TY - JOUR A1 - Dang, Thi Thuy Hanh A1 - Seeburg, Dominik A1 - Radnik, Jörg A1 - Kreyenschulte, Carsten A1 - Atia, Hanan A1 - Vu, Thi Thu Ha A1 - Wohlrab, Sebastian T1 - Influence of V-sources on the catalytic performance of VMCM-41 in the selective oxidation of methane to formaldehyde N2 - VMCM-41 catalysts from two different tetravalent Vanadium sources, hydrothermally synthesized after a mild gelation step at room temperature, were used as catalysts for the selective oxidation of methane to formaldehyde. Vanadyl acetylacetonate as VMCM-41 precursor, facilitates highest VOx density with predominance of monomeric and a small portion of low-oligomeric VOx species. It produces CH2O in high yield and the highest space time yield (STYCH2O) reaches 5.3 kgCH2O·kgcat −1·h−1 at 600 °C (rate of formation, rCH2O of 363 h−1). VMCM-41 synthesized from vanadyl sulfate hydrate precursor contains a more significant portion of low-oligomeric species. With a lower V loading, these VOx species are significantly less active resulting in a Maximum STYCH2O of 2.7 kgCH2O·kgcat −1·h−1 at 625 °C (rCH2O of 243 h−1). KW - VOx catalyst KW - Methane KW - Formaldehyde PY - 2018 U6 - https://doi.org/10.1016/j.catcom.2017.09.004 SN - 1566-7367 VL - 103 SP - 56 EP - 59 PB - Elsevier Science AN - OPUS4-42820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, Stefan A1 - Kunkel, Benny A1 - Cakir, Cafer Tufan A1 - Kabelitz, Anke A1 - Witte, Steffen A1 - Bernstein, Thomas A1 - Bartling, Stephan A1 - Radtke, Martin A1 - Emmerling, Franziska A1 - Abdel-Mageed, Ali Mohamed A1 - Wohlrab, Sebastian A1 - Guilherme Buzanich, Ana T1 - Time-, space- and energy-resolved in situ characterization of catalysts by X-ray absorption spectroscopy N2 - A novel setup for dispersive X-ray absorption spectroscopy (XAS) with simultaneous resolution of space, time and energy for in situ characterization of solid materials is demonstrated. KW - Dispersive XAS KW - Catalysis KW - In situ KW - Structure analysis PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-584924 SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunkel, Benny A1 - Seeburg, Dominik A1 - Kabelitz, Anke A1 - Witte, Steffen A1 - Gutmann, Torsten A1 - Breitzke, Hergen A1 - Buntkowsky, Gerd A1 - Guilherme Buzanich, Ana A1 - Wohlrab, Sebastian T1 - Highly productive V/Zn-SiO2 catalysts for the selective oxidation of methane N2 - The production of formaldehyde on industrial scale requires huge amounts of energy due to the involvement of reforming processes in combination with the demand in the megaton scale. Hence, a direct route for the transformation of (bio)methane to formaldehyde would decrease costs and puts less pressure on the environment. Herein, we report on the use of zinc modified silicas as possible support materials for vanadium catalysts and the resulting consequences for the performance in the selective oxidation of methane to formaldehyde. After optimization of the Zn content and reaction conditions, a remarkably high space-time yield of 12.4 kgCH2O⋅kgcat − 1 ⋅h− 1 was achieved. As a result of the extensive characterization by means of UV–vis, Raman, XANES and NMR spectroscopy it was found that vanadium is in the vicinity of highly dispersed zinc atoms which promote the formation of active vanadium species as supposed by theoretical calculations. This work presents a further step of catalyst development towards direct industrial methane conversion which may help to overcome current limitations in the future. KW - Catalysis KW - XANES KW - Selective oxidation PY - 2024 U6 - https://doi.org/10.1016/j.cattod.2024.114643 SN - 0920-5861 VL - 432 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -