TY - CONF A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Baesso, Ilaria A1 - Straße, Anne A1 - Pittner, Andreas A1 - Pignatelli, Giuseppe A1 - Seeger, Stefan A1 - Nazarzadehmoafi, Maryam A1 - Ehlers, Henrik A1 - Gohlke, Dirk A1 - Homann, Tobias A1 - Scheuschner, Nils A1 - Ulbricht, Alexander A1 - Heinrich, P. A1 - Maierhofer, Christiane T1 - Process monitoring of additive manufacturing of metals - an overview of the project ProMoAM N2 - The project ProMoAM is presented. The goal of the project is to evaluate which NDT techniques or combination of techniques is suited for in-situ quality assurance in additive manufacturing of metals. To this end, also 3d-data fusion and visualization techniques are applied. Additional ex-situ NDT-techniques are used as references for defect detection and quantification. Feasability studies for NDT-techniques that are presently not applicable for in-situ use are performed as well. The presentation gives a brief overview of the whole project and the different involved NDT-techniques. T2 - Workshop od Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - Process monitoring KW - NDT PY - 2019 AN - OPUS4-48087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Heinrich, P. A1 - Baum, D. A1 - Hilgenberg, Kai T1 - In-situ Prozessüberwachung in der additiven Fertigung von Metallen mittels optischer Verfahren N2 - Einer der aussichtsreichsten Ansätze, die Qualität und Sicherheit der gefertigten Teile in der metallbasierten additiven Fertigung (AM) zu erhöhen und die Notwendigkeit aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen (ZfP) nach der Fertigung zu verringern, liegt in dem Einsatz von in-situ Prozessüberwachungstechniken. Bereits jetzt werden erste Messsysteme zur Kontrolle der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie kommerziell angeboten. Weitere ZfP Verfahren, wie z.B. die aktive und passive Thermografie, werden in der Literatur als geeignet für die in-situ Anwendung angesehen, allerdings gibt es noch wenig konkrete praktische Umsetzungen, da die Möglichkeiten und individuellen Grenzen dieser Methoden, angewendet auf AM, noch nicht ausreichend erforscht sind. Aus diesem Grund verfolgt die BAM mit dem Projekt „Process Monitoring of AM“ (ProMoAM) im Themenfeld Material das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile weiterzuentwickeln. Im Beitrag wird zunächst das Projekt vorgestellt und anschließend der Fokus auf eine Messserie gelegt, in der Probekörper aus dem austenitischen Edelstahl 316L mit lokal variierenden Prozessparametern mittels selektiven Laserschmelzen (L-PBF) aufgebaut wurden. Der Bauprozess wurde hierbei durch das maschineneigene, koaxial arbeitende Photodiodensystem (Melt-Pool-Monitoring), einer Mittelwellen-Infrarotkamera und einer optischen Tomografiekamera im sichtbaren Wellenlängenbereich (Langzeitbelichtung für die Dauer eines Lagenaufbaus mit einer CMOS-Kamera mit hoher Ortsauflösung) simultan überwacht. Als Referenz für diese Methoden wurden die Probekörper mittels Computertomografie untersucht. Für die dabei anfallenden teils großen Datenmengen wurden Algorithmen für ein effizientes Preprocessing entwickelt. Es wurden Merkmale der Messdaten in Korrelation zu Fehlern und Inhomogenitäten extrahiert, welche für die einzelnen Methoden vergleichend vorgestellt und diskutiert werden. T2 - 5. Tagung des Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Online meeting DA - 04.11.2020 KW - Additive Fertigung KW - Prozessüberwachung KW - Thermografie KW - Optische Tomografie KW - Computertomografie KW - L-PBF KW - AM KW - CT KW - In-situ PY - 2020 AN - OPUS4-51627 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Ermüdungsverhalten und Versagensmechanismen von additiv mittels LPA hergestelltem TiAl6V4 N2 - Die Untersuchung und Charakterisierung der Entwicklung/Änderung der Mikrostruktur, der mechanischen Eigenschaften sowie der Lebensdauer additiv gefertigter metallischer Werkstoffe hat bisher, vor allem im Hinblick auf die komplexe Belastungsfälle bei sicherheitsrelevanten Anwendungen, mit der rasanten Entwicklung der Fertigungstechniken nicht Schritt gehalten. Im Rahmen dieser Arbeit wurde eine Charakterisierung des Ermüdungsverhaltens von additiv gefertigten TiAl6V4 im Low-Cycle-Fatigue Bereich (niederzyklische Ermüdung) nach Norm ISO 12206 mit Dehnungsamplituden von 0.3 bis zu 1.0 % und bei Raumtemperatur, 250°C und 400°C durchgeführt. Die TiAl6V4 Proben wurden aus zylindrischen Halbzeugen gefertigt, welche durch Laser-Pulver-Auftragsschweißen mit einer optimierten Aufbaustrategie hergestellt wurden. Die optimierte Aufbaustrategie beinhaltet variierende Spurüberlappungsgraden, die die Fertigung der dünnen zylindrischen Körper ohne weitere Ausgleichslagen ermöglicht. Das Werkstoffverhalten wird anhand von Wechselverformungskurven sowie einer Darstellung der Lebensdauer in einem Wöhler-Diagramm beschrieben. Ein Fitting der Lebensdauer-Daten erfolgt anhand der Manson-Coffin-Basquin Beziehung. Eine Eingangscharakterisierung der mikrostrukturellen Merkmale inklusive Bindefehler aus dem Herstellungsprozess wird durch Lichtmikroskopie und hochauflösende Computertomographie (CT) durchgeführt. Der Versagensmechanismus während der Belastung wird anhand von Zwischenuntersuchungen mit CT und einem unterbrochenen Versuch mit ausgewählten Versuchsparametern beschrieben. Nach dem Versagen wurden die Proben am REM, mit Lichtmikroskopie und mit CT fraktographisch in Längs- und Querrichtung untersucht. Die erfassten Lebensdauern sind ähnlich zu denen aus herkömmlichen Studien und liegen unter derjenigen von dem konventionell hergestellten (geschmiedeten) Werkstoff. In dieser Arbeit wurden für den untersuchten Werkstoff bei anwendungs- und sicherheitsrelevanten Belastungszuständen (hohe Temperaturen, zyklische Plastizität) neue experimentelle Daten und Kennwerte ermittelt und Verständnis über das mechanische Verhalten und die Entwicklung der Mikrostruktur aufgebaut. Darüber hinaus wurde Verständnis über die Rolle von Bindefehlern und anderen typisch für AM auftretenden Gefügemerkmalen auf das Versagensverhalten von DED-L TiAl6V4 gewonnen. T2 - DGM Fachausschuss Titan CY - Liebherr-Aerospace Lindenberg GmbH, Germany DA - 12.11.2019 KW - LCF KW - Titan KW - Ti-6Al-4V KW - Ti64 KW - TiAl5V4 KW - Additive Fertigung KW - CT KW - Mikrostruktur KW - Zugeigenschaften KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-49758 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior and failure mechanisms of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in AM process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and microstructural evolution of AMparts, especially in loading conditions typical for safety-relevant applications e.g. in the aerospace or power engineering. Within the scope of the presented investigations, a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime was carried out in the range of 0.3 to 1.0 % strain amplitude at room temperature, 250°C and 400°C. The Ti-6Al-4V specimens are machined out of lean cylindrical rods, which were fabricated using powder laser metal deposition (LMD) with an improved build-up strategy. The improved strategy incorporates variable track overlap ratios to achieve a constant growth in the shell and core area. The low-cycle-fatigue behavior is described based on cyclic deformation curves and strain-based fatigue life curves. The lifetimes are fitted based on the Manson-Coffin-Basquin relationship. A characterization of the microstructure and the Lack-of-Fusion (LoF)-defect-structure in the as-built state is performed using optical light microscopy and high-resolution computed tomography (CT) respectively. The failure mechanism under loading is described in terms of LoF-defects-evolution and crack growth mechanism based on an interrupted LCF test with selected test parameters. After failure, scanning electron microscopy, digital and optical light microscopy and CT are used to describe the failure mechanisms both in the longitudinal direction and in the cross section of the specimens. The fatigue lives obtained are comparable with results from previous related studies and are shorter than those of traditionally manufactured (wrought) Ti-6Al-4V. In this study new experimental data and understanding of the mechanical behavior under application-relevant loading conditions (high temperature, cyclic plasticity) is gained. Furthermore, a better understanding of the role of LoFdefects and AM-typical microstructural features on the failure mechanism of LMD Ti-6Al-4V is achieved. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-49492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Ermüdungsverhalten und Versagensmechanismen von additiv mittels LPA hergestelltem TiAl6V4 N2 - Die Untersuchung und Charakterisierung der Entwicklung/Änderung der Mikrostruktur, der mechanischen Eigenschaften sowie der Lebensdauer additiv gefertigter metallischer Werkstoffe hat bisher, vor allem im Hinblick auf die komplexe Belastungsfälle bei sicherheitsrelevanten Anwendungen, mit der rasanten Entwicklung der Fertigungstechniken nicht Schritt gehalten. Im Rahmen dieser Arbeit wurde eine Charakterisierung des Ermüdungsverhaltens von additiv gefertigten TiAl6V4 im Low-Cycle-Fatigue Bereich (niederzyklische Ermüdung) nach Norm ISO 12206 mit Dehnungsamplituden von 0.3 bis zu 1.0 % und bei Raumtemperatur, 250°C und 400°C durchgeführt. Die TiAl6V4 Proben wurden aus zylindrischen Halbzeugen gefertigt, welche durch Laser-Pulver-Auftragsschweißen mit einer optimierten Aufbaustrategie hergestellt wurden. Die optimierte Aufbaustrategie beinhaltet variierende Spurüberlappungsgraden, die die Fertigung der dünnen zylindrischen Körper ohne weitere Ausgleichslagen ermöglicht. Das Werkstoffverhalten wird anhand von Wechselverformungskurven sowie einer Darstellung der Lebensdauer in einem Wöhler-Diagramm beschrieben. Ein Fitting der Lebensdauer-Daten erfolgt anhand der Manson-Coffin-Basquin Beziehung. Eine Eingangscharakterisierung der mikrostrukturellen Merkmale inklusive Bindefehler aus dem Herstellungsprozess wird durch Lichtmikroskopie und hochauflösende Computertomographie (CT) durchgeführt. Der Versagensmechanismus während der Belastung wird anhand von Zwischenuntersuchungen mit CT und einem unterbrochenen Versuch mit ausgewählten Versuchsparametern beschrieben. Nach dem Versagen wurden die Proben am REM, mit Lichtmikroskopie und mit CT fraktographisch in Längs- und Querrichtung untersucht. Die erfassten Lebensdauern sind ähnlich zu denen aus herkömmlichen Studien und liegen unter derjenigen von dem konventionell hergestellten (geschmiedeten) Werkstoff. In dieser Arbeit wurden für den untersuchten Werkstoff bei anwendungs- und sicherheitsrelevanten Belastungszuständen (hohe Temperaturen, zyklische Plastizität) neue experimentelle Daten und Kennwerte ermittelt und Verständnis über das mechanische Verhalten und die Entwicklung der Mikrostruktur aufgebaut. Darüber hinaus wurde Verständnis über die Rolle von Bindefehlern und anderen typisch für AM auftretenden Gefügemerkmalen auf das Versagensverhalten von DED-L TiAl6V4 gewonnen. T2 - Werkstoffwoche 2019 CY - Dresden, Germany DA - 18.09.2019 KW - Titan KW - TiAl5V4 KW - Ti-6Al-4V KW - Ti64 KW - Additive Fertigung KW - CT KW - Mikrostruktur KW - Zugeigenschaften KW - Low Cycle Fatigue KW - LCF PY - 2019 AN - OPUS4-49755 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska T1 - Acoustic emission of fibre reinforced AlSi12CuMgNi alloy under compression N2 - Typically, the near-eutectic Al-Si alloys consist of highly interconnected three-dimensional network of the eutectic Silicon (Si) and intermetallics embedded into Aluminium (Al) matrix. For further improvement of the mechanical properties of such alloys, often, one single ceramic reinforcement phase, e.g. silicon carbide (SiC) or aluminium oxide (Al2O3) in the form of fibres or particles is added. However, hybrid reinforcements (fibres and particles) can further improve wear resistance and fracture toughness, and additionally, reduce anisotropy of the material. The engineering of metal matrix composites (MMC) for specific application requirements benefits from a comprehensive knowledge of the failure behaviour. Therefore, damage evolution under compression was investigated on: - pure near-eutectic AlSi12CuMgNi matrix alloy - type I: matrix reinforced with random-planar oriented Al2O3 short fibres (15 vol.%) - type II: matrix reinforced with random-planar oriented Al2O3 short fibres (7 vol.%) and additional SiC particles (15 vol.%) The analysis of damage mechanism was carried out in two rather independent but complementary studies. First, selected sister samples of every material were exposed to quasi-static compression (traverse control). The compression tests were interrupted at different strain levels. Miniature cylinders with a diameter of 1mm were extracted from the pre-strained samples and investigated by synchrotron computed tomography (SX-µCT) with a spatial resolution of about 0.7 µm. For the pure matrix alloy, microcracks are confined to the intermetallic particles and to the eutectic Si, hence no damage was observed in the Aluminium. The composite type II revealed a more effective strain accumulation (less damage) than type I at low plastic strain (up to 5 %), but a more catastrophic damage development due to cracking of the SiC clusters at higher strain levels. The second approach to study the damage initiation and accumulation in the materials subjected to compressive load was Acoustic Emission (AE) analysis. In this case the in-situ monitoring of the acoustic emission signal was performed during compression tests on specimens with dimension of several mm. For all three material types, AE activity set at 2% strain. Differences in AE behaviour of the three materials was proven based on AE hitrate, signal peak amplitudes as well as weighted peak frequencies (WPF). Future work focuses on combination of AE and SX-µCT aiming for more detailed knowledge on damage mechanism of metal matrix composites. T2 - Schall21 CY - Online meeting DA - 24.02.2021 KW - AlSi12CuMgNi KW - Al-Si alloys KW - Acoustic emission KW - Tension PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534268 UR - https://www.dgzfp.de/seminar/schall21 AN - OPUS4-53426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Burger, Karin A1 - Gollwitzer, Christian T1 - Virtual CT acquisition and reconstruction of complex and noisy scanning trajectories in aRTist N2 - In modern CT imaging, simulation has become an important tool to minimize cost- and time-intensive measurements. It is increasingly used to optimize techniques for complex applications, to support the preparation of written procedures, and for educational purposes. We extended the CT simulation software ‘aRTist’ with a module to set-up arbitrary trajectories including disturbing influences during the scan. Moreover, such geometric deviations can be compensated by the internal reconstruction tool. T2 - 9th Conference on Industrial Computed Tomography (iCT) CY - Padua, Italy DA - 13.02.2019 KW - Simulation KW - Arbitrary trajectories KW - Projection matrix KW - Filtered back projection PY - 2019 AN - OPUS4-47476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernard, D. A1 - Léonard, Fabien A1 - Plougonven, E. A1 - Bruno, Giovanni T1 - On the use of autocorrelation functions, permeability tensors, and computed tomography to characterize the anisotropy of Diesel particulate filter materials N2 - 3D images such as those produces by X-ray tomography can provide a wealth of information on the internal structure of materials, but quantification of specific geometrical or topological characteristics linked to some bulk physical property is far from being straightforward. This study focuses on methods to quantify the differences in physical properties as a function of direction, i.e. their anisotropy, and how it can be linked to measures of anisotropy of the internal structure of the material. The auto-correlation function gives a similarity measure in the volume as a function of distance and direction. This is a cross-correlation of the image with itself fast to compute and relatively insensitive to noise. It is why we focus on this method to compare with the physical property of our DPF material. Diesel Particulate Filter (DPF) materials are porous ceramics that; a) can be used at very high temperatures; b) have very good thermal shock resistance; c) are inert; d) can be manufactured with tailored porosity. Their usual way of production consists of the extrusion of a slurry into the desired filter shape, with successive ceramming at high temperature. This process causes anisotropy at both microscopic and macroscopic levels. T2 - ICTMS 2019 CY - Cairns, Australia DA - 22.07.2019 KW - Structure-property relationship KW - Anisotropy estimate KW - Porous ceramics KW - Autocorrelation PY - 2019 AN - OPUS4-49226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Meinel, Dietmar A1 - Koptyug, A. A1 - Surmeneva, M. A1 - Khrapov, D. A1 - Paveleva, A. A1 - Surmenev, R. T1 - Röntgen-Computertomographie-Verfahren zur quantitativen Charakterisierung periodischer Minimalflächenstrukturen (TMPS) N2 - Additiv gefertigte (AM) dreifach periodische metallische minimale Oberflächenstrukturen (TPMSS, aus dem Englischen Triply Periodic Minimum Surface Structures) erfüllen mehrere Anforderungen sowohl im biomedizinischen als auch im technischen Bereich: Abstimmbare mechanische Eigenschaften, geringe Empfindlichkeit gegenüber Herstellungsfehlern, mechanische Stabilität und hohe Energieabsorption. Allerdings stellen sie auch einige Herausforderungen in Bezug auf die Qualitätskontrolle dar, die ihre erfolgreiche Anwendung verhindern können. Tatsächlich ist die Optimierung des AM-Prozesses ohne die Berücksichtigung struktureller Merkmale wie Fertigungsgenauigkeit, interne Defekte sowie Oberflächentopographie und -rauheit unmöglich. In dieser Studie wurde die quantitative zerstörungsfreie Analyse von Ti-6Al-4V-Legierung TPMSS mit Hilfe der Röntgen-Computertomographie (XCT) durchgeführt. Es werden mehrere neue Bildanalyse-Workflows vorgestellt, um die Auswirkungen der Aufbaurichtung auf die Wanddickenverteilung, die Wanddegradation und die Verringerung der Oberflächenrauheit aufgrund des chemischen Ätzens von TPMSS zu bewerten. Es wird gezeigt, dass die Herstellungsgenauigkeit für die Strukturelemente, die parallel und orthogonal zu den hergestellten Schichten gedruckt werden, unterschiedlich ist. Verschiedene Strategien für das chemische Ätzen zeigten unterschiedliche Pulverabtragsfähigkeiten und damit ein Gradient der Wanddicke. Dies wirkte sich auf die mechanische Leistung unter Druck durch die Verringerung der Streckspannung aus. Eine positive Auswirkung des chemischen Ätzens ist die Verringerung der Oberflächenrauhigkeit, die möglicherweise die Ermüdungseigenschaften der Bauteile verbessern kann. Schließlich wurde XCT eingesetzt, um die Menge des zurückgehaltenen Pulvers mit der Porengröße des TPMSS zu korrelieren, wodurch der Herstellungsprozess weiter verbessert werden kann. T2 - DGZfP-Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Additive Fertigung KW - Computertomographie KW - Wändedicke KW - Machine Learning PY - 2022 AN - OPUS4-55021 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Meinel, Dietmar A1 - Koptyug, A. A1 - Surmeneva, M. A1 - Khrapov, D. A1 - Paveleva, A. A1 - Surmenev, R. T1 - Procedures for quantitative characterization of periodic minimal surface structures (TMPSS) N2 - Additively manufactured (AM) triply periodic metallic minimum surface structures (TPMSS, from the English Triply Periodic Minimum Surface Structures) fulfill several requirements in both biomedical and engineering fields: tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some quality control challenges that may prevent their successful application. In fact, optimization of the AM process is impossible without considering structural features such as manufacturing accuracy, internal defects, and surface topography and roughness. In this study, quantitative nondestructive analysis of Ti-6Al-4V alloy TPMSS was performed using X-ray computed tomography (XCT). Several new image analysis workflows are presented to evaluate the effects of buildup direction on wall thickness distribution, wall degradation, and surface roughness reduction due to chemical etching of TPMSS. It is shown that the fabrication accuracy is different for the structural elements printed parallel and orthogonal to the fabricated layers. Different strategies for chemical etching showed different powder removal capabilities and thus a gradient in wall thickness. This affected the mechanical performance under compression by reducing the yield stress. A positive effect of chemical etching is the reduction of surface roughness, which can potentially improve the fatigue properties of the components. Finally, XCT was used to correlate the amount of powder retained with the pore size of the TPMSS, which can further improve the manufacturing process. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Surface roughness KW - Additive manufacturing KW - Computed tomography KW - Wall thickness KW - Machine learning KW - Manufacturing defects PY - 2022 AN - OPUS4-56162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Serrano Munoz, Itziar A1 - Fernandez, R. A1 - Gonzalez-Doncel, G. A1 - Garces, G. T1 - A paradigm shift in the description of creep in metals can only occur through multi-scale imaging N2 - The description of creep in metals has reached a high level of complexity; fine details are revealed by all sorts of characterization techniques and different theoretical models. However, to date virtually no fully microstructure-driven quantitative description of the phenomenon is available. This has brought to interesting inconsistencies; the classic description of (secondary) creep rests on the so-called power law, which however: a- has a pre-factor spanning over 10 orders of magnitude; b- has different reported exponents for the same material; c- has no explanation for the values of such exponents. Recently, a novel description (the so-called Solid State Transformation Creep (SSTC) Model) has been proposed to tackle the problem under a different light. The model has two remarkable features: 1- it describes creep as the accumulation of elementary strains due to dislocation motion; 2- it predicates that creep is proceeding by the evolution of a fractal arrangement of dislocations. Such description, however, needs a great deal of corroborating evidence, and indeed, is still incomplete. To date, we have been able to observe and somehow quantify the fractal arrangement of microstructures through Transmission Electron Microscopy (TEM), observe the accumulation of dislocations at grain boundaries by EBSD-KAM (Electron Back-Scattered Diffraction-Kernel Angular Misorientation) analysis, quantify the kinetic character (solid state transformation) of experimental creep curves, and estimate the sub-grain size of the fractal microstructure through X-ray refraction techniques. All pieces of the mosaic seem to yield a consistent picture: we seem being on the right path to reconstruct the whole elephant by probing single parts of it. What is still missing is the bond between the various scales of investigation. T2 - Korrelative Materialcharakterisierung 2022 CY - Dresden, Germany DA - 13.10.2022 KW - X-ray refraction KW - EBSD KW - Alloys KW - TEM KW - SEM PY - 2022 AN - OPUS4-56163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Müller, Bernd R. A1 - Kupsch, Andreas T1 - Röntgen Bildgebende Absorptions- und Refraktionsverfahren zur Charakterisierung keramischer Werkstoffe N2 - Wir präsentieren Labor- und Synchrotron-Röntgenrefraktionstechniken, wie sie an der BAM implementiert sind. Wir zeigen, dass die Labor-Röntgenrefraktionstopographie (XRRT) und die Synchrotron-Röntgenrefraktionsradiographie (SRRR) außergewöhnliche Werkzeuge zur Untersuchung von Schädigungen und inneren Defekten (Poren, Mikrorisse) in leichten Materialien wie Keramiken und Kompositen sind. Tatsächlich nutzen diese Techniken den an Grenzflächen auftretenden Röntgenbrechungseffekt aus, um den Kontrast zwischen dem (schwach absorbierenden) Objekt und dem Hintergrund zu erhöhen. Dies ermöglicht die Erkennung sehr kleiner Objekte (sogar bis zu 1 nm Rissöffnung) und die Quantifizierung ihrer spezifischen Oberfläche, die mit ihrem Einfluss auf die Materialeigenschaften korreliert. Wir zeigen die folgenden Anwendungen: a) Quantifizierung der Faserentbindung in laminaten Epoxid-Kohlenstoff-Verbundwerkstoffen; b) Mapping der Porengröße in gesinterten Keramiken; c) Eindringstiefe von Aschen in Keramikschutzschichten; d) Quantifizierung der Porenorientierung in Diesel Partikelfiltern; e) 3D-Darstellung von Makrorissen und Faserentbindung in Verbundwerkstoffen auf Ti-Basis für Anwendungen in der Luft- und Raumfahrt (unter Verwendung von Röntgenrefraktionstomographie). T2 - IAK Keramikbearbeitung CY - Online meeting DA - 22.10.2021 KW - Röntgenrefraktion KW - Leichtbau KW - Keramiken KW - Poren KW - Risse PY - 2021 AN - OPUS4-54069 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Meinel, Dietmar A1 - Oesch, Tyler T1 - Analysis of damage processes in concrete - What can CT do? N2 - In this talk the basics of X-ray computed tomography (XCT) are presented, together with a description of complementary techniques such as Laminography and Stereoradiography. A overview of the common reconstruction approach and of the artifacts that can occur during reconstruction or acquisition of XCT images is also given. Finally, application examples in the field of construction materials are given, whereby several experimental techniques (Region of Interest Approach) and data analysis methods (e.g. Digital volume correlation) are explained. Such techniques and algorithms are used to extract quantitative information from ex- and in-situ experiments. T2 - Seminar DFG GRK 2250/1 Summer School CY - Online meeting DA - 21.06.2021 KW - Asphalt, porosity KW - Concrete KW - 3D rendering KW - Crack segmentation KW - Water uptake PY - 2021 AN - OPUS4-52837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Mechanical and thermal properties of aluminum titanate (AT) N2 - In this seminar I present the microstructure and micromechanical properties of diesel particulate filter materials, and then particularize them to porous microcracked aluminum titanate. I show that neutron diffraction is particularly suited for bulk studies, especially under applied load or at high temperatures. The combination of macroscopic and microscopic tests with modeling and simulation yields great added value to understand the mechanics of microcracking. T2 - Webinar DFG Hotmix CY - Online meeting DA - 14.06.2021 KW - Imaging KW - Neutron and X-ray Diffraction KW - Non-linear stress-strain KW - Anisotropy KW - Microcracking KW - Porosity PY - 2021 AN - OPUS4-52838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Assessing the safety of new technologies: Summary of Project AGIL N2 - In Additive Manufacturing everybody is talking about Free Form, Unconventional Design, Re-thinking Components, “Think out of the box”. However, there are a few outstanding question: a) What are the material properties ? They certainly differ from literature values for conventional materials; b) How about the microstructure? It is different from conventional materials. Does it stay so with ageing? How does it form? c) Do we properly take residual stress into account? We often blame them for our ignorance about failure scenarios. d) Do we apply tailored heat treatments? Very often, we follow conventional schedules… This talk describes the summary of the efforts carried out within the BAM Project AGIL. At BAM, we aimed to thoroughly investigate the microstructure and how it evolves as a function of load and temperature (service), to determine the material properties after different process and service conditions, to properly determine residual stress and the way it impacts mechanical properties and component performance, to properly quantify the impact of (unavoidable?) defects, and to determine heat treatments tailored to the process-specific material (stress relieve, microstructure homogenization etc.). The Project AGIL was and is intimately coupled with the project ProMoAM, dealing with online monitoring of AM processes. T2 - Workshop In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Mechanical properties KW - Additive manufacturing KW - Residual Stress KW - Microstructure KW - Fatigue KW - Creep PY - 2021 AN - OPUS4-52581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Starting new adventures at BAM. The focus area projects PROMOAM and AGIL N2 - While additive manufacturing (AM) is blossoming in nearly every industrial field, and the most different process are being used to produce components and materials, little attention is paid on the safety concerns around AM materials and processes. Leveraging on our leading expertise in non-destructive testing (NDT) and materials characterization, we approach AM at BAM under two important viewpoints: first the on-line monitoring of the process and of the product, second the evolution of the (unstable) microstructure of AM materials under external loads. These two subjects are the core of the two new-born internal projects ProMoAM and AGIL, respectively. A detailed view of the goals and the organization of these two projects will be given, together with the expected output, and some preliminary results. T2 - Vortragsveranstaltung Bauhaus Universität, im Rahmen der Kolloquien der Fakultät Bauwesen. CY - Weimar, Germany DA - 01.06.2018 KW - Thermography KW - Additive Manufacturing KW - Non-destructive testing KW - On-line monitoring KW - Residual stress PY - 2018 AN - OPUS4-45118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - 2D and 3D imaging chracterization techniques for porous ceramics N2 - The combination of microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on porous material properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of porosity in ceramics. Moreover, I will show how not-so-novel 2D characterization techniques, based X-ray refraction, can allow a great deal of insights in the damage evolution in microcracked (and porous) ceramics. I will show how X-ray refraction can detect objects (e.g. microcracks) below its own spatial resolution. Finally, I will discuss the link between the microstructural findings and the mechanical properties of porous microcracked ceramics. T2 - CIMTEC 2018 CY - Perugia, Italy DA - 04.06.2018 KW - Orientation KW - Cordierite KW - Beta-eucrytite KW - Porosity KW - Microcracking KW - Computed tomography KW - X-ray refraction PY - 2018 AN - OPUS4-45119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Serrano Munoz, Itziar A1 - Evans, Alexander T1 - Diffraction-based experimental determination of Residual Stress in AM parts: A critical discussion N2 - Additive manufacturing (AM) technologies have experienced an exceedingly rapid growth, not always paralleled by the knowledge about the materials properties and performance. In particular, residual stress (RS) has been soon recognized as an issue in AM parts, so that parts are always post-heat-treated. Moreover, much effort has been spent on simulating RS, especially using finite element methods. The experimental determination of RS has thereby become increasingly important, and even simple data constitute (to date) a piece of knowledge to fill the above-mentioned gap. In particular, diffraction methods, which are basically non-destructive, offer enormous possibilities to gain knowledge on real components, since neutrons and synchrotron radiation can penetrate even heavy metals up to several millimeters (or even centimeters). Indeed, some success has been obtained, and the knowledge about the origins of the RS fields, as well as their variation as a consequence of heat or mechanical treatments, has been greatly expanded. In this talk, a few success stories will be outlined. It will be shown how the determination of RS in metallic parts (with focus on those produced by laser powder bed fusion) has even allowed showing that process parameters that were considered unimportant play a major role in the onset of stress. However, while RS is starting to be considered in the part design, deposition strategy (e.g. build plate temperature), and even in the definition of the relevant metric to assess the quality of a part, much is still to be investigated about the hypotheses underlying its experimental determination. Therefore, some aspects to be aware of, or even to date unclear will also be discussed, such as the determination of the reference unstrained samples and of the principal axes of stress. All these aspects will draw the path towards a comprehensive understanding of the process-structure-performance relationships in AM materials and parts. T2 - MSTAM 2019 CY - Bremen, Germany DA - 10.12.2019 KW - Elastic Constants KW - Residual Stress KW - Additive Manufacturing KW - Neutron Diffraction PY - 2019 AN - OPUS4-50020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Engineering applications of neutrons at the ILL: retrospective, present, and future N2 - In this talk, the evolution of the demand for engineering applications of neutrons at the ILL in the last 10 years is presented. It is shown that small angle neutron scattering and diffraction are highly demanded by the materials science community. Further development in the field is foreseen, with the use of in-situ (furnace, tension/compression rig, humidity cells, etc.) techniques to associate to the neutron techniques. T2 - ILL 100th Scientific Council CY - Grenoble, France DA - 09.04.2019 KW - Neutron Diffraction KW - Residual Stress KW - Small Angle Neutron Scattering KW - Engineering applications KW - Institut Laue Langevin PY - 2019 AN - OPUS4-48396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Micromechanics of internal stresses in multiphase materials Part I- Residual Stress analysis by Diffraction N2 - In this Seminar cycle I will present first diffraction methods to determine residual stress and investigate micromechanical properties of complex materials, and then particularize the treatment with applications to porous microcracked ceramics for diesel particulate filter applications. I will show that neutron diffraction is particularly suited for bulk studies, where 3D stresses are needed. The advantages to use Time-of-Flight or steady state sources will be discussed, together with the problematic of the determination of absolute RS values. Finally, the behavior of DPF materials under applied load or at high temperatures will be discussed under the combination of macroscopic and microscopic tests. T2 - ATHOR webinar "Micromechanics of internal stresses in multiphase materials" CY - Online meeting DA - 12.01.2021 KW - Porosity KW - Neutron Diffraction KW - Residual Stress KW - Non-linear stress-strain KW - Anisotropy KW - Microcracking KW - Imaging PY - 2021 AN - OPUS4-52125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Micromechanics of internal stresses in multiphase materials, Part II- Mechanical properties of microcracked and porous materials N2 - In this Seminar cycle I will present first diffraction methods to determine residual stress and investigate micromechanical properties of complex materials, and then particularize the treatment with applications to porous microcracked ceramics for diesel particulate filter applications. I will show that neutron diffraction is particularly suited for bulk studies, where 3D stresses are needed. The advantages to use Time-of-Flight or steady state sources will be discussed, together with the problematic of the determination of absolute RS values. Finally, the behavior of DPF materials under applied load or at high temperatures will be discussed under the combination of macroscopic and microscopic tests. T2 - ATHOR webinar "Micromechanics of internal stresses in multiphase materials" CY - Online meeting DA - 26.01.2021 KW - Porosity KW - Neutron Diffraction KW - Residual Stress KW - Non-linear stress-strain KW - Anisotropy KW - Microcracking KW - Imaging PY - 2021 AN - OPUS4-52126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - X-ray Absorption and Refraction techniques for characterization and non-destructive-testing of materials N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread equally holds for industrial and academic research and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. Additionally, I will show how Neutron Diffraction, which is extremely well suited to the study of internal stresses, both residual and under external load, can well be coupled to the microstructural framework gained by CT, allowing understanding the microstructure-property relationships in materials. T2 - ENSAM CY - Paris, France DA - 28.11.2019 KW - Additive Manufacturing KW - Computed Tomography KW - Neutron Diffraction KW - X-ray refraction techniques KW - Composites PY - 2019 AN - OPUS4-49927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Characterization of Additive Manufacturing Materials at BAM N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread equally holds for industrial and academic research and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. Additionally, I will show how Neutron Diffraction, which is extremely well suited to the study of internal stresses, both residual and under external load, can well be coupled to the microstructural framework gained by CT, allowing understanding the microstructure-property relationships in materials. Finally, I will show that BAM is very active in standardization and certification, including production of Reference Materials and Methods. T2 - Skoltech Determination of the microscopic residual stress CY - Moscow, Russia DA - 20.11.2019 KW - Additive Manufacturing KW - Computed Tomography KW - Neutron Diffraction KW - X-ray refraction techniques KW - Composites PY - 2019 AN - OPUS4-49929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Evans, Alexander T1 - Avoid living dangerously: non-destructive characterization of AM parts from powder to end-of-life N2 - The freeform and the revolutionary design possibilities offered by additive manufacturing have skyrocketed the amount of optimization studies in the realm of engineering, and metallic additive manufactured parts are becoming a reality in industry. Not surprisingly, this has not been paralleled by a similar enthusiastic wave in the realm of materials science, and still very little is known about AM materials properties. This has the consequence that, typically, conventional materials properties are still used in design and even in simulations. lt is necessary to dig a lot deeper than at present, in order to understand these new materials classes, and in particular their microstructure and their intemal stresses, largely different from their cast or wrought companions. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Microstructure KW - Metals KW - Additive Manufacturing PY - 2019 AN - OPUS4-47331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Haberland, C. A1 - Bode, Joannes T1 - An assessment of bulk residual stress in selective laser melted in 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-built condition (on a build plate) and after removal from the build plate. While surface stress fields seem constant for AB condition, X-ray diffraction shows stress gradients along the hatch direction in the RE condition. The stress profiles correlate with the distortion maps obtained by tactile probe measurements. Neutron diffraction shows bulk stress gradients for all principal components along the main sample directions. We correlate the observed stress patterns with the hatch length, i.e. with its effect on temperature gradients and heat flow. The bulk stress gradients partially disappear after removal from the baseplate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. We finally propose an explanation of those stress profiles based on the deposition strategy. T2 - ECRS10 CY - Leuven, Belgium DA - 09.09.2018 KW - Residual stress KW - Influence of rheology modifying admixtures on hydration of cementitious suspensions PY - 2018 AN - OPUS4-45997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Serrano Munoz, Itziar A1 - Léonard, Fabien A1 - Farahbod, L. T1 - Computed tomography of LBM produced In625 lattices: Integrity analysis from powder particles to structures N2 - We investigated lattice structure manufactured by laser beam melting with computed tomography on difference scales, such as powder scale, strut scale and lattice scale. The raw powder has been evaluated by means of synchrotron computed tomography (CT) at the BAM-Line (HZB Bessy II, Berlin). Therefore, the particle size distribution and even the pore size distribution was investigated and compared with results received by the producer by means of sieving. Studies with laboratory X-ray CT of porosity and roughness of manufactured struts in dependence of the build angle exhibited the tendency that elongated pores appear solely in a certain range near the edge. The integrity and load-bearing capacity of a lattice structure was investigated by means of in-situ CT during compression. The lattice structure was compressed by 10 % in height with an applied maximum force of 5 kN. We applied digital volume correlation algorithm on volumes of different load steps to quantifies the displacement within the structure. T2 - Metallographie-Tagung 2018 CY - Leoben, Austria DA - 19.09.2018 KW - Additive manufacturing KW - Laser beam melting KW - Computed tomography KW - Lattice structures KW - In-situ CT KW - Porosity KW - Roughness PY - 2018 AN - OPUS4-45998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - BAM Akademie 2023- Modul 2 Computertomographie N2 - Hier werden die Grundprinzipien der Computertomographie dargestellt, die Artefakte, die bei den Messungen auftreten und die Datenanalysemethoden erklärt. T2 - BAM Akademie - Webinar Reihe CY - Berlin, Germany DA - 05.10.2023 KW - Artefakte KW - Auflösung KW - Radon Transformation KW - Rekonstruktion KW - Metrologie PY - 2023 AN - OPUS4-58509 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Introduction to Residual Stress N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th European Conference on Residual Stresses (ECRS-11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Neutron Diffraction KW - Residual Stress KW - Mechanical Properties KW - X-ray diffraction PY - 2024 AN - OPUS4-60422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Evans, alexander A1 - Serrano-Munoz, Itziar A1 - Sullivan, Romeo A1 - Farabhod, Lena A1 - Hoffmann, Michael T1 - How to experimentally determine residual stress in AM structures N2 - The experimental determination of residual stress becomes more complicated with increasing complexity of the structures investigated. Unlike the conventional and most of the additive manufacturing (AM) fabrication techniques, laser powder bed fusion (PBF-LB) allows the production of complex structures without any additional manufacturing step. However, due to the extremely localized melting and solidification, internal stress-induced deformation and cracks are often observed. In the best case, significant residual stress is retained in the final structures as a footprint of the internal stress during manufacturing. Here we report solutions to the most prevalent challenges when dealing with the diffraction-based determination of residual stress in AM structures, in particular the choice of the correct diffraction elastic constants. We show that for Nickel-based alloys, the diffraction elastic constants of AM material significantly deviate from their conventional counterparts. Furthermore, measurement strategies to overcome the hurdles appearing when applying diffraction-based techniques to complex-shaped lattice structures are presented: a) proper sample alignment within the beam, b) the proper determination of the residual stress field in a representative part of the structure (i.e., with an engineering meaning). Beyond the principal stress magnitude, the principal direcions of residual stress are discussed for different geometries and scan strategies, as they are relevent for failure criteria. We show that the RS in the lattice struts can be considered to be uniaxial and to follow the orientation of the strut, while the RS in the lattice knots is more hydrostatic. Additionally, we show that strain measurements in at least seven independent directions are necessary for the correct estimation of the principal stress directions. The measurement directions should be chosen according to the sample geometry and to an informed choice on the possible strain field (i.e., reflecting the scan strategy). We finally show that if the most prominent direction is not measured, the error in the calculated stress magnitude increases in such a manner that no reliable assessment of RS state can be made. T2 - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Neutron Diffraction KW - Residual Stress KW - X-ray Computed Tomography KW - Additive Manufacturing KW - Lattice Structure KW - Inconel PY - 2024 AN - OPUS4-60423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Gollwitzer, Christian A1 - Lange, A. A1 - Onel, Yener A1 - Cooper, R. C. A1 - Watkins, T.R. A1 - Shyam, A. T1 - XCT discloses the Impact of Machining on Mechanical Properties of Diesel Particulate Filter Materials N2 - Microstructural changes in porous cordierite for diesel particulate filter applications caused by machining were characterized using microtensile testing and X-ray computed tomography (XCT). Young’s modulus was determined on ~215-380 m thick machined samples by digital image correlation. Results show a decrease of Young’s modulus due to machining of the thin samples. Explanation of this phenomenon was provided by XCT: the presence of debris due to machining and the variation of porosity due to removal of the outer layers were quantified and correlated with the introduction of further microcracking. T2 - ICT Conference 2018 CY - Wels, Austria DA - 06.02.2018 KW - Diesel Particulate Filter Materials KW - Mechanical Properties PY - 2018 AN - OPUS4-44778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Buljak, V. A1 - Bruno, Giovanni T1 - Modeling of elastic modulus evolution in porous ceramics due to thermally induced cracking N2 - Within polycrystalline porous ceramics used in automotive applications as diesel particulate filters, it is evidenced that during cooling from firing temperature micro cracks are gradually formed. The cracks are formed as a consequence of strong thermal anisotropy of grains. Typically these micro cracks are granting better thermal shock resistance, with respect to dense materials, but reduce stiffness. The reduction can be quantified by measuring the drop in elastic properties of bulk material which, depending on the level of porosity, can decrease even by 50% with respect to its value at high temperature. It is further observed that upon subsequent heating these cracks are closing and partially or totally healing at very high temperatures. Such peculiar behavior results in partial or complete recovery of the elastic properties of bulk material upon completing one thermal cycle. Despite its evident practical application, still there is no constitutive description of this phenomenon, capable of predicting the evolution of Young's modulus as a function of temperature history. For reliable numerical simulation of this phenomenon, it is required to model fracture. To model inter-crystalline fracture, an effective strategy is to use cohesive elements, since crack patterns are a priori known. Major limitation of this approach is that the cohesive elements already implemented within commercial codes cannot take into account crack healing upon subsequent heating. In this study new cohesive element is developed and numerically implemented within ABAQUS commercial finite element code, capable to model crack opening, closing and healing. Further on, a computer code is generated to build numerical model of porous ceramic specimens that takes into account experimentally measured crystallographic orientation and porosity, and models the microstructure by using Voronoi polygons. The developed numerical tools serve as a framework for more realistic simulations, required to study the hysteresis in elastic properties within porous ceramics provoked by thermal cyclic. In a subsequent phase, an inverse analysis procedure is developed, in which macroscopic properties are used to calibrate parameters entering into micro crack model. The approach is centered on a minimization of a discrepancy function designed to quantify the difference between experimentally measured quantities and their computed counterpart. The model is calibrated on the basis of experimental data regarding the drop of bulk Young's modulus with decrease of temperature. Developed procedure is tested with porous cordierite sample, and obtained results are quit promising despite the current limitation of using only two-dimensional model. T2 - European Ceramic Society Conference 2019 CY - Turin, Italy DA - 16.06.2019 KW - Microcracking KW - Cordierite KW - Inverse Problems KW - Finite elements KW - Cohesive Elements KW - Young's modulus PY - 2019 AN - OPUS4-48926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Cong A1 - Giovannelli, F. A1 - Chartier, T. A1 - Delorme, F. T1 - Thermoelectric properties of doubly substituted La0.95Sr0.05Co1-xCrxO3 (0 ≤ x ≤ 0.5) ceramics N2 - Dense La0.95Sr0.05Co1-xCrxO3 (0 ≤ x ≤ 0.5) ceramics were synthesized by solid-state reaction and conventional sintering. Room-temperature crystal structure and microstructure were investigated and the thermoelectric properties were measured in the temperature range 323 K – 1020 K. All compositions are single phase with rhombohedral structure, and the lattice parameter of La0.95Sr0.05Co1-xCrxO3 increases with increasing Cr content. La0.95Sr0.05Co1-xCrxO3 is a p-type small polaron conductor. The charge carrier concentration is determined by both substitution of La3+ with Sr2+ and thermally-activated charge disproportionation of Co3+ and / or Cr3+. Above 550 K, the substitution of Co with Cr increases the Seebeck coefficient and reduces the electrical conductivity. Below 550 K, the trend of Seebeck coefficient with Cr content is not clear due to the thermally activated charge disproportionation. At low temperature, the electrical conductivity shows a minimum with Cr content of x = 0.4, as a result of trapped polarons in the Cr sites. By substituting Co with Cr, the power factor below 800 K is reduced and that above 800 K is improved. The thermal conductivity is effectively reduced by doping Cr. The highest ZT value of 0.053 at 373 K is achieved for x = 0, but it decreases rapidly with increasing temperature. Substitution of Co with Cr can effectively improve the ZT values at high temperatures. In the temperature range 700 K – 1000 K, ZT increases with increasing Cr content, the highest being 0.04 at 1000 K for the composition with x = 0.5, more than 4 times the value of the La0.95Sr0.05CoO3 compound. T2 - International / European Conference on Thermoelectrics CY - Caen, France DA - 02.07.2018 KW - Double substitution KW - Thermoelectrics KW - P-type KW - Perovskite PY - 2018 AN - OPUS4-45396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - D'Accardi, E. A1 - Krankenhagen, Rainer A1 - Ulbricht, Alexander A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability of active thermography to detect and localize pores in Metal Additive Manufacturing materials N2 - A powerful tool to understand, demonstrate and explain the limits of the pulsed technique in terms of detectability and localizability of AM keyhole pores has been assessed by comparing the active thermographic approach (both experimental and FEM simulations) to Computed Tomography results; ✓ µCT results demonstrate that the intended defect geometry is not achieved; indeed a network of voids (microdefects consisting of small sharp-edged hollows with a complicated, almost fractal, inner surface) was found; ✓ both Exp-PT and FEM results explains clearly why no indication of defect related to the thermal contrasts could be found during the investigation of an uncoated surface. However, the application of further data evaluations focusing on the thermal behavior and emissivity evaluation (PPT post data processing) enable the detection of some defects; ✓ coating facilitates a closer inspection of inner defects, but inhomogeneities of the coating could impair the spatial resolution and lead to the emergence of hotspots (the FEM simulation reached its limit with this extreme geometry where a 25 µm thin disc is considered at a 1 cm thick specimen in millisecond time resolution); ✓ both Exp-PT and FEM results allow the conclusion that very short pulses of 200 ms or shorter should be sufficient to detect these defects below, but near the surface; besides a short duration of the thermal phenomenon it should be emphasized, about 0.04 s (high frame rate camera); T2 - Convegno AIAS 2020 CY - Online meeting DA - 02.09.2020 KW - Additive Manufacturing KW - Laser powderbed fusion KW - Pores KW - Thermography PY - 2020 AN - OPUS4-51922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Pelkner, Matthias A1 - Evans, Alexander T1 - Zerstörungsfreie Prüfung von AM Komponenten - Ein Überblick N2 - Der Vortag erläutert typische Fehlstellen und Inhomogenitäten, die bei der additiven Fertigung entstehen können. Weiterhin wird über den aktuellen Stand der herstellungsbegleitenden zerstörungsfreien Prüfung und der zerstörungsfreien Prüfung fertiger AM-Komponenten berichtet. T2 - 3. ROUND TABLE - Additiv gefertigte Druckgeräte aus metallischen Werkstoffen CY - Frankfurt a.M., Germany DA - 22.01.2019 KW - Additive Fertigung KW - Zerstörungsfreie Prüfung PY - 2019 AN - OPUS4-47344 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Schröder, Jakob T1 - Residual stresses and micromechanical properties of additively manufactured metals: why do we need a paradigm shift? N2 - An overview of the challenges and successes in the methodology to characherise residual stresses and micromechnical properties in additively manufactured metals T2 - CAM2 Annual Seminar 2022 - 5-year journey CY - Gothenburg, Sweden DA - 24.10.2022 KW - Additive Manufacturing KW - Residual stress KW - AGIL KW - MANUFACT KW - Micromechnical properties PY - 2022 AN - OPUS4-56466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Przyklenk, A. A1 - Bosse, H. A1 - Zeleny, V. A1 - Czułek, D. A1 - Balsamo, A. A1 - O'Connor, D. A1 - Yandayan, T. A1 - Phillips, D. A1 - Meli, F. A1 - Ragusa, C. S. A1 - Flys, O. A1 - Favre, G. T1 - The European Metrology Network (EMN) for Advanced Manufacturing N2 - Advanced Manufacturing and Advanced Materials have been identified by the European Commission as one of six Key Enabling Technologies (KETs), the full exploitation of which will create advanced and sustainable economies. Metrology is a key enabler for progress of these KETs. EURAMET, which is the association of metrology institutes in Europe, has addressed the vital importance of Metrology for these KETs through the support for the creation of a European Metrology Network for Advanced Manufacturing. The EMN for Advanced Manufacturing (AdvanceManu) was approved in June 2021 and held the formal kick-of meeting in October 2022. The EMN comprises both National Metrology Institutes (NMIs) from across Europe and other designated Institutes (Dis). The EMN is organized in three sections; Advanced Materials, Smart Manufacturing Systems and Manufactured components and products. The aim of the EMN is to engage with stakeholders in the field of Advanced Manufacturing and Advanced Materials (Large & SMEs, industry organisations, existing networks and academia) with the aim to prepare a Strategic Research Agenda (SRA) for Metrology for Advanced Manufacturing. In the shorter term, an orientation paper is aimed to be produce to in the context of the European Partnership for Metrology. In addition to the SRA, the EMN will establish knowledge and technology transfer and promotion plan. This includes leveraging the existing research results from the completed and running EMPIR JRP projects funded through EURAMET. This presentation will outline the EMN for Advanced Manufacturing, describing the structures and goals, the route to the production of the SRA and the progress made to date identifying the key metrology challenges across the related Key Industrial Sectors (KICs). In particular, the presentation aims to inform the community on how to be involved in the shaping of the strategic research agenda for the future of Metrology for Advanced Manufacturing and Advanced Materials. T2 - 3D Metrology Conference (3DMC) CY - Online meeting DA - 08.11.2021 KW - Advanced manufacturing KW - Metrology KW - European Metrology Network (EMN) KW - Strategic Research Agenda (SRA) KW - JNP PY - 2021 AN - OPUS4-54099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual Stresses in Additive Manufacturing (L-PBF) N2 - Additive manufacturing (AM) technologies are experiencing an exceedingly rapid growth, driven by their potential through layer wise deposition for transformational improvements of engineering design, leading to efficiency and performance improvements. Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing (AM) method which permits the fabrication of complex structures that cannot otherwise be produced via conventional subtractive manufacturing methods. Nevertheless, the rapid cooling rates associated with this process results in the formation of significant and complex residual stress (RS) fields. A large body of both experimental and simulation research has been dedicated in recent years to the control and mitigation of RS in AM. In order to validate simulations with the end goal of being able to model the residual stress state in AM components and to devise strategies for their reduction during manufacturing, experimental methods need to be able to accurately determine 3D residual stresses fields in complex geometries. Several destructive and non-destructive methods can be used to analyze the RS state, the choice of which depends on the geometry and the information required. Diffraction-based methods using penetrating neutron and synchrotron X-rays at large scale facilities offer the possibility to non-destructively spatially resolve both surface and bulk residual stresses in complex components and track their changes following applied thermal or mechanical loads. This presentation will overview the success stories of using large scale facilities by the BAM for the characterization of residual stresses in additively manufactured metallic alloys. In particular, the study of the influence of process parameters on the residual stress state and the relaxation of these stresses through heat treatment will be presented. However there remains challenges to overcome particularly of the hypotheses underlying the experimental determination of residual stresses, which will be discussed. T2 - 10th International Conference on Mechanical Stress Evaluation by Neutron and Synchrotron Radiation – MECASENS 2021 CY - Prague, Czech Republic DA - 25.11.2021 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - L-PBF KW - AGIL PY - 2021 AN - OPUS4-54105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Introduction to AGIL N2 - An introduction to the Themenfeld Material project AGIL will be presented. The concept of the project, the work package structure and the material used within the project will be presented. T2 - 2nd Workshop on In situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - AGIL KW - Ageing KW - Additive manufacturing KW - Laser powder bed fusion PY - 2021 AN - OPUS4-54107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual Stresses in Additive Manufacturing (L-PBF) N2 - Metal Additive manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) enable the fabrication of complex structures, giving rise to potential improvements in component and manufacturing efficiency. However, the processes are typically characterized by the generation of high magnitude residual stress (RS) which can have detrimental consequences for subsequent applications. Therefore, the characterization of these RS fields and the understanding of their formation and mitigation through optimized processing is crucial for the wider uptake of the technology. Due to the potential complex nature and high value of components manufactured by LPBF, it is important to have suitable characterisation methods which can determine the spatial variations of RS in a non-destructive manner. Neutron diffraction is considered to be the best suited for these requirements. However, the microstructures developed in the complex thermal cycles experience in the production can pose challenges to the ND method for RS analysis. The BAM has conducted significant research over the past years to overcome these obstacles, enabling higher confidence in the RS determined in LPBF materials by neutron diffraction. This contribution will overview some of these advancements made recently at European neutron sources including on Stress-Spec at FRM2/MLZ. T2 - MLZ User Meeting 2021 CY - Online meeting DA - 07.12.2021 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - AGIL KW - Manufact PY - 2021 AN - OPUS4-54044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Sprengel, Maximilian A1 - Madia, Mauro A1 - Kromm, Arne T1 - Residual stresses in Laser Beam Melting (LBM) – Critical Review and outlook of activities at BAM N2 - Additive manufacturing (AM) technologies have experienced an exceedingly rapid growth, which is coupled with the knowledge about the resulting material properties and performance. In particular, residual stress (RS) was soon recognized as an important issue in AM parts, such that parts are usually subjected to a post build-heat-treated. Significant effort has been spent on simulations of RS in AM, especially using finite element methods. As a consequence, the experimental determination of RS has thereby become increasingly important as a validation tool for simulations, as well as a method for assessing the influence of process parameters. In particular, diffraction methods, which are fundamentally non-destructive, offer enormous possibilities to gain knowledge on the residual stress state in real components, since synchrotron radiation and neutrons can penetrate even heavy metals up to several millimeters or centimeters, respectively. Indeed, significant progress has been achieved, in the understanding of the origins of the RS fields as a function of process parameters, as well as their stability under thermal and/or mechanical exposure. In this paper, a few success stories will be outlined. It will be shown how the determination of RS in metallic parts (with the focus on those produced by laser powder bed fusion) has even revealed that process parameters that were previously considered unimportant (e.g. the position and orientation on the base plate) play a major role in the onset of residual stress accumulation. However, while RS characterization is starting to be considered in the component design, deposition strategy (e.g. build plate temperature), and even in the definition of the relevant metric to assess the quality of a part, much is still to be investigates about the hypotheses underlying its experimental determination. Therefore, some aspects to be aware of, or even those which to date are unclear, will also be discussed. These include the determination of the stress-free reference and of the principal axes of stress. All of these aspects will lead towards a comprehensive understanding of the process-structure-performance relationships in AM materials and parts. T2 - Fourth ASTM Symposium on Structural Integrity of Additive Manufactured Materials and Parts CY - Gaylord National Resort And Convention Center; National Harbor, MD DA - 07.10.2019 KW - Diffraction KW - Additive Manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Léonard, Fabien A1 - Laquai, René A1 - Ulbricht, Alexander A1 - Serrano Munoz, Itziar A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Non destructive characterization in Additive manufacturing N2 - An overview of non destructive characterisation in additively manufactured materials using computed tomography, refraction and diffraction based stress analysis T2 - BAM-IFW workshop CY - IFW Dresden, Germany DA - 28.03.2019 KW - Residual stress analysis KW - Additive manufacturing KW - Computed tomography KW - Diffraction KW - X-ray refraction PY - 2019 AN - OPUS4-49842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Serrano Munoz, Itziar A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Bruno, Giovanni T1 - Residual stresses in am review and oulook of activities at BAM N2 - Critical discussion of residual stress Analysis in additive manufacturing from examples in literature and an overview of activities at BAM T2 - Workshop on Fatigue of Additive Manufactured Metallic Components CY - BAM, Berlin, Germany DA - 16.05.2019 KW - Diffraction KW - Additive Manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano-Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual stresses Analysis in Additively Manufactured alloys using neutron diffraction (L-PBF) N2 - An overview of recent progress at BAM of residual stress analysis in additively manufactured, in particular Laser Powder Bed Fusion of metallics materials, using neutron diffraction will be presented. This will cover important topics of the stress-free reference, the diffraction elastic moduli and principal stress determination. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Berlin, Germany DA - 28.03.2023 KW - AGIL KW - Residual stress KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - Diffraction PY - 2023 AN - OPUS4-59177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Kelleher, Joe A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Manufacturing a safer world: Diffraction based residual stress analysis for metal additive manufacturing N2 - Metal Additive Manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) are characterized by layer wise construction, which enable advancements of component design, with associated potential gains in performance and efficiency. However, high magnitude residual stresses (RS) are often a product of the rapid thermal cycles typical of the layerwise process. Therefore, a deep understanding of the formation of RS, the influence of process parameters on their magnitude and the impact on mechanical performance is crucial for widespread application. The experimental characterisation of these RS is essential for safety related engineering application and supports the development of reliable numerical models. Diffraction-based methods for RS analysis using neutrons and high energy X-rays enable non-destructive spatially resolved characterisation of both surface and bulk residual stresses in complex components. This presentation will provide an overview of recent research by the BAM at large scale facilities for the characterization of residual stresses in LPBF metallic alloys as a function of process parameters. In addition, the challenges posed by the textured and hierarchical microstructures of LPBF materials on diffraction-based RS analysis in AM materials will be discussed. This will include the question of the d0 reference lattice spacing and the appropriate choice of the diffraction elastic constants (DECs) to calculate the level of RS in LPBF manufactured alloys. T2 - 11th INternational Conference on Residual Stress (ICRS11) CY - Online meeting DA - 28.03.2021 KW - Residual stress analysis KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2022 AN - OPUS4-54676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Ávila, Luis A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Charmi, Amir A1 - Mohr, Gunther A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Falkenberg, Rainer A1 - Bettge, Dirk A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Kromm, Arne A1 - Hilgenberg, Kai A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Ageing behaviour of laser powder bed fused 316L: a powder to failure approach N2 - Laser powder bed fusion (LPBF) is an additive manufacturing process for materials which inherently tends to yield various degrees of metastable hierarchical microstructures, defects and high residual stresses in the as-built condition depending on the process parameters. The understanding of the evolution of these typical features during heat treatment and subsequent thermal and mechanical ageing is crucial for the wider acceptance for safety critical structures. A multi-disciplinary research project at BAM studying the development of the microstructure, defects, residual stresses typical of LPBF 316L and their evolution during thermal and mechanical ageing has led to insights into the stability of these inherent features. This presentation aims to give a broad overview of the project with a few specific cases of investigation. Firstly, the formation of residual stresses, the nature of the initial microstructure, the tensile properties and a modelling approach to understand the anisotropy will be presented. This will be followed by examples of studies of their evolution during heat treatment, long term thermal exposure, and room temperature and high temperature mechanical testing compared to a baseline of conventional wrought variant of the same alloy. T2 - International Conference on Additive Manufacturing 2021 (ICAM 2021) CY - Online meeting DA - 01.11.2021 KW - Ageing KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2021 AN - OPUS4-54106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Ávila, Luis A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Charmi, Amir A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Falkenberg, Rainer A1 - Bettge, Dirk A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Kromm, Arne A1 - Hilgenberg, Kai A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Entwicklung der Mikrostruktur der mechanischen Eigenschaften und der Eigenspannungen in L-PBF 316L N2 - Die additive Fertigung (AM) metallischer Werkstoffe mittels Laser Powder Bed Fusion (L-PBF) ermöglicht einzigartige hierarchische Mikrostrukturen, die zu Verbesserungen bestimmter mechanischer Eigenschaften gegenüber konventionell hergestellten Varianten derselben Legierung führen können. Allerdings ist das L-PBF-Verfahren häufig durch das Vorhandensein hoher Eigenspannungen gekennzeichnet, die es zu verstehen und zu mindern gilt. Daher ist das Verständnis der Mikrostrukturen, der Eigenspannungen und der daraus resultierenden mechanischen Eigenschaften entscheidend für eine breite Akzeptanz bei sicherheitskritischen Anwendungen. Die BAM hat ein multidisziplinäres Forschungsprogramm gestartet, um diese Aspekte bei LPBF 316L zu untersuchen. Der vorliegende Beitrag stellt einige der wichtigsten Ergebnisse vor: der Einfluss von Prozessparametern auf die Mikrostruktur, der Einfluss von Mikrostruktur und Textur auf die Festigkeit, Kriechverhalten und Schädigung und die Stabilität von Eigenspannungen und Mikrostruktur unter Wärmebehandlungsbedingungen. T2 - DGM 3. Fachtagung Werkstoffe und Additive Fertigung CY - Dresden, Germany DA - 11.05.2022 KW - Mechanische Eigenschaften KW - Additive Fertigung KW - L-PBF 316L KW - Entwicklung KW - Mikrostruktur KW - Eigenspannung PY - 2022 AN - OPUS4-55786 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Serrano-Munoz, Itziar A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Sprengel, Maximilian A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Bruno, Giovanni T1 - Diffraction based residual stress analysis for laser powder bed fusion alloys N2 - Laser Powder Bed Fusion (PBF-LB/M) is a layer wise metal additive manufacturing (AM) technology, which enables significant advancements of component design, leading to potential efficiency and performance improvements. However, the thermal cycles inherent to the process comprising large localized thermal gradients and repeated melting and solidification cycles leads to the generation of high magnitude residual stresses. These residual stresses can be detrimental both during manufacturing of components and in subsequent application. Therefore, a deep understanding of the influence of process parameters on the residual stresses are crucial for efficient manufacturing and safe application. The experimental characterization of these residual stresses is therefore crucial and can provide a reliable baseline for simulations of both the process and applications. Diffraction-based methods for residual stress analysis using penetrating neutrons and high energy X-rays enable non-destructive spatially resolved characterization of both surface and bulk residual stresses. However, the unique microstructural features inherent to the process can challenge some of our assumptions when using these methods. These challenges include the determination of a stress-free reference, the use of correct elastic constants (both SCEC and DEC) and the influence of surface roughness, texture, and porosity on residual stresses. This presentation will detail recent insights and recommendations for the characterization of residual stresses in a range of PBF-LB/M metallic alloys (Fe, Ni, Al and Ti) T2 - 11th edition of the European Conference on Residual Stress (ECRS11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - Diffraction PY - 2024 AN - OPUS4-60443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Kelleher, J. A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - RS analysis in laser powder bed fused austenitic stainless steel N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th edition of the European Conference on Residual Stress (ECRS11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - Laser Powder Bed Fusion KW - AGIL KW - 316L PY - 2024 AN - OPUS4-60445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Nolze, Gert A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Ageing in additively manufactured metallic components: from powder to mechanical failure” an overview of the project agil N2 - An overview of the BAM funed Focus Area Materials Project "AGIL" will be presented. AGIL focussed on the stdiy of the ageing characteristics of additively manufactured austenitic stainless steel with a "powder to mechanical failure" Approach. Recent Highlights are presented and a perspective for future studies. T2 - Workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Residual stress KW - Additive Manufacturing KW - Non-destructive testing KW - Microstructure characterisation KW - Tensile testing KW - Fatigue KW - Crystal Plasticity Modelling KW - Crack propagation PY - 2019 AN - OPUS4-49823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Przyklenk, A. A1 - Bosse, H. A1 - Zeleny, V. A1 - Czułek, D. A1 - Balsamo, A. A1 - O'Connor, D. A1 - Yandayan, T. A1 - Phillips, D. A1 - Meli, F. A1 - Ragusa, C. S. A1 - Flys, O. T1 - European Metrology Network for Advanced Manufacturing N2 - The progress of Advanced Manufacturing, which has been identified by the European Commission as a Key Enabling Technology (KET) for future economic and societal progress is strongly reliant on the development of metrology capabilities. EURAMET, the association of metrology institutes in Europe, has established metrology research programs to address the metrology requirements across a spectrum of different thematic areas. In order to leverage the benefits of these developments on the wider industrial landscape, a high-level coordination of the metrology community supporting the Advanced Manufacturing landscape is required. This coordination is aimed to be achieved by the establishment of European Metrology Networks (EMNs), which are intended by EURAMET to provide a sustainable structure for stakeholder engagement and support. The joint networking project 19NET01 AdvManuNet funded by EMPIR for 4 years, started in June 2020 and aims to accelerate the process of establishing an EMN to strengthen Europe’s position in Advanced Manufacturing. The AdvManuNet project aims to support the establishment of an EMN on Advanced Manufacturing via the following specific aims: 1. Creation of a single hub for stakeholder engagement across the landscape of various industrial sectors including relevant societies and standardization bodies. 2. Development of a Strategic Research Agenda (SRA) and roadmaps for Advanced Manufacturing metrology based on the stakeholder engagement activities, considering current gaps in metrological capabilities existing networks and roadmaps. 3. Establish a knowledge-sharing program for Advanced Manufacturing stakeholders, promoting the dissemination and exploitation of the results of the project, including those from previous EU funded research projects. 4. Development of a sustainable web-based platform and service desk for Advanced Manufacturing stakeholders to allow for easy access to European metrology capabilities and support the wider advanced manufacturing community with metrology-based requirements. 5. Develop a plan for a coordinated and sustainable European metrology infrastructure for Advanced Manufacturing via a European Metrology Network. The project concept followed by the scope and definition of Advanced Manufacturing will be described. The analysis of the current capability of metrology for Advanced Manufacturing and the preliminary concepts for the strategic research agenda will be presented with a focus on dimensional metrology. T2 - CIM 2021 CY - Online meeting DA - 07.09.2021 KW - Advanced manufacturing KW - Metrology KW - European Metrology Networks (EMNs) KW - Strategic Research Agenda (SRA) KW - Stakeholder PY - 2021 AN - OPUS4-54101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -