TY - JOUR A1 - Unnikrishnakurup, Sreedhar A1 - Rouquette, Sebastien A1 - Soulie, Fabien A1 - Fras, Gilles T1 - Estimation of heat flux parameters during static gas tungsten arc welding spot under argon shielding JF - International Journal of Thermal Sciences N2 - A multi-physics modelling of a static Gas Tungsten Arc Welding (GTAW) operation has been established in order to estimate the heat flux exchanged between the arc plasma and the work-piece. The heat flux was described with a Gaussian function where two parameters required to be estimated: process efficiency and radial distribution. An inverse heat transfer problem (ihtp) has been developed in the aim to estimate these parameters from experimental data. Levenberg-Marquardt algorithm was used as the regularization method in addition to an iterative process. The experiment consisted in a static spot weld with GTAW process. The weld spot was on for 5 s under Argon shielding gas, 2.4 mm pure tungsten electrode on a SS304L disc. Temperatures were measured with thermocouples and weld pool growth monitored with a high speed camera. The experimental data were used to solve the ihtp what led to values such as 0.7 for process efficiency and average radial distribution of 1.8 mm. KW - Gas tungsten arc welding KW - Numerical simulation of welding KW - Heat flux estimation KW - Inverse heat transfer problem PY - 2017 DO - https://doi.org/10.1016/j.ijthermalsci.2016.12.008 SN - ISSN 1290-0729 VL - 114 SP - 205 EP - 212 PB - Elsevier Masson SAS AN - OPUS4-38905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -