TY - JOUR A1 - Lamoriniere, S. A1 - Mitchell, P. J. A1 - Ho, K. A1 - Kalinka, Gerhard A1 - Shaffer, M. S. P. A1 - Bismarck, A. T1 - Carbon nanotube enhanced carbon Fibre-Poly(ether ether ketone) interfaces in model hierarchical composites N2 - Poly (ether ether ketone) (PEEK) has a high continuous service temperature, excellent mechanical properties, and good solvent and abrasion resistance, which can be further improved through the addition of carbon nanotubes (CNTs). CNT-PEEK nanocomposites are promising matrices for continuous carbon fibre composites; powder processing can mitigate the high melt viscosities in these systems. In this study, model single fibre (hierarchical) composites were produced by embedding sized and desized carbon fibres in nanocomposite CNTPEEK powders followed by single fibre pull-out tests to assess interfacial characteristics. Carbon fibre-PEEK interfacial shear strength is typically 40–45 MPa. Increasing CNT loadings increased fibre-matrix interfacial shear strength linearly up to ~70 MPa at 5.0 wt%, which was attributed to the CNT-based mechanical modification of the PEEK matrix. Apparent interfacial shear strength was inversely correlated with the embedded fibre length irrespective of carbon fibre sizing or CNT loading, indicating brittle fracture of the fibre-matrix interface. Pulled out carbon fibres were still coated with the matrix, which indicated strong adhesion at the interface in all samples, likely related to a transcrystalline region. Adhesion was, however, negatively affected by the presence of epoxy sizings. Frictional shear strength was independent of embedded fibre length and CNT content for all samples. KW - Keywords: Poly(ether ether ketone) KW - Carbon fibres KW - Carbon nanotubes KW - Interfacial strength KW - Debonding PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550052 SN - 0266-3538 VL - 221 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-55005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaker, J. J. A1 - Anthony, David B. A1 - Tang, G. A1 - Shamsuddin, S.-R. A1 - Kalinka, Gerhard A1 - Wienrich, Malte A1 - Abdolvand, Amin A1 - Shaffer, M. S. P. A1 - Bismarck, A. T1 - Property and shape modulation of carbon fibers using lasers N2 - An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness. The range of produced shapes was quantified and correlated to single fiber tensile properties. Mapped Raman spectroscopy was used to elucidate the local compositional and structural changes. Irradiation conditions were adjusted to create a swollen weakened region, such that fiber failure occurred in the laser treated Region producing two fiber ends with outwardly tapered ends. Loading the tapered fibers allows for viscoelastic energy dissipation during fiber pull-out by enhanced friction as the fibers plough through a matrix. In these tapered fibers, diameters were locally increased up to 53%, forming outward taper angles of up to 1.8°. The tensile strength and strain to failure of the modified fibers were significantly reduced, by 75% and 55%, respectively, ensuring localization of the break in the expanded region; however, the fiber stiffness was only reduced by 17%. Using harsher irradiation conditions, carbon fibers were completely cut, resulting in cottonbud fiber end shapes. Single fiber pull-out tests performed using these fibers revealed a 6.75-fold increase in work of pull-out compared to pristine carbon fibers. Controlled laser irradiation is a route to modify the shape of continuous carbon fibers along their lengths, as well as to cut them into controlled lengths leaving tapered or cotton-bud shapes. KW - Composite KW - Irradiation KW - Pull-out tests KW - Pulsed laser treatment KW - Single carbon fibers PY - 2016 U6 - https://doi.org/10.1021/acsami.6b05228 SN - 1944-8244 SN - 1944-8252 VL - 8 IS - 25 SP - 16351 EP - 16358 PB - ACS Publications CY - 1155 Sixteenth Street, NW, Washington, DC 20036, USA AN - OPUS4-37699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -