TY - CONF A1 - Weltschev, Margit A1 - Heming, Frank A1 - Haufe, Manuela A1 - Heyer, Martina T1 - The influence of the age of biodiesel and B10 on the resistance of sealing materials at different temperatures N2 - Materials compatibility is a major concern whenever the fuel composition is changed in a fuel system. The question arises of whether sealing materials are resistant to fuels with bioethanol and biodiesel (rapeseed oil fatty acid methyl ester). The objective of this research was to determine the resistance of frequently used sealing materials such as FKM (fluorocarbon rubber), FVMQ (methyl-fluoro-silicone rubber), VMQ (methyl-vinyl-silicone rubber), EPDM (ethylene-propylene-diene rubber), CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), IIR (butyl rubber), PA (polyamides), NBR (acrylonitrile-butadiene rubber) and PUR (polyester urethane rubber) in aged fuels and heating oil with admixtures of biogenic substances such as biodiesel and B10 (heating oil with 10% biodiesel). The mass, tensile strength and breaking elongation of the test specimens were determined before and after exposure for 84 days in non-aged, one-year, two-year, three-year and four-year aged biodiesel and B10 according to DIN 53504 – “Testing of rubber - determination of tensile strength at break, tensile stress at yield, elongation at break and stress values in a tensile test”. The visual examination of some elastomer test specimens clearly showed the great volume increase until breaking or partial dissolution. The Shore hardnesses A and D (for PA) were determined before and after exposure of the test specimens in the biofuels for 42 days according to DIN 53505 – “Testing of rubber – Shore A and Shore D hardness test”. A threshold for the reduction in tensile properties and Shore hardness is not set in the international standards. Therefore, a threshold of 15 % was set for the evaluation of the compatibility. Biodiesel fuels are easily oxidized and contain acids and water. The age of the biodiesel was not relevant for the sealing materials CR, CSM, EPDM, IIR and NBR, which were generally not resistant to biodiesel. FKM and PA showed high compatibility in non-aged, one-year, two-year, three-year and four- year aged biodiesel, which was attributed to the absence of polarity. The decrease in tensile properties and Shore hardness increased with the age and the temperature of the biodiesel, but the measured values were still lower than the defined threshold. FKM and FVMQ absorbed much less non-aged and aged B10 and swelled less. CR, CSM, EPDM, IIR, NBR and VMQ were not resistant to B10 at all at 20°C, 40°C and 70°C as the decrease in the tensile properties was significantly over 50%. FVMQ and PA could be evaluated as resistant in non-aged and aged B10 at 20°C and 40°C, whereas FKM was resistant up to 70°C despite the age of the B10. The damaging impact of B10 increased with the age and the temperature. T2 - EUROCORR 2016 CY - Montpellier, France DA - 11.09.2016 KW - Sealing materials KW - Compatibility evaluation KW - Biofuels KW - Tensile properties KW - Shore hardness PY - 2016 AN - OPUS4-37430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weltschev, Margit T1 - Compatibility of sealing materials with biofuels and biodiesel heating oil blends at different temperatures JF - International Journal of Earth & Environmental Science N2 - Biofuels including ethanol and biodiesel (fatty acid methyl ester, FAME) represent an important renewable fuel alternative to petroleum-derived transport fuels. Increasing biofuels use would bring some benefits, such as a reduction in oil demands and greenhouse gas emissions, and an improvement in air quality. Materials compatibility is a major concern whenever the fuel composition is changed in a fuel system. The objective of this research was to determine the resistance of frequently used sealing materials such as CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), EPDM (ethylene-propylene-diene rubber), FKM (fluorocarbon rubber), FVMQ (methyl-fluorosilicone rubber), IIR (butyl rubber), NBR (acrylonitrile-butadiene rubber), PA (polyamides), PUR (polyester urethane rubber) and VMQ (methyl-vinyl-silicone rubber), in heating oil with admixtures of biogenic sources such as E10 (fuel with max. 10 % ethanol), E85 (fuel with 85 % ethanol), non-aged and aged biodiesel, diesel fuel with 5 % biodiesel, non-aged and aged B10 (heating oil with 10 % biodiesel) at 20 °C, 40 °C and 70 °C. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure for 84 days in the fuels. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D (for PA) were determined before and after exposure of the test specimens in the biofuels for 42 days. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was set for the evaluation of the compatibility. The sealing materials CR, CSM, EPDM, IIR and NBR were generally not resistant to biodiesel and B10. In summary, it can be therefore stated that the chemical resistance of the fluoropolymers FKM and FVMQ in fuels and biofuels is the best one. KW - Compatibility evaluation KW - Polymers KW - FAME KW - Heating oil with 10 % FAME PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479722 DO - https://doi.org/10.15344/2456-351X/2019/165 SN - 2456-351X VL - 4 IS - 165 SP - 4 EP - 9 PB - Graphyonline Publications Pvt. Ltd. CY - Bangalore, Karnataka, Indien AN - OPUS4-47972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -