch in Gieß- und Bauteilauslegung gesteuert werden können. Der erfolgreiche Abguss von hochkomplexen Bauteilgeometrien mit dünnen Wandstärken sowie optimierte Legierungszusammensetzungen zeigen Perspektiven auf neue Anwendungsfelder auf. T2 - FVV Transfer + Netzwerktreffen | Informationstagung – Frühjahr 2023 CY - Würzburg, Germany DA - 29.03.2023 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Microstructure-property-correlation KW - High temperature mechanical properties KW - Creep data KW - Tensile data KW - Fractography KW - Casting PY - 2023 VL - R604 SP - 1 EP - 32 PB - FVV e. V. CY - Frankfurt a.M. AN - OPUS4-57247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abere, M. J. A1 - Zhong, M. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Ultrafast laser-induced morphological transformations N2 - Ultrafast laser processing can be used to realize various morphological surface transformations, ranging from direct contour shaping to large-area-surface functionalization via the generation of “self-ordered” micro- and nanostructures as well as their hierarchical hybrids. Irradiation with high-intensity laser pulses excites materials into extreme conditions, which then return to equilibrium through these unique surface transformations. In combination with suitable top-down or bottom-up manufacturing strategies, such laser-tailored surface morphologies open up new avenues toward the control of optical, chemical, and mechanical surface properties, featuring various technical applications especially in the fields of photovoltaics, tribology, and medicine. This article reviews recent efforts in the fundamental understanding of the formation of laser-induced surface micro- and nanostructures and discusses some of their emerging capabilities. KW - Laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface morphology KW - Oxidation KW - Tribology PY - 2016 U6 - https://doi.org/10.1557/mrs.2016.271 SN - 0883-7694 SN - 1938-1425 VL - 41 IS - 12 SP - 969 EP - 974 PB - Cambride University Press AN - OPUS4-38637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abou-Ras, D. A1 - Gibmeier, J. A1 - Nolze, Gert A1 - Gholinia, A. A1 - Konijnenberg, P. T1 - On the capability of revealing the pseudosymmetry of the chalcopyrite-type crystal structure N2 - The tetragonal crystal- structure type of chalcopyrites (chemical formula AIBIIICVI2) is a superstructure of sphalerite type. The c/a ratio differs generally from the ideal value 2, i.e., the crystal structure is pseudocubically distorted. For CuInSe2 and CuGaSe2 thin films, simulations demonstrate that it is theoretically possible to reveal the tetragonality in electron backscatter-diffraction (EBSD) patterns for CuGaSe2, whereas it may not be possible for CuInSe2. EBSD experiments on CuGaSe2 thin films using the ”Advanced Fit” band-detection method show that it is possible to extract accurate misorientation-angle distributions from the CuGaSe2 thin film. Pole figures revealing the texture of the CuGaSe2 thin film are shown, which agree well with X-ray texture measurements from the same layer. KW - Pseudosymmetry KW - Chalcopyrite KW - Electron backscatter diffraction KW - Pattern simulation KW - Pattern matching KW - Sphalerite PY - 2008 U6 - https://doi.org/10.1002/crat.200711082 VL - 43 IS - 3 SP - 234 EP - 239 PB - WILEY-VCH AN - OPUS4-38003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Monodisperse iron oxide nanoparticles as reference material candidate for particle size measurements N2 - In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important, especially with respect to the assessment of their environmental or biological impact. Furthermore, the European Commission’s REACH Regulations require the registration of nanomaterials traded in quantities of at least 1 ton. Powders or dispersions where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as nanomaterials. This creates a need for industrial manufacturers and research or analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution and will also target other key parameters like shape, structure, porosity or functional properties. In this respect, materials like iron oxide or titanium dioxide are considered as candidates to complement the already available silica, Au, Ag, and polystyrene reference nanoparticles. The thermal decomposition of iron oleate precursors in high boiling organic solvents can provide large quantities of iron oxide nanoparticles that can be varied in size and shape.[1, 2] The presence of oleic acid or other hydrophobic ligands as capping agents ensures stable dispersion in nonpolar solvents. Such monodisperse, spherical particles were synthesized at BAM and pre-characterized by electron microscopy (TEM, SEM including the transmission mode STEM-in-SEM) and dynamic light scattering comparing cumulants analysis and frequency power spectrum. 1. REACH regulations and nanosafety concerns create a strong need for nano reference materials with diverse properties. 2. Iron oxide nanoparticles are under development as new candidate reference material at BAM. 3. Narrow particle size distribution confirmed by light scattering and electron microscopy. T2 - Nanosafety 2020 CY - Online meeting DA - 05.10.2020 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Electron microscopy KW - Nanoplattform PY - 2020 AN - OPUS4-52774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Thünemann, Andreas A1 - Radnik, Jörg A1 - Häusler, I. A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Iron Oxide Nanocubes as a New Certified Reference Material for Nanoparticle Size Measurements N2 - The rational design and increasing industrial use of nanomaterials require a reliable characterization of their physicochemical key properties like size, size distribution, shape, and surface chemistry. This calls for nanoscale reference materials (nanoRMs) for the validation and standardization of commonly used characterization methods closely matching real-world nonspherical nano-objects. This encouraged us to develop a nonspherical nanoRM of very small size consisting of 8 nm iron oxide nanocubes (BAM-N012) to complement spherical gold, silica, and polymer nanoRMs. In the following, the development and production of this nanoRM are highlighted including the characterization by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) as complementary methods for size and shape parameters, homogeneity and stability studies, and calculation of a complete uncertainty budget of the size features. The determination of the nanocubes’ edge length by TEM and SAXS allows a method comparison. In addition, SAXS measurements can also provide the mean particle number density and the mass concentration. The certified size parameters, area equivalent circular diameter and square edge length, determined by TEM with a relative expanded uncertainty below 9%, are metrologically traceable to a natural constant for length, the very precisely known (111) lattice spacing of silicon. Cubic BAM-N012 qualifies as a certified nanoRM for estimating the precision and trueness, validation, and quality assurance of particle size and shape measurements with electron microscopy and SAXS as well as other sizing methods suitable for nanomaterials. The production of this new iron oxide nanocube RM presents an important achievement for the nanomaterial community, nanomaterial manufacturers, and regulators. KW - Certification KW - SAXS KW - Homogeneity KW - Nano KW - Particle KW - Iron oxide KW - Quality assurance KW - Reference material KW - Size KW - Electron microscopy KW - Stability KW - Shape PY - 2023 U6 - https://doi.org/10.1021/acs.analchem.3c00749 SN - 0003-2700 VL - 95 IS - 33 SP - 12223 EP - 12231 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-58176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abusafia, A. A1 - Scheid, C. A1 - Meurer, Maren A1 - Altmann, Korinna A1 - Dittmer, U. A1 - Steinmetz, H. T1 - Microplastic sampling strategies in urban drainage systems for quantification of urban emissions based on transport pathways N2 - Tracking waterborne microplastic (MP) in urban areas is a challenging task because of the various sources and transport pathways involved. Since MP occurs in low concentrations in most wastewater and stormwater streams, large sample volumes need to be captured, prepared, and carefully analyzed. The recent research in urban areas focused mainly on MP emissions at wastewater treatment plants (WWTPs), as obvious entry points into receiving waters. However, important transport pathways under wet-weather conditions are yet not been investigated thoroughly. In addition, the lack of comprehensive and comparable sampling strategies complicated the attempts for a deeper understanding of occurrence and sources. The goal of this paper is to (i) introduce and describe sampling strategies for MP at different locations in a municipal catchment area under dry and wet-weather conditions, (ii) quantify MP emissions from the entire catchment and two other smaller ones within the bigger catchment, and (iii) compare the emissions under dry and wet-weather conditions. WWTP has a high removal rate of MP (>96%), with an estimated emission rate of 189 kg/a or 0.94 g/[population equivalents (PEQ · a)], and polyethylene (PE) as the most abundant MP. The specific dry-weather emissions at a subcatchment were ≈30 g/(PEQ · a) higher than in the influent of WWTP with 23 g/(PEQ · a). Specific wet-weather emissions from large sub-catchment with higher traffic and population densities were 1952 g/(ha · a) higher than the emissions from smaller catchment (796 g/[ha · a]) with less population and traffic. The results suggest that wet-weather transport pathways are likely responsible for 2–4 times more MP emissions into receiving waters compared to dry-weather ones due to tire abrasion entered from streets through gullies. However, more investigations of wet-weather MP need to be carried out considering additional catchment attributes and storm event characteristics. KW - Combined sewer system KW - Large volume samplers KW - Microplastic pollution KW - Separate sewer system KW - Stormwater retention tank PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568271 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ackermann, H. A1 - Bäßler, Ralph A1 - Diarra, D. A1 - Weltschev, Margit T1 - Entwicklung einer Prüfmethode zur Bewertung der Materialbeständigkeit von Bauteilen in Mitteldestillatanwendungen N2 - Damit stehen neben den klassischen (Massenänderung der Werkstoffprüfkörpern und metallographischer Bewertung) neue Auswertemethoden für die Werkstoffbewertung zur Verfügung. T2 - DGMK Projekttreffen CY - Hamburg, Germany DA - 28.02.2018 KW - Korrosion KW - Brennstoff PY - 2018 AN - OPUS4-44932 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Ackermann, H. A1 - Pötzsch, Sina A1 - Weltschev, Margit A1 - Bäßler, Ralph A1 - Plum, W. T1 - Entwicklung einer Prüfmethode zur Bewertung der Materialbeständigkeit von Bauteilen in Mitteldestillatanwendungen N2 - Im Vorhaben wurde eine forcierte Prüfmethode zur Bestimmung der Beständigkeit von metallenen Werkstoffen gegenüber Brennstoffen aus Mitteldestillaten und Gemischen aus Mitteldestillat und paraffinischen Kohlenwasserstoffen, die jeweils Fettsäuremethylester (FAME) als biogene Komponente enthalten, entwickelt. Bei der Prüfmethode werden Prüfkörper des jeweiligen Werkstoffes in speziellen Prüfmedien ausgelagert. Die Zusammensetzung von zwei Prüfmedien wurde im Vorhaben erarbeitet. Diese Prüfmedien erfassen die Effekte der Alterung des FAME, die zu erwarten sind, wenn der Brennstoff länger als 2 Jahre im Feld lagert. Sie decken den Bereich bis 20 % (V/V) FAME-Anteil ab. Die Auslagerung kann bei geringem Aufwand unter Atmosphärendruck durchgeführt werden. Die Eignung einer Auswahl von metallenen Werkstoffen und Polymerwerkstoffen, die für Versorgungsanlagen für Mitteldestillat relevant sind, wurde durch Auslagerung in folgenden nicht gealterten Brennstoffen bestimmt: Heizöl EL schwefelarm (B0), Heizöl EL schwefelarm mit 20 % (V/V) FAME (B20), FAME (B100) und hydriertes Pflanzenöl (HVO). Die Werkstoffe wurden auch in einem 1 Jahr gealterten B20 und einem 8 Jahre gealtertem B10 ausgelagert. Die Temperatur bei der Auslagerung betrug 50 °C für die metallenen Werkstoffe und 40 °C und 70 °C für die Polymerwerkstoffe. Die Ergebnisse der Beständigkeitsbewertung wurden in Beständigkeitslisten zusammengefasst. Die mit B20 erhaltenen Bewertungen gelten generell für Gemische aus Heizöl EL schwefelarm und FAME mit einem FAME-Gehalt bis 20 % (V/V). Sie sind auch auf Gemische aus Dieselkraftstoff und FAME mit einem FAME-Gehalt bis 20 %(V/V) übertragbar. Die forcierte Prüfmethode kann insbesondere KMUs bei der Weiterentwicklung von bestehenden Produkten und der Entwicklung von neuen Produkten als ein kostengünstiger Schnelltest zur Überprüfung der Werkstoff- und Bauteilbeständigkeit gegenüber Mitteldestillaten mit hohem FAME-Anteil dienen. Sie kann für die Hersteller die Sicherheit erhöhen, dass Bauteile die Freigabeprüfungen der Bauaufsicht bestehen, wobei die Freigabe jedoch nur für Deutschland gültig ist. Die Erkenntnisse des Forschungsvorhabens können in eine harmonisierte Europäische Norm für alternative Brenn- und Kraftstoffe einfließen. Diese ist für die Bauteilhersteller die Voraussetzung für die Erschließung des europäischen Marktes.   N2 - Within this project, a forced test method was developed to determine the resistance of metallic materials to middle distillate fuels and mixtures of middle distillate and paraffinic hydrocarbons both with fatty acid methyl ester (FAME) as a biogenic component. In the method, specimens of the material are immersed in special test media. The compositions of two test media were developed within the project. These test media include the influence of aging of the FAME which is to be expected after a storage of the fuel exceeding 2 years in the field. They cover a range of up to 20 % (v/v) FAME content. The exposure test can be carried out at ambient pressure with little effort. Suitability of selected metallic and polymer materials relevant for middle distillate supply systems was determined by exposure to the following non-aged fuels: low-sulfur light fuel oil (B0), low-sulfur light fuel oil with 20 % (v/v) FAME (B20), FAME (B100) and hydrogenated vegetable oil (HVO). The materials were also exposed in the 1-year-aged B20 and 8-year-aged B10. Test temperature was 50 °C for metallic materials and 40 °C and 70 °C for polymers. Resulting materials resistances were summarized in resistance tables. Resistances obtained in B20 are valid for any mixture of low-sulfur light fuel oil and FAME containing up to 20 % (v/v) FAME. They are also transferable to mixtures of diesel and FAME having a FAME content of up to 20 % (v/v). This method with special test media is a cost-effective rapid test for checking resistance of materials to middle distillates having a high FAME content. It can support SMEs manufacturing components for supply systems in further development of existing and new products. It increases the manufacturers' certainty that components will pass approval tests of authorities. Results of this research project can be incorporated into a harmonized European standard for alternative fuels. This is the prerequisite for component manufacturers to access the European market. KW - Heizöl KW - FAME KW - Biobrennstoff PY - 2020 UR - https://dgmk.de/publikationen/ SN - 978-3-947716-14-2 SN - 0937-9762 SP - 1 EP - 153 PB - DGMK CY - Hamburg AN - OPUS4-51110 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Acosta-Zepeda, C. A1 - Saavedra, P. A1 - Bonse, Jörn A1 - Haro-Poniatowski, E. T1 - Modeling of silicon surface topographies induced by single nanosecond laser pulse induced melt-flows N2 - Irradiation with a single nanosecond laser pulse in the melting regime can result in a characteristic change in the surface morphology of crystalline silicon. This has been verified experimentally in a variety of situations, where dimple-shaped surface topographies are produced. In this work, the dimple height, depth, and width are modeled following and extending in a more rigorous manner the approach of Wood and Giles [Phys. Rev. B 23, 2923–2942 (1981)] and that of Schwarz-Selinger and coworkers [Phys. Rev. B 64, 155323 (2001)], upon varying the laser irradiation parameters such as peak energy density, pulse duration, and wavelength. This is achieved with numerical simulations of one-dimensional heat flow as input to the analytical fluid-flow equations. KW - Nanosecond laser KW - Melting KW - Silicon KW - Fluid-flow PY - 2019 U6 - https://doi.org/10.1063/1.5053918 SN - 0021-8979 SN - 1089-7550 VL - 125 IS - 17 SP - 175101-1 EP - 175101-9 PB - AIP Publishing CY - Melville, USA AN - OPUS4-47927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Acosta-Zepeda, C. A1 - Saavedra, S. A1 - Bonse, Jörn A1 - Haro-Poniatowski, E. T1 - Modelling of single UV nanosecond pulsed laser surface modifications of silicon N2 - Irradiation with a single spatially Gaussian-shaped nanosecond laser pulse in the melting regime can result in a characteristic annular change in the surface morphology of crystalline silicon. This has been verified experimentally in a variety of situations, where dimple-shaped surface topographies are produced. In a recent work we have investigated the induced changes in the surface topography upon exposure to wavelengths in the visible and near infrared spectral region. Irradiation in the UV requires a more detailed analysis due to the enhanced absorption of the material. In the present analysis, we determine under which conditions our previous model can be used and the corresponding results are presented. KW - Laser KW - Silicon KW - Surface modification PY - 2020 U6 - https://doi.org/10.1088/1555-6611/ab9b2c SN - 1555-6611 SN - 1054-660X VL - 30 IS - 8 SP - 086003-1 EP - 086003-4 PB - IOP Publishing / Astro Ltd CY - Bristol, United Kingdom AN - OPUS4-51022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Adamczyk, Burkart A1 - Simon, Franz-Georg A1 - Adam, Christian T1 - RecArc - Verwertung von Rückständen aus der Metallurgie mit der Lichtbogentechnologie N2 - In dem Projekt soll die vollständige Wiederverwertbarkeit der Schlacke und ihrer Bestandteile demonstriert werden. Dazu gehören die vollständige Rückgewinnung der metallischen Phase, die in die Edelstahlherstellung zurückgeführt werden kann, sowie die Aufwertung der mineralischen Fraktion, die ihre uneingeschränkte Verwendung als Zementzumahlstoff oder mineralischer Baustoff erlaubt. Bei geeigneter Prozessführung des elektrischen Lichtbogenofens können durch „reduzierendes Schmelzen“ die chromhaltigen Wertstoffe zusammen mit anderen Schwermetallen zu 97% in einer Metalllegierung angereichert und separiert werden. Diese kann als Rohstoff in der Metallurgie eingesetzt werden. Der Chromgehalt der mineralischen Komponte der Schlacke konnte von ca. 3% auf unter 0,1% verringert werden. Die mineralische Fraktion lässt sich durch entsprechende Zuschläge während des Schmelzbetriebes und eine anschließende Granulation der schmelzflüssigen Phase zu einem Material aufwerten, das in seiner Zusammensetzung und seinen Eigenschaften typischen Zementkomponenten entspricht und als Rohstoff in der Zementproduktion eingesetzt werden kann. Dafür müssen allerdings noch die rechtlichen Voraussetzungen geschaffen werden, da der Rohstoffeinsatz gerade im Zement strengen Auflagen unterliegt und die Zemente bestimmte Normen erfüllen müssen. Durch die in RECARC aufgezeigte Möglichkeit der Wiederverwertung können somit Stoffkreisläufe geschlossen werden, die ansonsten zu einem Verlust wertvoller Rohstoffe führen. Vor allem die steigenden Rohstoffkosten, aber auch die immer stärker limitierten CO2-Emissionen zeigen die hohe Relevanz im Umgang mit metallurgischen Reststoffen. Eine Überführung des in RECARC demonstrierten Verfahrens in die Industrie könnte einen wichtigen Beitrag zur nachhaltigen Schonung der natürlichen Ressourcen und der Umwelt leisten. KW - Chrom KW - Lichtbogenofen KW - Recycling KW - Rückgewinnung KW - Schlacke PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-390197 SP - 1 EP - 4 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39019 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adel-Khattab, D. A1 - Giacomini, F. A1 - Gildenhaar, R. A1 - Berger, G. A1 - Gomes, Cynthia A1 - Linow, Ulf A1 - Hardt, M. A1 - Peleska, B. A1 - Günster, Jens A1 - Stiller, M. A1 - Houshmand, A. A1 - Ghaffar, K. A1 - Gamal, A. A1 - El-Mofty, M. A1 - Knabe, C. T1 - Development of a synthetic tissue engineered three- dimensional printed bioceramic-based bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro N2 - Over the last decade there have been increasing efforts to develop three-dimensional (3D) scaffolds for bone tissue Engineering from bioactive ceramics with 3D printing emerging as a promising technology. The overall objective of the present study was to generate a tissue engineered synthetic bone graft with homogenously distributed osteoblasts and mineralizing bone Matrix in vitro, thereby mimicking the advantageous properties of autogenous bone grafts and facilitating usage for reconstructing segmental discontinuity defects in vivo . To this end, 3D scaffolds were developed from a silica-containing calcium alkali orthophosphate, using, fi rst, a replica technique – the Schwartzwalder – Somers method – and, second, 3D printing, (i.e. rapid prototyping). The mechanical and physical scaffold properties and their potential to facilitate homogenous colonization by osteogenic cells and extracellular bone matrix formation throughout the porous scaffold architecture were examined. Osteoblastic cells were dynamically cultured for 7 days on both scaffold types with two different concentrations of 1.5 and 3 × 10⁹ cells/l. The amount of cells and bone matrix formed and osteogenic marker expression were evaluated using hard tissue histology, immunohistochemical and histomorphometric analysis. 3D-printed scaffolds (RPS) exhibited more micropores, greater compressive strength and silica release. RPS seeded with 3 × 10⁹ cells/l displayed greatest cell and extracellular Matrix formation, mineralization and osteocalcin expression. In conclusion, RPS displayed superior mechanical and biological properties and facilitated generating a tissue engineered synthetic bone graft in vitro, which mimics the advantageous properties of autogenous bone grafts, by containing homogenously distributed terminally differentiated osteoblasts and mineralizing bone matrix and therefore is suitable for subsequent in vivo implantation for regenerating segmental discontinuity bone defects. KW - Bone tissue engineering KW - Calcium alkali orthophosphate KW - Rapid prototyping KW - Scaffold KW - Mandible PY - 2017 U6 - https://doi.org/10.1002/term.2362 SN - 1932-6254 SN - 1932-7005 VL - 12 IS - 1 SP - 44 EP - 58 PB - Wiley Online Library AN - OPUS4-40745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit A1 - Costard, René A1 - Schwarz, Silke T1 - Application of underwater tests to determine he-equivalents of pyrotechnic substances N2 - A technical-safety evaluation of the detonation effects of pyrotechnic compositions can be performed on the basis of TNT/PETN equivalence. The equivalence determination can be carried out by characterization of the blast wave generated because of detonation in free field tests, which however can be highly resource intensive and prone to uncertainties. Here, we present underwater ‘small-scale’ experiments for the determination of such equivalents. Underwater experiments, as described in the European standard EN 13763-15:2004, are performed to test the capability of detonators to initiate secondary explosives by determining the released energy. At BAM this test was modified to compare the energy output of the pyrotechnic mixtures (those used in air bag gas generators and firework flash compositions) and thus to determine their equivalents of high explosives like TNT or PETN. In the modified tests, small cylindrical copper containers were filled with pyrotechnic substances, which were then attached to standard detonators. This explosive charge assembly was then lowered into a water tank of about 1000 l capacity. At the same depth as the charge assembly, a piezoelectric pressure sensor was immersed in the water at a horizontal distance of about 400 mm from the charge. By recording the time-dependent pressure during the test, the shock energy as well as the energy associated with the expanding gas bubble were determined. T2 - 26th International Symposium on Military Aspects of Blast and Shock (MABS26) CY - Wollongong, Australia DA - 03.12.2023 KW - Underwater Tests KW - TNT/PETN - Equivalent PY - 2023 AN - OPUS4-58928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agea Blanco, Boris A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Sojref, Regine A1 - Brauer, D. S. A1 - Müller, Ralf T1 - Sintering and foaming of barium and calcium silicate glass powders N2 - Unexpected bubble bursting (foaming) is a huge problem in the fabrication of sintered glasses, sintered glass-ceramics and glass matrix composites. In this presentation the main aspects of foaming are shown for two completely different glass powders: 1) used as a SOFC sealand 2) bioactive glass T2 - Glashüttentag 2016 CY - Berlin, Germany DA - 29.09.16 KW - Bubble KW - Foaming KW - Glass powders PY - 2016 AN - OPUS4-38319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agea Blanco, Boris A1 - Reinsch, Stefan A1 - Meyer, Christian A1 - Müller, Ralf A1 - Günster, Jens T1 - Quantification of sand erosion on PV solar glass N2 - Solar glass in arid and semi-arid regions is exposed to sand storms which can affect the durability of PV modules. Related erosion processes have been extensively studied but the results given are difficult to compare due to being obtained by different variables like particle speed and sand mass. This study correlates the damage of solar panels to the cumulative impact energy as a global parameter. T2 - 91. Glastechnische Tagung CY - Weimar, Germany DA - 29.05.2017 KW - Glass KW - Sandblasting KW - Erosion KW - Sandstorm KW - Transmittance KW - Roughness PY - 2017 AN - OPUS4-42856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agea Blanco, Boris A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Sintering and Foaming of Barium Silicate Glass Powders N2 - The manufacture of sintered glasses and glass-ceramics, glass matrix composites, and glass-bounded ceramics or pastes is often affected by gas bubble formation. Against this background, we studied sintering and foaming of barium silicate glass powders used as SOFC sealants using different powder milling procedures. Sintering was measured by means of heating microscopy backed up by XPD, differential thermal analysis, vacuum hot extraction (VHE), and optical and electron microscopy. Foaming increased significantly as milling progressed. For moderately milled glass powders, subsequent storage in air could also promote foaming. Although the powder compacts were uniaxially pressed and sintered in air, the milling atmosphere significantly affected foaming. The strength of this effect increased in the order Ar ≈ N2 < air < CO2. Conformingly, VHE studies revealed that the pores of foamed samples predominantly encapsulated CO2, even for powders milled in Ar and N2. Results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. Foaming could be substantially reduced by milling in water and 10 wt% HCl. T2 - 91. Glastechnische Tagung CY - Weimar, Germany DA - 29.05.2017 KW - Glass powder sintering KW - Milling KW - Foaming KW - Degassing KW - SOFC PY - 2017 AN - OPUS4-42858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agea Blanco, Boris A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Günster, Jens T1 - The Effect of Sandblasting on Module Glazing N2 - Surface roughness, RZ, normal transmittance, ΤN, total transmittance, ΤT, and photovoltaic (PV) module efficiency, ηS, were measured for commercial solar glass plates and PV test modules identically sandblasted with different loads of quartz sand (200–400 μm), impact inclination angles, and sand particle speed. Measured data are presented versus the specific energy uptake during sand blasting, E (J/m2). Cracks, adhering particles, and scratch-like textures probably caused by plastic flow phenomena could be observed after sand blasting. Their characteristic size was much smaller than that of sand particles. After blasting and subsequent cleaning, the glass surface was still covered with adhering glass particles. These particles, cracks, and scratch-like textures could not be removed by cleaning. For sand blasting with α = 30° inclination angle and E = 30 000 J/m2, normal transmittance, total transmittance, and relative module efficiency decreased by 29%, 2% and ∽2%, respectively. This finding indicates that diffusive transmission of light substantially contributes to PV module efficiency and that the module efficiency decrease caused by sand erosion can be better estimated from total than by normal transmittance measurements. T2 - 7th SOPHIA PV-Module Reliability Workshop CY - Freiburg, Germany DA - 06.06.2017 KW - Photovoltaic Module KW - Sandstorm KW - Erosion KW - Sandblasting KW - Transmittance KW - Roughness KW - Efficiency PY - 2017 AN - OPUS4-42861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agea Blanco, Boris A1 - Walzel, S. A1 - Chi, J. A1 - Lüchtenborg, J. T1 - Making Binder Jetting Really Work for Technical Ceramics - Additive Manufacturing of Technical Ceramics N2 - As an alternative shaping method to the traditionally used processes, additive manufacturing (AM) can produce economical ceramic components in small lot sizes and/or with complex geometries. Powder-based additive manufacturing processes like binder jetting are popular in the field of metal AM. One reason is the increased productivity compared to other AM technologies. For ceramic materials, powder-based AM technologies result in porous ceramic parts, provided they are not infiltrated. CerAMing GmbH unites the advantages of powder-based processes with the production of dense ceramic by means of the Layerwise Slurry Deposition. By using a suspension, a high packing density of the powder bed is achieved which leads to high green body densities. Due to this advantage the approach overcomes the problems of other powder-based AM technologies. Furthermore, a very economical debinding time allows the production of parts with high wall thicknesses. KW - Additive Manufacturing KW - Binder Jetting KW - Layerwise Slurry Deposition KW - Lithography-based technologies KW - Technical Ceramics PY - 2021 SP - 49 EP - 52 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-52948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agea, Boris A1 - Walzel, S. T1 - 3D Druck unterstütz die Dekarbonisierung N2 - Suspensionsbasiertes Binder Jetting reduziert die Brennzeiten von technischer Keramik im Vergleich zu anderen 3d-druckverfahren signifikant. dabei wird nicht nur Energie beim Betrieb der Brennöfen gespart, sondern auch die Emission von Kohlendioxid beim Brennvorgang selbst gesenkt. KW - Schlickerdeposition PY - 2021 VL - 6 SP - 26 EP - 28 PB - Keramische Zeitschrift AN - OPUS4-53812 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Experimental study on M23C6 nucleation and growth mechanisms in Ni-base superalloy single crystals N2 - The addition of carbon to Ni-base superalloy single crystals has been increasingly carried out to improve low angle grain boundary (LAGB) resistance and castability. Consequently, the precipitation of carbides is highly probable during long-term application of components subjected to higher temperatures (> 1000 °C). While the view on the role of carbides as strengthening or detrimental is polemical, their inevitable increased presence in carbon-doped alloys must be addressed. In the present work, the evolution of M23C6 carbides forming in the commercial grade Ni-base superalloy LEK 94 during high-temperature and low-stress creep exposure is assessed. Although carbon is not intentionally added to the LEK 94 alloy, it admits up to 0.1 at. %, which together with the high content of M23C6-forming transition metals, leads to their precipitation. The precipitation is induced here during creep experiments at 1020 °C and a nominal applied stress of 160 MPa along [001]. The correlation of precipitation and external load is carried out by evaluating the carbides in the gage section of parallel and circularly notched cylindrical samples, as well as in their heads. Characterization is made by transmission electron microscopy (TEM). Although primary MC carbides form mostly in interdendritic regions during casting, high temperature exposure induces M23C6 carbide nucleation especially in the γ phase of dendritic regions, where a stronger partitioning of refractory elements is present. The carbides have a needle shape with their main axis on 〈100〉 and a cube-on-cube orientation relationship. They present incoherent {100} facets along their elongated region and semi-coherent {111} facets at their ends. Their nucleation and growth mechanisms are discussed based on microstructural observation under different experimental conditions. T2 - Modelling and Simulation of Superalloys. International Workshop. CY - Bochum, Germany DA - 29.03.2017 KW - Ni-base superalloy KW - Single cystal KW - Creep KW - Carbide KW - Scanning transmission electron microscopy (STEM) PY - 2017 AN - OPUS4-40249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Characterization of dislocation networks N2 - The presentation shows how the three-dimensional quantification of dislocations and their characteristic features, e.g. Burgers vector, line direction, dislocation density, is carried out at the transmission electron microscope in scanning mode (STEM) at Division 5.1 at BAM. Exemplarily, the methods are shown for Ni-base superalloy single crystals, for which a short introduction is given using further TEM techniques. Additional examples on low angle grain boundaries, nucleation of oxides at dislocations and interaction of dislocations and carbides are shown. The content of the presentation was addapted, aiming at scientists who work within the DFG Priority Programme 1713 "Strong coupling of thermo-chemical and thermo-mechanical states in applied materials". T2 - SPP 1713: Focus Group Meeting Experiments CY - Berlin, Germany DA - 27.06.2016 KW - Dislocation KW - Transmission electron microscopy KW - Three-dimensional (3D) characterization KW - Ni-base superalloy KW - Creep PY - 2016 AN - OPUS4-40278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Dislocation analysis in Ni-base superalloy single crystals N2 - The LEK94 is a Ni-base superalloy single crystal (SX) of the second generation, a materials class which is important for its high temperature creep resistance (>1000°C) in first stage blades of low-to-medium pressure gas turbines. Monocrystalline Ni-base superalloy SXs have a two-phase microstructure consisting of small cubes (' phase with the ordered L12 crystal structure, cube edge length: 500 nm), separated by thin channels (γ phase with fcc solid solution structure, channel width: 20 nm). The microstructural evolution during high temperature and low stress tensile creep has been thoroughly investigated previously, mainly for [001] loading, both in terms of dislocation activity (filling of γ channels, formation of dislocation networks, cutting of the γ’ phase) as well as phase coarsening (rafting, topological inversion). Other loading geometries have received less attention. The present work studies high temperature and low stress creep deformation of the superalloy LEK 94 at temperatures around 1000°C, where rafting occurs. Differences between loading under different uniaxial, biaxial and triaxial stress states are discussed. Stereo-microscopy and g∙b analysis in the scanning transmission electron microscopy mode (STEM) are combined for microstructural analysis. The focus is set on the role of dislocation interactions with the aging microstructure. Both development in STEM characterization methods, as well as the roles of phase coarsening, γ channel filling, microstructural heterogeneity and γ’ phase cutting are discussed. T2 - Eingeladener Vortrag CY - US Air Force Research Laboratories, Dayton, OH, USA DA - 19.07.2016 KW - Doslocation KW - Superalloy KW - Microscopy KW - Creep PY - 2016 AN - OPUS4-41945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Mielke, Viola T1 - Mechanisms of M23C6 Carbide Precipitation in Ni-Base Superalloy Single Crystals N2 - The demand for improved castability and low angle grain boundary (LAGB) resistance has led to the addition of low contents of e.g., B, Hf, Zr or C, into large industrial gas turbine components made of Ni-base superalloy single crystals (SXs). Due to the long-term application of Ni-base superalloy SX components in the temperature regime > 1000 °C, the formation of carbides is highly probable, which could jeopardize mechanical properties, such as high cycle fatigue. In the present contribution, the effect of internal and external stresses on the nucleation and growth characteristics of M23C6 carbides is investigated. Creep experiments are performed on the Ni-base superalloy SX LEK 94, which shows a low C concentration (= 0.1 at. %), at 1020 °C under parallel and circularly notched tensile specimens at a nominal stress of 160 MPa in the crystallographic direction [001]. The carbides are then characterized via scanning (S) and transmission (T) electron microscopy (EM). Nucleation is enhanced in the dendritic cores, often as coalesced colonies, extending over micrometers within M-rich (M: Cr, Re, W, Mo) γ channels. Lath shapes with facets on {100} (parallel to growth direction) and {111} are common. These facets exist since early stages (Fig.1a) and later develop misfit dislocations (Fig.1b), preserving the orientation relationship {100}γ || {100}M23C6. Fig. 1c shows a region from the creep gage, where carbides interact with superdislocations in the γ’ phase. Possible mechanisms are discussed. T2 - European Congress and Exhibition on Advanced Materials and Processes (EUROMAT) 2017 CY - Thessaloniki, Greece DA - 17.09.2017 KW - Superalloy KW - TEM KW - Carbide KW - Nucleation KW - Pore KW - Dislocation PY - 2017 AN - OPUS4-42176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Mosquera Feijoo, Maria A1 - Nolze, Gert A1 - Rizzo, F. T1 - Nano-sized precipitates in an Fe-13Cr alloy formed under oxidizing water vapor atmosphere N2 - Oxidation of a Fe-13Cr alloy under water vapor at 600 °C produced a zone of nano-sized precipitation underneath the outside scale formed by iron oxides and Fe‒Cr spinel. The majority of the spinel layer shows a mixed orientation relationship to the ferritic matrix {100}α || {100}sp & <011>α || <001>sp. However, also the discovered precipitated particles are characterized by the same crystallographic orientation relationship to the respective ferritic parent grain. The habit of the precipitates is best described by a lath morphology with their main axis parallel to <100> of ferrite. Energy dispersive X-ray spectroscopy (EDX) and electron backscatter diffraction (EBSD) in an scanning electron microscope (SEM) have been applied to characterize the oxide layer in the micrometer scale. The clearly smaller precipitates were subsequently investigated by transmission electron microscopy (TEM). Specimens have been prepared by focused ion-beam (FIB) milling at an area previously characterized by EBSD. They cover the ferritic base material, but mainly the precipitation zone and the Fe‒Cr spinel layer. Energy filtered selected area diffraction (SAD) in the conventional (C)TEM and high-angle annular darkfield (HAADF) imaging in the scanning (S)TEM mode were employed in the characterization of the specimens. T2 - International Conference on Solid-Solid Phase Transformations in Inorganic Materials (PTM) 2015 CY - Whistler, British Columbia, Canada DA - 28.06.2015 KW - Precipitation KW - Oxidation KW - Microscopy KW - Topotactic transformation KW - Spinel PY - 2015 AN - OPUS4-42169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Navigating the Nanoworld: Understanding Materials Properties with the Transmission Electron Microscope N2 - The field of materials science is defined as “the study of the properties of solid materials and how those properties are determined by a material’s composition and structure.”. Many –if not most– of the materials that are produced nowadays owe their properties to structures engineered down to the nanoscopic level. This need has been partly realized thanks to the understanding of materials’ building blocks via characterization techniques that reach this level of resolution. Transmission electron microscopy, since its first implementation in the early 1930s (in Berlin), has been implemented to achieve imaging –and spectral– analysis at lateral resolutions down to the atomic level. In this contribution, a series of practical examples will be presented, where applied materials are characterized by a range of transmission electron microscopy techniques to understand structural and functional properties of a wide range of materials. Among these materials examples will be presented on structural conventionally and additively manufactured metallic alloys, high entropy alloys, dissimilar aluminum-to-steel welds, magnetic nanoparticles, ceramic coatings, high temperature oxidation products. Addressed will be either the effect of processing route or that of the exposure to experimental conditions similar to those found in the respective intended applications. T2 - UA/UAB/UAH MSE Graduate Seminar CY - Online meeting DA - 19.01.2022 KW - Transmission electron microscopy (TEM) KW - Characterization KW - Microstructure KW - 3D PY - 2022 AN - OPUS4-54238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the Nature of Melt Pool Boundaries in Additively Manufactured Stainless Steel by Nano-sized Modulation N2 - Additive manufacturing (AM) of metallic alloys has gained momentum in the past decade for industrial applications. The microstructures of AM metallic alloys are complex and hierarchical from the macroscopic to the nanometer scale. When using laser-based powder bed fusion (L-PBF) process, two main microstructural features emerge at the nanoscale: the melt pool boundaries (MPB) and the solidification cellular substructure. Here, details of the MPB are revealed to clearly show the three-dimensional nature of MPBs with changes of cell growth of direction and their relation to their surrounding cellular substructure, as investigated by transmission electron microscopy (TEM) for L-PBF 316L austenitic stainless steel (cf. Figure 1). A hitherto unknown modulated substructure with a period of 21 nm is further discovered within cells as the result of a partial Ga+-focused ion beam-induced ferritic transformation of the austenite. Cell cores and cell boundaries differ notably regarding the modulated substructure. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 AN - OPUS4-54836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Effect of a circular notch on [001] tensile creep behavior of the Ni-base superalloy single crystal LEK 94 at 1020 °C N2 - Ni-base superalloy single crystals have been used in turbine blades for hot sections of gas turbines for over four decades. In order to increase the efficiency of the turbines, a continuous increase in the inlet temperature of combustion gases into the turbine has driven the design of turbine blades to complicated shapes and the presence of a complex pattern of cooling channels. These three-dimensional shapes, together with the inhomogeneous distribution of stresses along the blade, induce an also complicated triaxial stress state, which does not compare to uniaxial tests that are performed to characterize high temperature properties such as creep. A round notch on a test piece represents a simple configuration that generates a quasi-isostatic stress state across the notch. In the present contribution, the effect of a sharp round notch on the microstructural micromechanisms within the notched region cylindrical bars, loaded along [001] at 1020 °C and 160 MPa net stress, is studied. To this end, a series of interrupted creep tests is conducted on plain and notched bars and the microstructure is compared. Results are discussed in terms of degree microstructural coarsening, and dislocation activity. The effect of notch generation via grinding is also discussed in these terms. The presence of carbides evolving in from residual carbon is also shown and discussed. .Funding by the German Research Association (DFG) [grant number AG 191/1] is acknowledge T2 - DGM-Arbeitskreis mechanisches Werkstoffverhalten bei hoher Temperatur CY - Hochschule Augsburg, Germany DA - 20.09.2018 KW - Superalloy single crystals KW - Microstructure KW - Electron microscopy KW - Creep KW - Multiaxial stress state PY - 2018 AN - OPUS4-46050 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Suárez Ocaño, Patricia T1 - The Al4-xZr5(Ox-y) Trojan horse in the AlMo0.5NbTiTa0.5Zr refractory high entropy superalloy N2 - Unlike conventional alloys, which typically consist of one main element, high-entropy alloys (HEAs) contain five or more principal elements, which broaden chemical complexity and with it a realm of synergistic mechanisms. The AlMo0.5NbTa0.5TiZr HEA initiated a subclass of Al-containing refractory (r)HEAs that has recently drawn attention [2]. The alloy has a superalloy-resembling B2/bcc nanostructure, which inspired its name refractory high entropy superalloy (RSA). With high-temperature (HT) compressive strengths beyond conventional Ni-based superalloys, this nanostructure could be used for improved HT structural applications. However, in the application-relevant HT regime the Al-Zr-rich B2 phase decomposes to form a hexagonal Al-Zr-based intermetallic (Al4-xZr5; x: 0..1) [3,4]. This work explores the fascinating yet fatal micromechanisms associated to this phase transformation, in the context of creep, annealing and oxidation experiments performed between 800 and 1200 °C. The material was produced by arc-melting and heat treatment in argon, which lead to grain boundaries decorated with up to 7%. Interrupted constant-load creep tests were performed under vacuum (at 10-4 Pa), at 900–1100 °C with external tensile stresses of 30–120 MPa. Oxidation experiments were separately conducted for 24 hours at 800 and 1000 °C in both dry (21% O2 + 79% N2) and humid (8% O2 + 74% N2 + 18% H2O) air. After the experiments, the samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy to reveal degradation mechanisms. Crystallographic texture, orientation relationships and stabilization of an oxygen-containing iso structure (Al4-xZr5(Ox-y); y: 0..x) of the Al-Zr-rich intermetallic are found and discussed. T2 - BCC Superalloy Network Opening Workshop CY - Reutte, Austria DA - 08.02.2024 KW - High entropy alloy KW - Superalloy KW - Degradation KW - Electron microscopy KW - Microstructure PY - 2024 AN - OPUS4-59833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agudo Jácome, Leonardo A1 - Göbenli, G. A1 - Eggeler, G. ED - Göken, M. T1 - Transmission electron microscopy study of the microstructural evolution during high-temperature and low-stress (011) [01-1] shear creep deformation of the superalloy single crystal LEK 94 N2 - The present work describes the shear creep behavior of the superalloy LEK 94 at temperatures between 980 and 1050 °C and shear stresses between 50 and 140 MPa for loading on the macroscopic crystallographic shear system (MCSS) (011)[01-1]. The strain rate versus strain curves show short primary and extended secondary creep regimes. We find an apparent activation energy for creep of Qapp = 466 kJ/mol and a Norton-law stress exponent of n = 6. With scanning transmission electron microscopy, we characterize three material states that differ in temperature, applied stress, and accumulated strain/time. Rafting develops perpendicular to the maximum principal stress direction, gamma channels fill with dislocations, superdislocations cut gamma' particles, and dislocation networks form at gamma/gamma' interfaces. Our findings are in agreement with previous results for high-temperature and low-stress [001] and [110] tensile creep testing, and for shear creep testing of the superalloys CMSX-4 and CMSX-6 on the MCSSs (111)[01-1] and (001)[100]. The parameters that characterize the evolving gamma/gamma' microstructure and the evolving dislocation substructures depend on creep temperature, stress, strain, and time. KW - Dislocations KW - Microstructure KW - Scanning transmission electron microscopy (STEM) KW - Creep KW - Shear test PY - 2017 U6 - https://doi.org/10.1557/jmr.2017.336 SN - 0884-2914 SN - 2044-5326 VL - 32 IS - 24 SP - 4491 EP - 4502 PB - Cambridge University Press CY - Cambrigde AN - OPUS4-43756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Metasurface-Enhanced Photon Upconversion upon 1550 nm Excitation N2 - Photon upconversion upon 1550 nm excitation is of high relevance for applications in the third biological excitation window, for photovoltaics beyond current limitations, and enables appealing options in the field of glass Fiber telecommunications. Trivalent doped erbium ions (Er3+) are the material of choice for 1550 nm excited upconversion, however, they suffer from a low absorption cross-section and a low brightness. Therefore, the ability of Silicon metasurfaces to provide greatly enhanced electrical near-fields is employed to enable efficient photon upconversion even at low external Illumination conditions. Hexagonally shaped β-NaYF4:Er3+ nanoparticles are placed on large-area silicon metasurfaces designed to convert near-infrared (1550 nm) to visible light. More than 2400-fold enhanced photon upconversion luminescence is achieved by using this metasurface instead of a planar substrate. With the aid of optical simulations based on the finite-element method, this result is attributed to the coupling of the excitation source with metasurface resonances at appropriate incident angles. Analysis of the excitation power density dependence of upconversion luminescence and red-to-green-emission ratios enables the estimation of nanoscale near-field enhancement on the metasurface. The findings permit the significant reduction of required external excitation intensities for photon upconversion of 1550 nm light, opening perspectives in biophotonics, telecommunication, and photovoltaics. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Single enhancement KW - SWIR KW - Method PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-537193 SN - 2195-1071 VL - 9 IS - 24 SP - 2101285 PB - Wiley-VCH-GmbH AN - OPUS4-53719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Enhanced photon upconversion using erbium-doped nanoparticles interacting with silicon metasurfaces N2 - Photon upconversion (UC) using trivalent erbium (Er+3) doped crystals is a promising concept to harness near infrared photons of the solar spectrum which cannot be directly absorbed by silicon solar cells. However, their UC efficiency at low-intensity 1 sun illumination is not relevant on device level so far. Exploiting giant near-field enhancement effects on metasurfaces is an appealing approach to enable efficient UC at low irradiance conditions. Here, we report on more than 1000-fold enhanced photon UC of NaYF4:Er+3 nanoparticles interacting with the near-fields supported by a silicon metasurface under 1550 nm excitation. T2 - 48th Photovoltaic Specialists Conference (PVSC) CY - Online meeting DA - 20.06.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer KW - Photonic crystal KW - Enhancement strategy PY - 2021 U6 - https://doi.org/10.1109/pvsc43889.2021.9518495 SP - 1 EP - 3 PB - IEEE CY - Berlin AN - OPUS4-53786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadian, A. A1 - Scheiber, D. A1 - Zhou, X. A1 - Gault, B. A1 - Darvishi Kamachali, Reza A1 - Romaner, L. A1 - Ecker, W. A1 - Dehm, G. A1 - Liebscher, C. H. T1 - Interstitial segregation has the potential to mitigate liquid metal embrittlement in iron N2 - The embrittlement of metallic alloys by liquid metals leads to catastrophic material failure and severely impacts their structural integrity. The weakening of grain boundaries by the ingress of liquid metal and preceding segregation in the solid are thought to promote early fracture. However, the potential of balancing between the segregation of cohesion-enhancing interstitial solutes and embrittling elements inducing grain boundary decohesion is not understood. Here, we unveil the mechanisms of how boron segregation mitigates the detrimental effects of the prime embrittler, zinc, in a Σ5 [0 0 1] tilt grain boundary in α −Fe (4 at.% Al). Zinc forms nanoscale segregation patterns inducing structurally and compositionally complex grain boundary states. Ab-initio simulations reveal that boron hinders zinc segregation and compensates for the zinc induced loss in grain boundary cohesion. Our work sheds new light on how interstitial solutes intimately modify grain boundaries, thereby opening pathways to use them as dopants for preventing disastrous material failure. KW - Materials Modelling KW - Liquid Metal Embrittlement KW - Alloy Safety KW - CALPHAD KW - Microstructure Design PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-573576 SN - 0935-9648 IS - e2211796 PB - Wiley online library AN - OPUS4-57357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmed, R. A1 - Vaishampayan, A. A1 - Cuellar-Camacho, J. L. A1 - Wight, D. J. A1 - Donskyi, Ievgen A1 - Unger, Wolfgang A1 - Grohmann, E. A1 - Haag, R. A1 - Wagner, O. T1 - Multivalent Bacteria Binding by Flexible Polycationic Microsheets Matching Their Surface Charge Density N2 - Aiming at the overall negative surface charge of bacteria, a new strategy of antibacterial agents based on large polymer-modified graphene oxide (GO) sheets is assessed. The presented flexible, polycationic Sheets match the size and charge density of the Escherichia coli surface charge density (2 × 1014 cm−2). These matching parameters create an unspecific but very strong bacteria adsorber by multivalent, electrostatic attraction. Their interaction with bacteria is visualized via atomic force and confocal microscopy and shows that they effectively bind and wrap around E. coli cells, and thereby immobilize them. The incubation of Gram-negative and -positive bacteria (E. coli and methicillin-resistant Staphylococcus aureus, MRSA) with these polycationic sheets leads to the inhibition of proliferation and a reduction of the colony forming bacteria over time. This new type of antibacterial agent acts in a different mode of Action than classical biocides and could potentially be employed in medicinal, technical, or agriculture applications. The presented microsheets and their unspecific binding of cell interfaces could further be employed as adsorber material for bacterial filtration or immobilization for imaging, analysis, or sensor technologies. KW - Surface charge KW - Bacteria KW - Graphene oxide KW - Escherichia coli KW - XPS PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509651 VL - 7 IS - 15 SP - 1902066 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aidagulov, Gallyam A1 - Qiu, Xiangdong A1 - Brady, Dominic A1 - Abbad, Mustapha A1 - Onel, Yener A1 - Ewert, Uwe T1 - New insights into carbonate matrix stimulation from high-resolution 3D images of wormholes obtained in radial acidizing experiments N2 - We analyzed the results of high-energy X-ray CT scans for three 20×16×16 in. block samples of Indiana limestone from our recent radial acidizing experiments with HCl. CT scans were done for complete samples, and 3D images of internal dissolution patterns were built. Each 3D image consists of submillimeter-size voxels to capture fine details of individual wormholes. The obtained 3D images of acidized blocks allow us to observe from various angles the details of the wormholes obtained in the three experiments, which demonstrated wide pore-volume-to-breakthrough (PVBT) range with three different injection rates. Also, variation of the CT number reveals the presence of depositional layers in all block samples, and the obtained CT images were used to interpret the effect that rock layers might have on wormhole penetration at different injection rates. Further, the built voxel models were used to calculate the radial distributions of dissolved rock volume, which otherwise are not obvious for such complex branched structures as wormholes. We observed how varied experimental conditions affected those distributions. The radial distributions were found very similar across the samples, which suggested the way to detect the effective wormhole penetration depth. T2 - SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition CY - Dammam, Saudi Arabia DA - 23.04.2018 KW - Carbonate matrix stimulation KW - High-energy X-ray CT KW - XL-CT KW - Analysis of wormholes PY - 2018 U6 - https://doi.org/10.2118/192366-MS SP - SPE-192366-MS, 1 EP - 19 AN - OPUS4-46654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akatsuka, C. A1 - Honma, T. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Tanaka, S. A1 - Komatsu, T. T1 - Surface crystallization and gas bubble formation during conventional heat treatment in Na2MnP2O7 glass N2 - The crystallization behavior of sodium ion conductive Na2MnP2O7 glass was examined to clarify the crystallization mechanism. The formation of thermodynamically metastable phase, layered Na2MnP2O7, at the surface of the glass occurred. Heat treatment at 430 °C for 3 h lead to surface crystals of Na2MnP2O7 oriented with the (101) direction perpendicular to the sample surface. As the heat treatment temperature increased, the glass-ceramic samples deformed, and the presence numerous micro bubbles due to dissolved water was detected. KW - Glass-ceramic KW - Crystallization KW - Sodium ion batteries KW - Bubble formation KW - Phosphate PY - 2019 U6 - https://doi.org/10.1016/j.jnoncrysol.2019.01.030 VL - 510 SP - 36 EP - 41 PB - Elsevier B.V. AN - OPUS4-49618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Wilke, Manuel A1 - Emmerling, Franziska A1 - Rademann, K. T1 - In situ investigation of mechanochemical syntheses of metal phosphonates N2 - We report on the in situ investigation of mechanochemical syntheses of metal phosphonates. The metal phosphonates are formed in milling reactions starting from a metal acetate and a phosphonic acid. The conversions are observed by synchrotron PXRD and Raman spectroscopy to shed light on the reaction mechanisms including possible intermediates. T2 - 8th HZB User Meeting CY - Berlin, Germany DA - 07.12.2016 KW - Mechanochemistry KW - In situ KW - Metal phosphonates KW - XRD KW - Raman spectroscopy PY - 2016 AN - OPUS4-38780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Schutjajew, Konstantin A1 - Roth, Christina A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of metal phosphonates N2 - The exploration of metal phosphonates chemistry has gained great interest during the last decades, because of their structural diversity. Transition metal phosphonates are promising candidates for an application as electrocatalysts in oxygen evolution reactions (OER). Here, we present the in situ investigation of mechanochemical syntheses of different manganese phosphonates by synchrotron X-ray diffraction. Nitrilotri(methylenephosphonic acid) and N,N-Bis(phosphonomethyl)glycine were chosen as ligands. The liquid-assisted milling process can be divided into three steps, including an amorphous stage. One of the products has not been obtained by classical solution chemistry before. These metal phosphonates and/or their derivatives are considered to be active in electrochemical energy conversion. The verification of their applicability is one of the topics of our resent research. T2 - Fundamental Bases of Mechanochemical Technologies CY - Novosibirsk, Russia DA - 25.06.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - Thermography PY - 2018 AN - OPUS4-46996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -