TY - CONF A1 - Stawski, Tomasz A1 - Wolf, Jakob A1 - Emmerling, Franziska T1 - Smart Machines, New Materials, Automated Future N2 - In pursuing the automated synthesis of metal nanoparticles (NPs), the capabilities of the “Chemputer” are deployed, for the first time, into the field of inorganic chemistry. Metal NPs have a substantial impact across different fields of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver NPs are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize Ag NPs often do not result in well-defined products, the main obstacles being high polydispersity or a lack of particle size tunability. The Chemputer is a modular, automated platform developed by the Cronin group for execution of multi-step, solution based organic synthesis. The machine has been further implemented at BAM, where we used this setup to perform automated organic syntheses, autonomously controlled by feedback derived from online NMR. In the Chemputer liquids can be transferred across a backbone, constructed from HPLC selection valves and syringe pumps. The Chemputer operates in a batch mode, common laboratory devices, such as heaters and glassware like round bottom flasks, are connected to the backbone, forming reaction modules. Solutions can be manipulated in these modules, and as all operations are controlled through a software script, reproducibility among individual syntheses is high. Likewise, any adjustments of the synthesis conditions, if required, are straightforward to implement and are documented in the reaction log file and a code versioning system. We characterised Chemputer-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties. The approach is an important first step towards the automation of nanoparticle syntheses in a modular, multipurpose platform. The modularity of the Chemputer opens many possibilities for the synthesis of a variety of different NP morphologies and sizes and potentially more complex structures. These advances and further work can help in the general investigations of silver nanoparticles by supplying a reliable and reproducible method of their synthesis and removing tacit knowledge by significantly reducing the experimental bias. T2 - Analytica 2022 CY - Munich, Germany DA - 21.06.2022 KW - Automated synthesis KW - Nanoparticles PY - 2022 AN - OPUS4-55198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Heilmann, Maria T1 - Nanoparticle Populations N2 - Two new projects P15 Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension and P16 Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension have been started at VAMAS/TWA 34 under the lead of BAM. First results are presented and discussed. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 47th Steering Committee Meeting CY - Turin, Italy DA - 18.10.2022 KW - VAMAS KW - Nanoparticles KW - Inter-laboratory comparison KW - Particle size distribution KW - Nanoparticle concentration PY - 2022 AN - OPUS4-56196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chambers, Aaron T1 - Synthesis of functionalized ZIF nanoparticles for effective composite formation N2 - A presentation looking at ZIF-8 nanoparticles and functionalising them for more effective ZIF composite formation. T2 - UoB/BAM mini conference CY - Birmingham, UK DA - 06.10.2022 KW - MOF composite KW - 2PP KW - ZIF-8 KW - Nanoparticles PY - 2022 AN - OPUS4-56482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement - What nPSize can offer to ISO/TC 229? N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities, e.g. reference materials, sample preparation protocols, measurement procedures, and data analysis, to be standardized and implemented in accredited analytical laboratories is discussed. Complementation and/or filling gaps of published and ongoing standardisation projects on size, shape and number concentration measurements under ISO/TC 229/JWG 2 are offered. The two VAMAS inter-laboratory comparisons resulted from the nSPize project and just started under TWA 34 Nanoparticle Populations (Projects #15 and #16) of bipyramidal TiO2 anatase and bimodal SiO2 nanoparticles are presented in detail. T2 - Interim Meeting of ISO/TC 229 Nanotechnologies - Strategy and Metrology Group CY - Online meeting DA - 09.05.2022 KW - Nanoparticles KW - Particle size distribution KW - Inter-laboratory comparison KW - Electron microscopy KW - AFM KW - SAXS KW - ISO/TC229 PY - 2022 AN - OPUS4-54819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Advanced Characterization of the Surface Morphology and Chemistry within nano@BAM N2 - Both essential aspects of the surface of solid matter, its morphology and chemistry, are studied traditionally at BAM starting in the 60’s with different cyclical research focus areas, mostly related either to applicative research or method development. In the recent years, the focus has shifted almost exclusively to the nano-analytics of advanced materials such as complex nanoparticles, (ultra)thin films/coatings, nanocomposites, 2D materials, energy materials, etc. This is also the reason why BAM has established recently the new Competence Center nano@BAM (www.bam.de/Navigation/DE/Themen/Material/Nanotechnologie/sichere-nanomaterialien.html) with the five sub-fields nanoCharacterisation, nanoMaterial, nanoSafety, nanoData and nanoTechnology. The link to the BAM central guidelines to the safety in technology and chemistry is given by the development of reference products such as reference measurement procedures, reference (nano)materials, and newly reference data sets. Thus, an internationally well-networked group in surface analysis has been established @BAM, with regular contributions to integral analytical characterization with metrological and standardization background. Examples of newly developed methodical approaches will be given with an emphasis on correlative nano-analysis of morphology and chemistry of nanomaterials. Correlative imaging by STEM-in-SEM with high-resolution SEM and EDX, and further with AFM or the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for surface chemistry will be highlighted. The panoply of advanced surface characterization methods @BAM is completed by discussing examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy with the highest surface-sensitive methods X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Particularly for the analysis of the surface chemistry of nanostructures, such as the completeness of the shells of core-shell nanoparticles or in-depth and lateral gradients of chemistry within mesoporous thin layers, the latter methods are inherent. Other special developments like approaches for the quantitative determination of the roughness of particle surface by electron microscopy or for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM will be presented. T2 - Seminar of the Academic Centre for Materials and Nanotechnology CY - Online meeting DA - 12.05.2022 KW - Nanoparticles KW - Thin films KW - Nano Characterisation KW - Nanomaterials KW - Surface morphology KW - Surface chemistry PY - 2022 UR - https://www.agh.edu.pl/en/info/article/seminar-advanced-characterization-of-the-surface-morphology-and-chemistry-within-nanobam/ AN - OPUS4-54820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Fontanges, R. A1 - Delvallée, A. A1 - Deumer, J. A1 - Salzmann, C. A1 - Crouzier, L. A1 - Gollwitzer, C. A1 - Klein, T. A1 - Koops, R. A1 - Sebaihi, N. A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Artous, S. A1 - Taché, O. A1 - Feltin, N. T1 - Report on full algorithm sequences for nanoparticle detection and size measurement as developed on both a physical basis and by machine learning N2 - he main objective of the nPSize project is to improve the measurement capabilities for nanoparticle size based on both measurement methods traceable to SI units and new reference materials. Two basic approaches have been used in order to develop measurement procedures resulting in traceable results of the nanoparticle size distribution: physical modelling for the methods used in the project (TSEM, SEM, AFM and SAXS) and machine learning. Physical modelling: In this part, the physical models associated with different shape measurements for the techniques TSEM, SEM, AFM and SAXS have been collected and further developed with the aim to simulate the resulting signal as measured by the individual methods. Uncertainties and traceability associated with each model were investigated and evaluated. In the following, the progress on these physical models is reported for each individual method. Machine Learning modelling: The aim of this part is to use machine learning to enable automatic measurement of nanoparticle shape from expert a-priori information only. No physical model will be used as a-priori information in this task. The accuracy and traceability of the size results obtained by each technique will be analyzed and compared with the physical modelling. A machine learning database will then be used to create automatic detection algorithms. KW - Nanoparticles KW - Particle size distribution KW - SEM KW - TSEM KW - TEM KW - SAXS KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546531 DO - https://doi.org/10.5281/zenodo.5807864 SP - 1 EP - 20 PB - Zenodo CY - Geneva AN - OPUS4-54653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan A1 - Fagan, J. T1 - Contributors invited for two studies on concentration of bimodal silica nanoparticle and bipyramidal titania N2 - International standardisation network VAMAS is calling for participants in two studies on the measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension and the measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension. KW - Nanoparticles KW - VAMAS KW - Inter-laboratory comparison KW - TiO2 KW - SiO2 PY - 2021 UR - https://www.iom3.org/resource/contributors-invited-for-two-studies-on-concentration-of-bimodal-silica-nanoparticle-and-bipyramidal-titania.html SP - 1 EP - 2 PB - Institute of Materials, Minerals and Mining (IOM3) CY - London, UK AN - OPUS4-54410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Advanced Characterization of the Surface Morphology and Chemistry within nano@BAM N2 - Both essential aspects of the surface of solid matter, its morphology and chemistry, are studied traditionally at BAM starting in the 60’s with different cyclical research focus areas, mostly related either to applicative research or method development. In the recent years, the focus has shifted almost exclusively to the nano-analytics of advanced materials such as complex nanoparticles, (ultra)thin films/coatings, nanocomposites, 2D materials, energy materials, etc. This is also the reason why BAM has established recently the new Competence Center nano@BAM (www.bam.de/Navigation/DE/Themen/Material/Nanotechnologie/sichere-nanomaterialien.html) with the five sub-fields nanoCharacterisation, nanoMaterial, nanoSafety, nanoData and nanoTechnology. The link to the BAM central guidelines to the safety in technology and chemistry is given by the development of reference products such as reference measurement procedures, reference (nano)materials, and newly reference data sets. Thus, an internationally well-networked group in surface analysis has been established @BAM, with regular contributions to integral analytical characterization with metrological and standardization background. Examples of newly developed methodical approaches will be given with an emphasis on correlative nano-analysis of morphology and chemistry of nanomaterials. Correlative imaging by STEM-in-SEM with high-resolution SEM and EDX, and further with AFM or the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for surface chemistry will be highlighted. The panoply of advanced surface characterization methods @BAM is completed by discussing examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy with the highest surface-sensitive methods X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Particularly for the analysis of the surface chemistry of nanostructures, such as the completeness of the shells of core-shell nanoparticles or in-depth and lateral gradients of chemistry within mesoporous thin layers, the latter methods are inherent. Other special developments like approaches for the quantitative determination of the roughness of particle surface by electron microscopy or for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM will be presented in conjunction with the corresponding advanced materials studied. Current research projects, promising ideas, including ongoing (pre-)standardization activities in the field of the challenging nano/surface analysis will be touched systematically, with the open goal of identifying future bilateral cooperation possibilities between EMPA and BAM. T2 - EMPA-Kolloquium CY - Online meeting DA - 01.12.2021 KW - Nanoparticles KW - Nano@BAM KW - Nanomaterials KW - Surface morphology and chemistry KW - Correlative analysis PY - 2021 AN - OPUS4-54039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement N2 - In order to assess new nanomaterials and nanoparticles for potential risks to health and the environment, they need to be well-characterised. The measurement of constituent nanoparticle size, shape, and size distribution are important factors for the risk evaluation process. EMPIR project Improved traceability chain of nanoparticle size measurements (17NRM04, nPSize) is working to assess a range of traceable nanoparticle measurement approaches, including Electron Microscopy (SEM, TEM, STEM-in-SEM), Atomic Force Microscopy and Small Angle X-ray Scattering, and deliver improved calibration methods to users. For the techniques under investigation, physical models of their response to a range of nanoparticle types are developed. Validated reference materials are also used for inter-comparisons of measurement systems, with an evaluation of the associated measurement uncertainty. With project contributions to standards development work, manufacturers will be better placed to assess the human and environmental risks posed by nanomaterials across a whole range of products. T2 - EMPIR nPSize Training Course "Traceable Characterization of Nanoparticles by SAXS" CY - Online meeting DA - 01.02.2021 KW - Nanoparticles KW - Particle size distribution KW - Traceability KW - nPSize KW - SAXS PY - 2021 AN - OPUS4-53883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Durand, B. A1 - Taché, O. T1 - Nanoparticle size, shape, and concentration measurement at once – two VAMAS pre-standardization projects ready to start N2 - A case study on the TEM analysis of the size and shape distribution of TiO2 bipyramidal nanoparticles prepared on TEM grids was included in the recently published ISO standard ISO 21363. It was agreed to organize at a later stage a second inter-lab comparison with the nanoparticles distributed to the participants as a liquid suspension. Protocols for uniform nanoparticle deposition on suited supports developed and optimized within the EMPIR nPSize project are also prepared to be distributed. For this, we have chosen the VAMAS platform (www.vamas.org) which offers an excellent international infrastructure of laboratories with high competence in nanoparticle measurement. The VAMAS technical working area dedicated to nanoparticle measurement is TWA 34 ‘Nanoparticle populations’. For this type of nanoparticles, the size and shape distributions are the primary parameters to be reported. Due to the good deposition protocols developed, an automated image analysis is enabled (in contrast to the manual analysis of irregular TiO2 nanoparticles. In parallel with the TiO2 nanoparticle exercise, two spherical SiO2 nanoparticle samples with bi-modal size distributions (nominal relative number concentrations of 1:1 and 10:1) are prepared for a second VAMAS inter-lab comparison. Here, the nanoparticle concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations of the two modes. For the absolute nanoparticle concentration to be measured by imaging methods it is necessary to control the volume of the liquid suspension deposited on the substrate and to obtain such a homogeneous nanoparticle deposition on the substrate which allows to count (or extrapolate) all the deposited particles. KW - Electron microscopy KW - Inter-laboratory comparison KW - Nanoparticles KW - SiO2 KW - TiO2 KW - VAMAS PY - 2021 DO - https://doi.org/10.1017/S1431927621008126 VL - 27 IS - Suppl. 1 SP - 2250 EP - 2251 PB - Cambridge University Press AN - OPUS4-53124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - VAMAS TWA 37 - Quantitative Microstructural Analysis & Liaison with ISO/TC 202 Microbeam Analysis, Liaison with ISO N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the possibility of identifying and launching related VAMAS projects. Need of more promotion for the engagement of more participants from industry and academia at national, European and international level is highlighted. Also, the competition with the other technical working areas (on 'nano' or materials-related) is critically discussed. Further, a short overview of the VAMAS areas of activities is given where Germany is involved. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 46th Steering Committee Meeting CY - Online meeting DA - 08.09.2021 KW - VAMAS KW - Nanoparticles KW - Standardisation KW - Inter-laboratory comparison KW - ISO/TC 202 KW - ISO/TC 229 KW - ISO/TC 201 KW - Microstructure KW - EBSD PY - 2021 UR - http://www.vamas.org/twa/ AN - OPUS4-53237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticle from suspensions via microarray printing and SEM analysis N2 - As part of the development of a library of accurate and efficient methods for measurement of nanoparticle properties, we develop and optimize a method for the efficient analysis of nanoparticle size distribution from suspensions via microprinting and digital analysis of electron microscopy (SEM and TEM) images, with the ultimate aim of automated quantitative concentration analysis (calculated from drop volume). A series of different nanoparticle suspensions (gold, latex, and SiO2 in varying sizes and concentrations) were printed onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 nanoparticles/mL and imaged with SEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee-ring effect. KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Microarray printing KW - Sample preparation KW - Nanoparticle concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528455 DO - https://doi.org/10.1088/1742-6596/1953/1/012002 VL - 1953 SP - 012002 PB - IOP Publishing AN - OPUS4-52845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Taché, O. A1 - Bartczak, D. A1 - Nunez, S. A1 - Abad Alvaro, I. A1 - Goenaga-Infante, H. T1 - Other than spherical/monodisperse Towards real world NPs as candidate reference materials for traceable size measurements N2 - By far most of the current nanoparticle (NP) research is dealing with (quasi-) spherical and/or monodisperse particles. However, many NPs used in industrial applications are rather aspherical and polydisperse. This inhomogeneity considerably hampers their characterization and, particularly, the accurate determination of the nanoparticle size. In order to overcome this problem and to promote the availability of standardized size measurement methods, it is crucial to develop and establish (candidate) reference materials with inhomogeneous size (distribution), aspherical shape as well as agglomerated or aggregated particles. Therefore, a new set of NPs including Au-, SiO2 , and TiO2-particles is investigated. The range of properties comprises polydisperse spherical, bimodal spherical, rod-like, acicular, bipyramidal, sheet-like as well as cubic NPs. With respect to a good traceability of the measurements, size and size distributions of the candidate reference materials are determined using microscopic methods like scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning electron microscopy in transmission mode (STEM-in-SEM), atomic force microscopy (AFM) as well as small angle X-ray scattering (SAXS) as an ensemble technique. The development of protocols for sample preparation is of particular importance to obtain a homogeneous dispersion of the NPs on a substrate. Further, approaches for signal modelling for all the methods above are being developed. The initiation of two VAMAS (www.vamas.org/twa34/index.html) inter-laboratory comparisons on bipyramidal titania and bimodal silica with different modal concentration ratios will be also highlighted. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Nanoparticles KW - Particle size distribution KW - Imaging KW - Traceability KW - Reference material PY - 2021 AN - OPUS4-52764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Feltin, N. A1 - Crouzier, L. A1 - Cios, G. A1 - Tokarski, T. T1 - Correlative imaging analysis of non-spherical nanoparticles N2 - It sounds like being a simple analytical task, it is definitely not. The way toward accurate measurement of the size distribution of nanoparticles (NPs) with complex shape, having a broad size polydispersity, with inhomogeneous chemistry, and with a high degree of agglomeration/aggregation is very challenging for all available analytical methods. Particularly for the NPs with complex shape, the access to the smallest dimension (as e.g. required for regulatory purposes) can be enabled only by using imaging techniques with spatial resolution at the nanoscale. Moreover, the full 3D-chacterisation of the NP shape can be provided either by advanced characterization techniques like 3D-TEM tomography or by correlative analysis, i. e. synergetic/complementary measurement of the same field-of-view of the sample with different probes. Examples of the latter type of analysis are: i) electron microscopy for the lateral dimensions and AFM for the height of the NPs, ii) SEM with STEM-in-SEM (also called T-SEM), iii) Electron Microscopy with TKD (Transmission Kikuchi Diffraction) for determination of the geometrical orientation of crystalline NPs, iv) Raman and SEM for e.g. thickness of graphen flakes, or v) Electron Microscopy for descriptive NP shape and SAXS for the NP concentration, the latter as a NP property able to be measured with higher and higher accuracy. For all these types of measurement, reference NPs are necessary for the validation of the measured size. Particularly non-spherical reference NPs are still missing. Examples of such new reference NPs as characterized by the correlative analyses enumerated above will be presented in detail in the contribution. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.9.2021 KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Correlative imaging KW - Electron microscopy KW - AFM KW - TiO2 KW - VAMAS PY - 2021 UR - https://www.european-mrs.com/meetings/2021-fall-meeting AN - OPUS4-53367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Rabe, Torsten T1 - Comparative study of suitable preparation methods to evaluate irregular shaped, polydisperse nanoparticles by scanning electron microscopy (SEM). N2 - Reliable characterization of materials at the nanoscale regarding their physio-chemical properties is a challenging task, which is important when utilizing and designing nanoscale materials. Nanoscale materials pose a potential toxicological hazard to the environment and the human body. For this reason, the European Commission amended the REACH Regulation in 2018 to govern the classification of nanomaterials, relying on number-based distribution of the particle size. Suitable methods exist for the granulometric characterization of monodisperse and ideally shaped nanoparticles. However, the evaluation of commercially available nanoscale powders is problematic. These powders tend to agglomerate, show a wide particle size distribution and are of irregular particle shape. Zinc oxide, aluminum oxide and cerium oxide with particle sizes less than 100 nm were selected for the studies and different preparation methods were used comparatively. First, the nanoparticles were dispersed in different dispersants and prepared on TEM-supported copper grids. Furthermore, individual powders were deposited on carbon-based self-adhesive pads. In addition, the samples were embedded by hot mounting and then ground and polished. The prepared samples were investigated by scanning electron microscopy (including the transmission mode STEM-in-SEM) and Dynamic Light scattering. The software package ImageJ was used to segment the SEM images and obtain the particle sizes and shapes and finally the number-based particles size distribution with size expressed as various descriptors. T2 - Ceramics 2021 CY - Online meeting DA - 19.04.2021 KW - Nanoparticles KW - Preparation KW - Characterization PY - 2021 AN - OPUS4-53272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Pellegrino, Francesco A1 - Maurino, V. T1 - Morphological Characterization and Chemical Identification of TiO2 Nanoparticles Doped with Ultrafine Metal Particles for Enhanced Photocatalytical Activity N2 - Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy (SEM) coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, Au, Rh, Pd) and metal concentrations are discussed. T2 - Microscopy and Microanalysis 2022 CY - Portland, OR, USA DA - 31.07.2022 KW - Nanoparticles KW - Me-TiO2 KW - Photocatalysis KW - Morpho-chemical characterization KW - Shape KW - SEM/EDS PY - 2022 AN - OPUS4-55541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bartczak, D. A1 - Hodoroaba, Vasile-Dan T1 - Report on the development and validation of the reference material candidates with non-spherical shape, non-monodisperse size distributions and accurate nanoparticle concentrations N2 - One aim of the EMPIR nPSize project 17NRM04 was to develop and validate three classes of candidate reference (test) materials (RTMs), with i) well-defined non-spherical shape, ii) relatively high polydispersity index, and iii) accurate particle concentrations. To fulfil the requirements of the project, 11 different types of materials were prepared. Following the initial assessment of the materials suitability, nPSize5_PT_UNITO, nPSize6_AC_UNITO and nPSize7_GN_CEA materials were found unsuitable for the project, due to various reasons. PT material was deemed unsuitable due to its predominantly agglomerated nature. AC material contained relatively high amount of impurities (other particle forms). GN material was found too heterogeneous in both the length and width for the purpose of the project. The remaining 8 candidate RTMs were assessed for their homogeneity and stability and used for successful delivery of the associated activities within the nPSize project. KW - Nanoparticles KW - Particle size distribution KW - Reference materials KW - Non-spherical shape KW - EMPIR nPSize KW - Electron microscopy KW - AFM KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556015 DO - https://doi.org/10.5281/zenodo.7016466 SP - 1 EP - 22 PB - Zenodo CY - Geneva AN - OPUS4-55601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Morphological Characterization and Chemical Identification of TiO2 Nanoparticles Doped with Ultrafine Metal Particles for Enhanced Photocatalytical Activity N2 - The conversion of solar energy into electricity and solar fuels is of crucial importance for a green and sustainable future. Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen (H2) fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, etc) and metal concentrations will be discussed. KW - Nanoparticles KW - Photocatalysis KW - Electron microscopy KW - EDS KW - Metal-semiconductor PY - 2022 DO - https://doi.org/10.1017/S1431927622010078 VL - 28 IS - Suppl. 1 SP - 2658 EP - 2660 PB - Cambridge University Press AN - OPUS4-55436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Pauli, Jutta A1 - Behnke, Thomas A1 - Würth, Christian T1 - Standardization of Fluorescence Measurements in the UV/vis/NIR/IR - Needs for and requirements on calibration tools N2 - Photoluminescence techniques are amongst the most widely used tools in the life sciences, with new and exciting applications in medical diagnostics and molecular imaging continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for multiplexing, remote sensing, and miniaturization. General drawbacks are, however, signals, that contain unwanted wavelength- and polarization contributions from instrument-dependent effects, which are also time-dependent due to aging of instrument-components, and difficulties to measure absolute fluorescence intensities. Moreover, scattering systems require special measurement geometries and the interest in new optical reporters with emission > 1000 nm strategies for reliable measurements in the second diagnostic for the comparison of material performance and the rational design of new fluorophores with improved properties. Here, we present strategies to versatile method-adaptable liquid and solid fluorescence standards for different fluorescence parameters including traceable instrument calibration procedures and the design of integrating sphere setups for the absolute measurement of emission spectra and quantum yields in the wavelength region of 350 to 1600 nm. Examples are multi-emitter glasses, spectral fluorescence standards, and quantum yield standards for the UV/vis/NIR T2 - Spie Photonics west 2017 CY - San Francisco, USA DA - 28.01.2017 KW - Fluorescence standard KW - Instrument calibration KW - Integrating sphere spectroscopy KW - Absolute fluorescence quantum yield KW - Fluorescent glasses KW - Nanoparticles PY - 2017 AN - OPUS4-39074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Lindemann, Franziska A1 - Gemeinert, Marion A1 - Wohlleben, W. T1 - Advanced screening method using volume-specific surface area (VSSA) for nanomaterial classification of powders N2 - The EU recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. Within the European Project NanoDefine (www.nanodefine.eu) a two-tier approach has been developed, whereby firstly a screening method is applied for the rough classification as a nanomaterial or non-nanomaterial, and for borderline cases a confirmatory method (imaging methods or field flow fractionation) must be considered. One of the measurement methods well suited to particulate powder is the determination of volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nanomaterial or non-nanomaterial. The correct identification of a nanomaterial by VSSA method (positive test) is accepted by the EU recommendation. However, the application of the VSSA method is associated also by some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape. For particles containing micro-pores or having a microporous coating, false positive results will be produced. Furthermore, broad particle size distributions – as typically for ceramic materials – as well as multi-modal size distributions make necessary to adjust the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach will be tested (in relation with SEM and TEM measurements) in order to expand the actual knowledge and improve the method. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft mit Symposium Hochleistungskeramik CY - München, Germany DA - 10.04.2018 KW - VSSA KW - Nanoparticles PY - 2018 AN - OPUS4-45097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - Gold nanocubes with monodispersed size distribution (SEM SE) N2 - Gold nanocubes with a monodispersed size distribution (edge = 55 nm) deposited on a silicon wafer. These tiny uniform cubes were produced as reference nanoparticles in the frame of the European project nPSize - Improved traceability chain of nanoparticle size measurements. SEM Image acquired at 10 kV with an in-lens secondary electron detector. Image colored in ImageJ using LUT “Orange hot.” Published in Microscopy and Microanalysis 25(S2) (2019) 2328. KW - Nanoparticles KW - Nanocubes KW - Electron microscopy KW - Reference materials PY - 2020 DO - https://doi.org/10.1017/S1551929520001157 VL - 28 IS - 4 SP - 12 EP - 12 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - 2020 Microscopy Today Micrograph Awards N2 - Gold nanocubes with a monodispersed size distribution (edge = 55 nm) deposited on a silicon wafer. These tiny uniform cubes were produced as reference nanoparticles within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. SEM image acquired at 10 kV with an in-lens secondary electron detector. Image colored in ImageJ using LUT “Orange hot.” Published in Microscopy and Microanalysis 25(S2) (2019) 2328. KW - Nanoparticles KW - Au-nanocubes KW - Reference materials KW - Electron microscopy PY - 2020 DO - https://doi.org/10.1017/S1551929520001339 VL - 28 IS - 5 SP - 14 EP - 15 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative microstructural analysis - VAMAS/TWA 37 N2 - The 44th Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee has just taken place at NIST in Boulder (CO, USA). BAM participates with significant contributions in Technical Working Areas on nanoparticle and surface chemistry characterization, but also has positioned itself to new global material challenges and trends in the developement of advanced materials and their characterization, such as thermal properties, self-healing materials, and micro- and nanoplastic. T2 - Annual Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee CY - Boulder, CO, USA DA - 22.05.2019 KW - VAMAS KW - Nanoparticles KW - Microbeam analysis KW - Advanced materials PY - 2019 AN - OPUS4-48184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Durande, B. A1 - Taché, O. A1 - Bartczak, D. A1 - Cuello-Nuñez, S. A1 - Ábad-Alvaro, I. A1 - Goenaga-Infante, H. T1 - Analysis of Particle Size Distribution for Bimodal Model Nanoparticles by Scanning Electron Microscopy N2 - The present study addresses the capability of measurement of relative particle number concentration by scanning electron microscopy for model bimodal silica and gold samples prepared in the frame of the European research project “nPSize - Improved traceability chain of nanoparticle size measurements” as candidate reference nanoparticles. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Silica KW - Gold KW - Electron microscopy KW - Particle size distribution PY - 2020 AN - OPUS4-51112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D understanding of non spherical nanoparticles by Transmission Kikuchi Diffraction (TKD) for improved particle size distribution by electron microscopy N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - TiO2 KW - 3D KW - Electron microscopy PY - 2020 AN - OPUS4-51113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rühle, Bastian T1 - Towards automated electron microscopy image segmentation for nanoparticles of complex shape by convolutional neural networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Automatisation KW - Image segmentation KW - Convolutional neural networks KW - Electron microscopy PY - 2020 AN - OPUS4-51114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Preparation of Nanoparticulate Samples for Electron Microscopy N2 - This presentation addresses the importance of proper sample preparation to obtain suitable samples for electron microscopic measurements. The objective as well as the requirements are discussed. Further, different sample deposition methods for various types of nanoparticulate samples are shown. T2 - nPSize Web Conference CY - Online meeting DA - 23.07.2020 KW - Nanoparticles KW - Electron microscopy KW - Sample preparation KW - Particle size distribution KW - Particle number concentration PY - 2020 AN - OPUS4-51047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement; What nPSize can offer after 2Ys? N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, inter-laboratory comparisons) as pertinent contributions to normative projects within CEN/TC 352 Nanotechnologies are discussed. T2 - 28th Meeting of CEN/TC 352 Nanotechnologies CY - Online meeting DA - 16.10.2020 KW - Nanoparticles KW - CEN/TC 352 Nanotechnologies KW - Particle size distribution KW - Traceability PY - 2020 AN - OPUS4-51437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Core-shell systems - different cases N2 - Coating, stabilization layers, functionalization of particles or simple contamination are common variants of a core-shell system. For smaller nanoparticles this is of major importance. A particle with 16 nm diameter and a usual surface layer of 2 nm will have the same volume for the core as for the shell. In this case the material of the particle doesn’t have a clear definition. It is a common case that a particle consists of four different layers: Core, shell, stabilization layer and contamination. The properties of the particles differ according to this structure. For example silver particles might have a different dissolution rate for pure particles and for particles which are grown on top of a core. Different solubility or defined other properties of materials is a common reason for producing core-shell systems. Gold cores are surrounded by silica to stabilize them or to get a defined distance between the cores. Silica might be surrounded by gold and the silica dissolved afterwards. This delivers hollow shells. Another important example for core-shell systems are quantum dots. A small core is surrounded by a different material for increasing the photoluminescence. Furthermore there a stabilization layer is needed. The smallest part of the final particles is the initial core. The photoluminescence is based on this core, but the shells contain much more material. Categorization should address this. Core-shell systems are not covered by most of the existing decision trees for grouping. They are either regarded as special case or a singular layer. This disqualifies core-shell systems for grouping within the common models. There might be a very easy way to avoid this problem and even to combine some of the different decision trees. Starting the decision tree with the solubility of the outer shell and subsequently addressing the inner layers will be a pragmatic approach to solve the problem. If there is no shell, the categorization can start with a tiered approach or with the proposed “stawman” chemical categorization. If a shell is covering the surface there is a need to check if the shell is stable. If it is stable, the particle can be categorized based on this shell. If it is soluble, the ions need to be addressed as in the classic case. Furthermore the shell might increase the uptake by the cells. If the ions and the uptake are not critical the categorization can continue with the next layer. With this not perfect but pragmatic approach, the surface layers can be addressed with very limited additional efforts. Most criteria are based on classically tabulated data. Including a rating system like the precautionary matrix approach might even address the fact that some parameters are not always Yes/No, e.g. solubility, ion toxicity and uptake. T2 - OECD Expert Meeting on Grouping and Read Across for the Hazard Assessment of Manufactured Nanomaterials CY - Brussels, Belgium DA - 13.04.2016 KW - OECD KW - Nanoparticles KW - Nanomaterials KW - Grouping KW - Nano PY - 2016 AN - OPUS4-35774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Friedrich, C. M. A1 - Weigel, S. A1 - Marvin, H. A1 - Rauscher, H. A1 - Wohlleben, W. A1 - Babick, F. A1 - Löschner, K. A1 - Mech, A. A1 - Brüngel, R. A1 - Hodoroaba, Vasile-Dan A1 - Gilliland, D. A1 - Rasmussen, K. A1 - Ghanem, A. T1 - The NanoDefine Methods Manual N2 - This document is a collection of three JRC Technical Reports that together form the “NanoDefine Methods Manual”, which has been developed within the NanoDefine project ‘Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial’, funded by the European Union’s 7th Framework Programme, under grant agreement 604347. The overall goal of the NanoDefine project was to support the implementation of the European Commission Recommendation on the definition of nanomaterial (2011/696/EU). The project has developed an integrated empirical approach, which allows identifying a material as a nano- or not a nanomaterial according to the EC Recommendation. The NanoDefine Methods Manual consists of three parts: Part 1: The NanoDefiner Framework and Tools, which covers the NanoDefiner framework, general information on measurement methods and performance criteria, and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2: Evaluation of Methods, which discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3: Standard Operating Procedures (SOPs), which presents the 23 Standard Operating Procedures developed within the NanoDefine project. In this combined document, these three parts are included as stand-alone reports, each having its own abstract, table of contents, page, table and figure numbering, and references. KW - Nanomaterial KW - Particle size distribution KW - Nanoparticles KW - NanoDefine KW - Nanomaterial classification PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504250 SN - 978-92-76-12335-4 DO - https://doi.org/10.2760/79490 VL - JRC117501 SP - 1 EP - 451 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NP) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - 31. Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles for catalysis N2 - We present the synthesis of monodisperse monometallic Ni nanoparticles (NPs) and bimetallic NiCu respectively NiCo NPs. The NPs were investigated using SAXS, STEM, EDX, and XANES, showing that the NPs are size tunable and stable while the surface is not entirely covered. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4. T2 - 11th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 04.12.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NPs) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - Adlershofer Forschungsforum 2019 CY - Berlin, Germany DA - 11.11.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartzcak, D. T1 - New reference material candidates for traceable size measurement of nonspherical nanoparticles N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Nanoparticles KW - Size distribution KW - Electron microscopy KW - Certified reference materials KW - Traceability PY - 2019 AN - OPUS4-49227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. T1 - New reference material candidates for traceable size measurement of non-spherical nanoparticles N2 - New model nanoparticles with well-controlled shape were synthesized within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. Their systematic characterization takes place by the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following reference nanoparticle candidates are under investigation with respect to their homogeneity and stability: titania nanoplatelets (10-15 nm x 50-100 nm), titania bipyramides (~60 nm x 40 nm), titania acicular particles (100 nm x 15-20 nm; aspect ratio 5.5/6), gold nanorods (~10 nm x 30 nm), and gold nanocubes (~55 nm x 55 nm x 55 nm). T2 - HyMET Workshop on optical surface analysis methods for nanostructured layers CY - Berlin, Germany DA - 10.10.2019 KW - Nanoparticles KW - Reference materials KW - Traceability KW - Particle size distribution PY - 2019 AN - OPUS4-49285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. A1 - Goenaga-Infante, H. T1 - Challenges in Traceable Size Measurement of Non-Spherical, Non-Monodisperse Nanoparticles - nPSize N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs.zeige mehr T2 - Nanoparticle Reference Materials - Production and Cerification Training Course CY - London, UK DA - 10.12.2019 KW - Nanoparticles KW - Traceability KW - Particle size distribution KW - Electron microscopy KW - Reference materials KW - Non-spherical shape PY - 2019 AN - OPUS4-50040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mech, A. A1 - Rauscher, H. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Wohlleben, W. A1 - Marvin, H. A1 - Weigel, S. A1 - Brüngel, R. A1 - Friedrich, C. M. T1 - The NanoDefine Methods Manual - Part 1: The NanoDefiner Framework and Tools N2 - The present series of reports, the NanoDefine Methods Manual, has been developed within the NanoDefine project 'Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial', funded by the European Union's 7th Framework Programme, under grant agreement 604347. In 2011 the European Commission (EC) published a recommendation for a definition of the term 'nanomaterial', the EC NM Definition, as a reference to determine whether an unknown material can be considered as a 'nanomaterial' for regulatory purposes1. One challenge is the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substances and in various products and matrices. The overall goal of NanoDefine was to support the implementation of the EC NM Definition. It can also support the implementation of any NM definition based on particle size. The project has developed an integrated approach, which allows identifying any material as a nano- or not a nanomaterial according to the EC NM Definition. NanoDefine explicitly supported the governance challenges associated with the implementation of legislation concerning nanomaterials by: - addressing the issues on availability of suitable measuring techniques, reference materials, validated methods, acceptable to all stakeholders (authorities, policy makers, commercial firms), - developing an integrated and interdisciplinary approach and a close international co-operation and networking with academia, commercial firms and standardization bodies. Thus, the NanoDefine Methods Manual provides guidance on practical implementation of the EC NM Definition throughout the nanomaterial characterization process, and on the characterization techniques employed as well as their application range and limits. It assists the user in choosing the most appropriate measurement method(s) to identify any substance or mixture for a specific purpose, according to the EC NM Definition of a nanomaterial. The NanoDefine project also explored how to assess a material against the criteria of the definition through proxy solutions, i.e. by applying measurement techniques that indirectly determine the x50. Those findings were developed through empirically based scientific work and are included in Part 1 of this Manual. As they go beyond the text of the EC NM Definition, they may be used as practical approach to indicate whether a material is a nanomaterial or not, but keeping in mind that they should not be taken as recommendation for the implementation of the EC NM Definition in a regulatory context. The NanoDefine Methods Manual consists of the following three parts:  Part 1: The NanoDefiner Framework and Tools  Part 2: Evaluation of Methods  Part 3: Standard Operating Procedures (SOPs) Part 1 covers the NanoDefiner framework, general information on measurement methods and performance criteria and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2 discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3 presents the 23 Standard Operating Procedures developed within the NanoDefine project. The current document is part 1. KW - Nanomaterial KW - Nanoparticles KW - NanoDefine KW - Nanoparticle size distribution KW - Nanomaterial classification KW - Framework KW - Tools PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503699 SN - 978-92-76-11950-0 DO - https://doi.org/10.2760/55181 SN - 1831-9424 SP - 1 EP - 89 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mech, A. A1 - Rauscher, H. A1 - Rasmussen, K. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Ghanem, A. A1 - Wohlleben, W. A1 - Marvin, H. A1 - Brüngel, R. A1 - Friedrich, C. M. T1 - The NanoDefine Methods Manual - Part 2: Evaluation of methods N2 - The present series of reports, the NanoDefine Methods Manual, has been developed within the NanoDefine project 'Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial', funded by the European Union's 7th Framework Programme, under grant agreement 604347. In 2011 the European Commission (EC) published a recommendation for a definition of the term 'nanomaterial', the EC NM Definition, as a reference to determine whether an unknown material can be considered as a 'nanomaterial' for regulatory purposes1. One challenge is the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substances and in various products and matrices. The overall goal of NanoDefine was to support the implementation of the EC NM Definition. It can also support the implementation of any NM definition based on particle size. The project has developed an integrated approach, which allows identifying any material as a nano- or not a nanomaterial according to the EC NM Definition. NanoDefine explicitly supported the governance challenges associated with the implementation of legislation concerning nanomaterials by: - addressing the issues on availability of suitable measuring techniques, reference materials, validated methods, acceptable to all stakeholders (authorities, policy makers, commercial firms), - developing an integrated and interdisciplinary approach and a close international co-operation and networking with academia, commercial firms and standardization bodies. Thus, the NanoDefine Methods Manual provides guidance on practical implementation of the EC NM Definition throughout the nanomaterial characterization process, and on the characterization techniques employed as well as their application range and limits. It assists the user in choosing the most appropriate measurement method(s) to identify any substance or mixture for a specific purpose, according to the EC NM Definition of a nanomaterial. The NanoDefine project also explored how to assess a material against the criteria of the definition through proxy solutions, i.e. by applying measurement techniques that indirectly determine the x50. Those findings were developed through empirically based scientific work and are included in Part 1 of this Manual. As they go beyond the text of the EC NM Definition, they may be used as practical approach to indicate whether a material is a nanomaterial or not, but keeping in mind that they should not be taken as recommendation for the implementation of the EC NM Definition in a regulatory context. The NanoDefine Methods Manual consists of the following three parts:  Part 1: The NanoDefiner Framework and Tools  Part 2: Evaluation of Methods  Part 3: Standard Operating Procedures (SOPs) Part 1 covers the NanoDefiner framework, general information on measurement methods and performance criteria and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2 discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3 presents the 23 Standard Operating Procedures developed within the NanoDefine project. The current document is part 2. KW - Nanomaterial KW - Nanoparticles KW - NanoDefine KW - Particle size distribution KW - Nanomaterial classification PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503708 SN - 978-92-76-11953-1 DO - https://doi.org/10.2760/071877 SN - 1831-9424 VL - JRC117501 SP - 1 EP - 133 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mech, A. A1 - Rauscher, H. A1 - Rasmussen, K. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Ghanem, A. A1 - Wohlleben, W. A1 - Marvin, H. A1 - Brüngel, R. A1 - Friedrich, C. M. A1 - Löschner, K. A1 - Gilliland, D. T1 - The NanoDefine Methods Manual - Part 3: Standard Operating Procedures (SOPs) N2 - The present series of reports, the NanoDefine Methods Manual, has been developed within the NanoDefine project 'Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial'1 funded by the European Union's 7th Framework Programme, under grant agreement 604347. In 2011 the European Commission (EC) published the recommendation (2011/696/EU) for a definition of the term 'nanomaterial'1, the EC NM Definition, as a reference to determine whether an unknown material can be considered as a 'nanomaterial' for regulatory purposes. One challenge is the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substances and in various products and matrices. The overall goal of NanoDefine was to support the implementation of the EC NM Definition. It can also support the implementation of any NM definition based on particle size. The project has developed an integrated approach, which allows identifying any material as a nano or non-nano material according to the EC NM Definition. NanoDefine explicitly supported the governance challenges associated with the implementation of legislation concerning nanomaterials by: - addressing the issues on availability of suitable measuring techniques, reference materials, validated methods, acceptable to all - developing an integrated and interdisciplinary approach and a close international co-operation and networking with academia, commercial firms and standardization bodies. Thus, the NanoDefine Methods Manual provides guidance on practical implementation of the EC NM Definition throughout the nanomaterial characterization process, and on the characterization techniques employed as well as their application range and limits. It assists the user in choosing the most appropriate measurement method(s) to identify any substance or mixture for a specific purpose, according to the EC NM Definition of a nanomaterial. The NanoDefine project also explored how to assess a material against the criteria of the definition through proxy solutions, i.e. by applying measurement techniques that indirectly determine the D50. Those findings were developed through empirically based scientific work and are included in Part 1 of this Manual. As they go beyond the text of the EC NM Definition, they may be used as practical approach to indicate whether a material is a nanomaterial or not, but keeping in mind that they should not be taken as recommendation for the implementation of the EC NM Definition in a regulatory context. The NanoDefine Methods Manual consists of the following three parts:  Part 1: The NanoDefiner Framework and Tools  Part 2: Evaluation of Methods  Part 3: Standard Operating Procedures (SOPs) Part 1 covers the NanoDefiner framework, general information on measurement methods and performance criteria and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2 discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3 presents the 23 Standard Operating Procedures developed within the NanoDefine project. The current document is part 3. KW - Nanomaterial KW - Nanoparticles KW - Particle size distribution KW - NanoDefine KW - Standard Operation Procedures KW - Nanomaterial classification KW - SOP PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503710 SN - 978-92-76-11955-5 DO - https://doi.org/10.2760/02910 SN - 1831-9424 VL - JRC117501 SP - 1 EP - 215 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Characterization of nanoparticles - Measurement processes for nanoparticles N2 - Characterization of Nanoparticles: Measurement Processes for Nanoparticles surveys this fast growing field, including established methods for the physical and chemical characterization of nanoparticles. The book focuses on sample preparation issues (including potential pitfalls), with measurement procedures described in detail. In addition, the book explores data reduction, including the quantitative evaluation of the final result and its uncertainty of measurement. The results of published inter-laboratory comparisons are referred to, along with the availability of reference materials necessary for instrument calibration and method validation. The application of these methods are illustrated with practical examples on what is routine and what remains a challenge. In addition, this book summarizes promising methods still under development and analyzes the need for complementary methods to enhance the quality of nanoparticle characterization with solutions already in operation. KW - Nanoparticles KW - Characterization method KW - Sample preparation KW - Inter-laboratory comparison KW - Standardisation KW - Measurement uncertainty KW - Case studies PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/C2017-0-00312-9 SP - 1 EP - 566 PB - Elsevier CY - Amsterdam AN - OPUS4-50284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Kulla, Hannes A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Marquardt, Julien A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Synthesis of Bimetallic Nickel Nanoparticles as Catalysts for the Sabatier Reaction N2 - Nanoparticles (NP) have become important materials for a variety of chemical technologies. The enhance surface-area-to-volume ratio of NPs is very high, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni nanoparticles were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the catalytically active sites are accessible. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - Joint Polish-German Crystallographic Meeting CY - Wroclaw, Poland DA - 24.02.2020 KW - Nanoparticles KW - Synthesis KW - Catalysis PY - 2020 AN - OPUS4-51663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Taché, O. A1 - Bartczak, D. A1 - Cuello Nuñez, S. A1 - Abad Álvaro, I. A1 - Goenaga Infante, H. A1 - Hodoroaba, Vasile-Dan T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - In this work, we present various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Bimodal KW - SiO2 KW - Gold PY - 2020 AN - OPUS4-51714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - Various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM are presented. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - Particle size distribution KW - Sample peparation KW - Electron microscopy PY - 2020 AN - OPUS4-51716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörenz, Christoph A1 - Tache, O. A1 - Bartczak, D. A1 - Nunez, S. A1 - Abad Alvaro, I. A1 - Goenaga-Infante, H. A1 - Hodoroaba, Vasile-Dan T1 - A Study on the Analysis of Particle Size Distribution for Bimodal Model Nanoparticles by Electron Microscopy N2 - The present study addresses the capability of measurement of relative particle number concentration by scanning electron microscopy for model bimodal silica and gold samples prepared in the frame of the European research project “nPSize - Improved traceability chain of nanoparticle size measurements” as candidate reference nanoparticles. KW - Nanoparticles KW - Particle size distribution KW - Bimodal size distribution KW - Traceability PY - 2020 DO - https://doi.org/10.1017/S1431927620021054 VL - 26 IS - S2 SP - 2282 EP - 2283 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D Understanding of Non-spherical Nanoparticles by Transmission Kikuchi Diffraction (TKD) for Improved Particle Size Distribution by Electron Microscopy N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Electron microscopy KW - TiO2 KW - 3D PY - 2020 DO - https://doi.org/10.1017/S1431927620013999 VL - 26 IS - S2 SP - 260 EP - 261 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Towards Automated Electron Microscopy Image Segmentation for Nanoparticles of Complex Shape by Convolutional Neural Networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. KW - Nanoparticles KW - Convolutional neural networks KW - Image segmentation KW - Electron microscopy KW - Automatisation PY - 2020 DO - https://doi.org/10.1017/S1431927620017262 VL - 26 IS - S2 SP - 1188 EP - 1189 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Minimum Requirements for Nanomaterial Data - Examples with Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy N2 - In dem Vortrag werden, anhand ausgewählten Beispielen aus der Elektronenmikroskopie und EDX-Elementanalyse, die minimalen Anforderungen an Referenzdaten für zuverlässige und reproduzierbare Ergebnisse (z.B. Partikelgrößenverteilung, Elementzusammensetzung) bei der Charakterisierung von Nanomaterialien vorgestellt und diskutiert. N2 - Based on practical examples of analysis with Electron Microscopy and Energy-Dispersive X-ray Spectroscopy, the minimum information requirements for reliable and reproducible nanomaterial characterization data such as particle size and shape distribution and elemental analysis are presented and discussed. T2 - nano@BAM-Workshop Digitalisierung in der Nanosicherheit CY - Online meeting DA - 04.12.2020 KW - Nanoparticles KW - Electron microscopy KW - EDX KW - Reference data KW - Reproducibility KW - Standardisation PY - 2020 AN - OPUS4-51775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin M. A1 - Plarre, Rüdiger A1 - Hübert, Thomas A1 - Kemnitz, E. ED - Richter, K. ED - Van de Kulien, J.-W. T1 - Termite resistance of pine wood treated with nano metal fluorides N2 - Fluorides are well-known as wood preservatives. One of the limitations of fluoride-based wood preservatives is their high leachability. Alternative to current fluoride salts such as NaF used in wood protection are low water-soluble fluorides. However, impregnation of low water-soluble fluorides into wood poses a challenge. To address this challenge, low water-soluble fluorides like calcium fluoride (CaF2) and magnesium fluoride (MgF2) were synthesized as nanoparticles via the fluorolytic sol−gel synthesis and then impregnated into wood specimens. In this study, the toxicity of nano metal fluorides was assessed by termite mortality, mass loss and visual analysis of treated specimens after eight weeks of exposure to termites, Coptotermes formosanus. Nano metal fluorides with sol concentrations of 0.5 M and higher were found to be effective against termites resulting in 100% termite mortality and significantly inhibited termite feeding. Among the formulations tested, the least damage was found for specimens treated with combinations of CaF2 and MgF2 with an average mass loss less than 1% and visual rating of “1”. These results demonstrate the efficacy of low water-soluble nano metal fluorides to protect wood from termite attack. KW - Holzschutzmittel KW - Nanoparticles KW - Fluorides KW - Termites PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514325 DO - https://doi.org/10.1007/s00107-020-01522-z VL - 78 SP - 493 EP - 499 PB - Springer CY - Berlin AN - OPUS4-51432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Feltin, N. T1 - Hybrid metrology for microscopy of nanoparticles N2 - This presentation is structured in two parts: i) Hybrid metrology by combining SEM with AFM (N. Feltin) and ii) hybridization and corelative microscopy by SEM, STEM-in-SEM, TEM, EDS, Auger Electron Microscopy, TKD and more (D. Hodoroaba). The first part is focused on the metrological part of the hybrid measurement SEM-AFM, the second part offers some further possibilities of correlative microscopy of nanoparticles based on practical examples. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - SEM KW - AFM KW - Metrology KW - Particle size distribution KW - Correlative imaging KW - STEM-in-SEM (TSEM) PY - 2020 AN - OPUS4-51476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement; nPSize offer after 2 Ys N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, VAMAS inter-laboratory comparisons) to be standardized and implemented in accredited analytical laboratories is discussed. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - Size KW - Shape KW - Traceability KW - EMPIR KW - Reference materials KW - VAMAS PY - 2020 AN - OPUS4-51477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -