TY - CONF A1 - Resch-Genger, Ute A1 - Frenzel, Florian A1 - Würth, Christian A1 - Grauel, Bettina A1 - Hirsch, T. A1 - Haase, M. T1 - Measuring the Upconversion Luminescence of Ensemble and Single Particle Lanthanide-Based Upconversion Nanocrystals N2 - Lanthanide-based upconversion nanoparticles (UCNPs) like hexagonal 𝛽-NaYF4 UCNPs doped with Yb3+ and Er3+, which efficiently convert 976 nm light to ultraviolet, visible, and near infrared photons, offer new strategies for luminescence-based sensing, barcoding, and Imaging. Their upconversion (UC) luminescence (UCL) features like UCL intensity, quantum yield, relative spectral distribution / UCL luminescence color, and luminescence decay kinetics are, however, strongly influenced by particle size, dopant ion concentration, particle architecture, surface chemistry including presence and thickness of surface passivation and shielding shells, microenvironment/presence of quenchers with high energy vibrations, and excitation power density (P). We present here a comprehensive study of the influence of excitation power density on the UCL features of different types of UCNPs, focusing on Yb3+ and Er3+ co-doped NaYF4 core-only and core-shell nanostructures with different sizes and doping ion concentration, which underlines the importance of P-dependent optimum dopant concentrations for UCNP performance and the potential of P-tuning of UCL. T2 - Materials Challenges in Alternative & Renewable Energy 2021 (MCARE 2021) CY - Online meeting DA - 19.07.2021 KW - Fluorescence KW - Lifetime KW - Method KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Upconversion KW - Nano KW - Particle KW - Single particle spectroscopy KW - Quantum yield KW - Microscopy KW - Photophysics PY - 2021 AN - OPUS4-53111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - May, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - Communication of Bichromophore Emission upon Aggregation – Aroyl-S,N-ketene Acetals as Multifunctional Sensor Merocyanines N2 - Aroyl-S,N-ketene acetal-based bichromophores can be readily synthesized in a consecutive three-component synthesis in good to excellent yields by condensation of aroyl chlorides and an N-(p-bromobenzyl) 2-methyl benzothiazolium salt followed by a Suzuki coupling, yielding a library of 31 bichromophoric fluorophores with substitution patterntunable emission properties. Varying both chromophores enables different communication pathways between the chromophores, exploiting aggregation-induced emission (AIE) and energy transfer (ET) properties, and thus, furnishing aggregation-based fluorescence switches. Possible applications range from fluorometric analysis of alcoholic beverages to pH sensors. KW - Dye KW - Fluorescence KW - Aggregation induced emission KW - Signal enhancement KW - Energy transfer KW - Switch KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531123 DO - https://doi.org/10.1002/chem.202102052 VL - 27 IS - 53 SP - 13426 EP - 13434 PB - Wiley-VCH AN - OPUS4-53112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Nirmalananthan-Budau, Nithiya A1 - Weigert, Florian A1 - Götze, J. P. A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores N2 - The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects. KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Theory KW - Quantum yield KW - Mechanism KW - Quantum chemistry KW - Modelling KW - Aggregation KW - Lifetime KW - Single particle KW - Microscopy KW - Solid KW - Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531138 DO - https://doi.org/10.1039/d1cp02534a SP - 1 EP - 9 PB - Royal Society of Chemistry AN - OPUS4-53113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute T1 - Tumore abbilden, Biomarker nachweisen, Messungen standardisieren N2 - Zu den am häufigsten eingesetzten Analysemethoden in den Lebens- und Materialwissenschaften gehören Lumineszenzmethoden. Sie nutzen die Emission von Licht nach Absorption von Energie, um Signale zu erzeugen, und umfassen spektroskopische und mikroskopische Messungen. KW - Quality assurance KW - Sensor KW - Imaging KW - Reference material KW - Nano KW - Particle KW - Nanomaterial KW - Upconversion KW - Nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Excitation KW - Power density KW - Single particle KW - Brightness KW - NIR PY - 2021 SP - 75 EP - 77 PB - GDCH AN - OPUS4-53526 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Würth, Christian A1 - Güttler, Arne A1 - Resch-Genger, Ute T1 - Reliable Determination of the Signal-Relevant Spectroscopic Key Characteristics of Luminescent Reporters and Optical Probes for Imaging in the vis/NIR/SWIR N2 - Introduction. Comparing different emitter classes and rationally designing the next generation of molecular and nanoscale probes for bioimaging applications require accurate and quantitative methods for the measurement of the key parameter photoluminescence quantum yield f.1 f equals the number of emitted per number of absorbed photons. This is particularly relevant for increasingly used fluorescence imaging in the short wave-infrared region (SWIR) ≥ 900 nm providing deeper penetration depths, a better image resolution, and an improved signal-to-noise or tumor-to-background ratio.2, 3 However, spectroscopic measurements in the SWIR are more challenging and require specific calibrations and standards. T2 - EMIM 2021 CY - Göttingen, Germany DA - 24.08.2021 KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Reference material KW - Reliability KW - Nano KW - Particle KW - Method KW - Quality assurance PY - 2021 AN - OPUS4-53233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grauel, Bettina A1 - Würth, Christian A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Andresen, Elina A1 - Roik, Janina A1 - Recknagel, Sebastian A1 - Haase, M. A1 - Resch-Genger, Ute T1 - Volume and surface effects on two-photonic and three-photonic processes in dry co-doped upconversion nanocrystals N2 - Despite considerable advances in synthesizing high-quality core/shell upconversion (UC) nanocrystals (NC; UCNC) and UCNC photophysics, the application of near-infrared (NIR)-excitable lanthanide-doped UCNC in the life and material sciences is still hampered by the relatively low upconversion luminescence (UCL) of UCNC of small size or thin protecting shell. To obtain deeper insights into energy transfer and surface quenching processes involving Yb3+ and Er3+ ions, we examined energy loss processes in differently sized solid core NaYF4 nanocrystals doped with either Yb3+ (YbNC; 20% Yb3+) or Er3+ (ErNC; 2% Er3+) and co-doped with Yb3+ and Er3+ (YbErNC; 20% Yb3+ and 2% Er3+) without a surface protection shell and coated with a thin and a thick NaYF4 shell in comparison to single and co-doped bulk materials. Luminescence studies at 375 nm excitation demonstrate backenergy transfer (BET) from the 4G11/2 state of Er3+ to the 2F5/2 state of Yb3+, through which the red Er3+ 4F9/2 state is efficiently populated. Excitation power density (P)-dependent steady state and time-resolved photoluminescence measurements at different excitation and emission wavelengths enable to separate surface-related and volume-related effects for two-photonic and threephotonic processes involved in UCL and indicate a different influence of surface passivation on the green and red Er3+ emission. The intensity and lifetime of the latter respond particularly to an increase in volume of the active UCNC core. We provide a threedimensional random walk model to describe these effects that can be used in the future to predict the UCL behavior of UCNC. KW - Nano KW - Nanomaterial KW - Upconversion KW - Nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Pphotophysics KW - Lifetime KW - Sensor KW - Excitation KW - Power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535317 DO - https://doi.org/10.1007/s12274-021-3727-y SN - 1998-0124 VL - 15 IS - 3 SP - 2362 EP - 2373 PB - Springer AN - OPUS4-53531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andresen, Elina A1 - Islam, Fahima A1 - Prinz, Carsten A1 - Gehrmann, P. A1 - Licha, K. A1 - Roik, Janina A1 - Recknagel, Sebastian A1 - Resch-Genger, Ute T1 - Assessing the reproducibility and up‑scaling of the synthesis of Er,Yb‑doped NaYF4‑based upconverting nanoparticles and control of size, morphology, and optical properties N2 - Lanthanide-based, spectrally shifting, and multi-color luminescent upconverting nanoparticles (UCNPs) have received much attention in the last decades because of their applicability as reporter for bioimaging, super-resolution microscopy, and sensing as well as barcoding and anti-counterfeiting tags. A prerequisite for the broad application of UCNPs in areas such as sensing and encoding are simple, robust, and easily upscalable synthesis protocols that yield large quantities of UCNPs with sizes of 20 nm or more with precisely controlled and tunable physicochemical properties from lowcost reagents with a high reproducibility. In this context, we studied the reproducibility, robustness, and upscalability of the synthesis of β-NaYF4:Yb, Er UCNPs via thermal decomposition. Reaction parameters included solvent, precursor chemical compositions, ratio, and concentration. The resulting UCNPs were then examined regarding their application-relevant physicochemical properties such as size, size distribution, morphology, crystal phase, chemical composition, and photoluminescence. Based on these screening studies, we propose a small volume and high-concentration synthesis approach that can provide UCNPs with different, yet controlled size, an excellent phase purity and tunable morphology in batch sizes of up to at least 5 g which are well suited for the fabrication of sensors, printable barcodes or authentication and recycling tags. KW - Photoluminescence KW - Nano KW - Nanomaterial KW - Synthesis KW - Reproducibility KW - Upconversion nanoparticle KW - Lanthanide PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570170 DO - https://doi.org/10.1038/s41598-023-28875-8 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 13 AN - OPUS4-57017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Würth, Christian A1 - Tavernaro, Isabella A1 - Grüne, M. A1 - Schweizer, S. A1 - Engel, A. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on Absolute Photoluminescence Quantum Yield Measurements of Solid Light Converting Phosphors with Three Commercial Integrating Sphere Setups N2 - Scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders are increasingly relevant for fundamental research and industry. Examples are luminescent nano- and microparticles and phosphors of different compositions in various matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter to characterize the performance of these materials is the photoluminescence/fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. To identify and quantify the sources of uncertainty of absolute measurements of Φf of scattering samples, the first interlaboratory comparison (ILC) of three laboratories from academia and industry was performed by following identical measurement protocols. Thereby, two types ofcommercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring the Φf of transparent and scattering dye solutions and solid phosphors, namely, YAG:Ce optoceramics of varying surface roughness, used as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While the Φf values of the liquid samples matched between instruments, Φf measurements of the optoceramics with different blanks revealed substantial differences. The ILC results underline the importance of the measurement geometry, sample position, and blank for reliable Φf data of scattering the YAG:Ce optoceramics, with the blank’s optical properties accounting for uncertainties exceeding 20%. KW - Nano KW - Fluorescence KW - Reference material KW - Luminescence KW - Quantitative spectroscopy KW - Particle KW - Quantum yield KW - Quality assurance KW - Phosphor KW - Converter material KW - Lifetime KW - Interlaboratory comparison KW - Method KW - Uncertainty PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600945 DO - https://doi.org/10.1021/acs.analchem.4c00372 SN - 0003-2700 SP - 6730 EP - 6737 PB - ACS Publications AN - OPUS4-60094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, Z. A1 - Musnier, B. A1 - Wegner, Karl David A1 - Henry, M. A1 - Chovelon, B. A1 - Desroches-Castan, A. A1 - Fertin, A. A1 - Resch-Genger, Ute A1 - Bailly, S. A1 - Coll, J.-L. A1 - Usson, Y, A1 - Josserand, V. A1 - Le Gúevel, X. T1 - High-Resolution Shortwave Infrared Imaging of Vascular Disorders Using Gold Nanoclusters N2 - We synthesized a generation of water-soluble, atomically precise gold nanoclusters (Au NCs) with anisotropic Surface containing a short dithiol pegylated chain (AuMHA/TDT). The AuMHA/TDT exhibit a high brightness (QY ∼ 6%) in the shortwave infrared (SWIR) spectrum with a detection above 1250 nm. Furthermore, they show an extended half-life in blood (t1/2ß = 19.54 ± 0.05 h) and a very weak accumulation in organs. We also developed a non-invasive, whole-body vascular imaging system in the SWIR window with high-resolution, benefiting from a series of Monte Carlo image processing. The imaging process enabled to improve contrast by 1 order of magnitude and enhance the spatial Resolution by 59%. After systemic administration of these nanoprobes in mice, we can quantify vessel complexity in depth (>4 mm), allowing to detect very subtle vascular disorders non-invasively in bone morphogenetic protein 9 (Bmp9)-deficient mice. The combination of these anisotropic surface charged Au NCs plus an improved SWIR imaging device allows a precise mapping at high-resolution and an in depth understanding of the organization of the vascular network in live animals. KW - Nanoparticle KW - Nanosensor KW - Fluorescence KW - Metal cluster KW - NIR KW - SWIR KW - Photophysics KW - Ligand KW - Size KW - Surface chemistry KW - Quantum yield KW - Mechanism KW - Lifetime KW - Decay kinetics PY - 2020 DO - https://doi.org/10.1021/acsnano.0c01174 VL - 14 IS - 4 SP - 4973 EP - 4981 PB - ACS Publication AN - OPUS4-50671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Godard, A. A1 - Kalot, G. A1 - Pliquett, J. A1 - Busser, B. A1 - Le Guével, X. A1 - Wegner, Karl David A1 - Resch-Genger, Ute A1 - Russelin, Y. A1 - Coll, J.-L. A1 - Denat, F. A1 - Bodio, E. A1 - Goze, C. A1 - Sancey, L. T1 - Water-Soluble Aza-BODIPYs: Biocompatible Organic Dyes for High Contrast In Vivo NIR-II Imaging N2 - A simple NIR-II emitting water-soluble system has been developed and applied in vitro and in vivo. In vitro, the fluorophore quickly accumulated in 2D and 3D cell cultures and rapidly reached the tumor in rodents, showing high NIR-II contrast for up to 1 week. This very efficient probe possesses all the qualities necessary for translation to the clinic as well as for the development of NIR-II emitting materials. KW - Aza-BODIPY KW - NIR-II Imaging KW - In vivo imaging KW - organic dyes KW - SWIR KW - Cancer KW - Fluorescence PY - 2020 DO - https://doi.org/10.1021/acs.bioconjchem.0c00175 VL - 31 IS - 4 SP - 1088 EP - 1092 PB - ACS Publications AN - OPUS4-50695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, J. A1 - Güttler, Arne A1 - Richter, Maria A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Wegner, Karl David A1 - Würth, Christian T1 - Photoluminescence Quantum Yields of Luminescent Nanocrystals and Particles in the UV/vis/NIR/SWIR N2 - The rational design of functional luminescent materials such as semiconductor quantum dots and lanthanide-based upconversion nanoparticles, all photophysical and mechanistic studies, and the comparison of different emitters require accurate and quantitative photoluminescence measurements. Particularly the reliable determination of the key performance parameter photoluminescence quantum yield (f), the number of emitted per absorbed photons, and the brightness are of special importance for luminescence applications in the life and material sciences and nano(bio)photonics.[1] In this context, examples for absolute measurements of the photoluminescence quantum yields of UV/vis/NIR/SWIR emissive semiconductor quantum dots and rods, made from different materials, and spectrally shifting lanthanide upconversion nanocrystals with different surface chemistries in transparent matrices are presented including excitation wavelength and power density dependent studies utilizing integration sphere spectroscopy.[2,3] In addition, procedures for the absolute determination of the photoluminescence quantum yields of scattering dispersions of larger size quantum rods and differently sized inorganic particles have been developed as well as procedures for the characterization of solid luminescent nanomaterials such as different perovskites and YAG:Cer converter materials.[4] Thereby, challenges and pitfalls of f measurements in different wavelength regions including the SWIR and material-specific effects related to certain emitter classes are addressed, achievable uncertainties are quantified, and relative and absolute measurements of photoluminescence quantum yield measurements are compared to underline limitations of the former approach. Finally, a set of novel UV/vis/NIR quantum yield standards is presented including their certification with a complete uncertainty budget.[5] T2 - NANAX 10 CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Fluorescence KW - Optical spectroscopy KW - Reference data KW - Traceability KW - NIR KW - Scattering KW - Reference material KW - Certification KW - Quality assurance KW - Dye KW - Reference product KW - SWIR KW - Nano KW - Particle KW - Perovskite KW - Integrating sphere spectroscopy KW - Quantum yield PY - 2023 AN - OPUS4-58238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Resch-Genger, Ute T1 - The 2023 Nobel Prize in Chemistry: Quantum dots N2 - The 2023 Nobel Prize in Chemistry was awarded to Aleksey I. Ekimov (prize share 1/3), Louis E. Brus (prize share 1/3), and Moungi G. Bawendi (prize share 1/3) for groundbreaking inventions in the field of nanotechnology, i.e., for the discovery and synthesis of semiconductor nanocrystals, also termed quantum dots, that exhibit size-dependent physicochemical properties enabled by quantum size effects. This feature article summarizes the main milestones of the discoveries and developments of quantum dots that paved the road to their versatile applications in solid-state lighting, display technology, energy conversion, medical diagnostics, bioimaging, and image-guided surgery. KW - Quantum dots KW - Semiconductor nanocrystals KW - Luminescence KW - Quantitative spectroscopy KW - Quantum yield KW - Advanced nanomaterials KW - Quality assurance KW - Energy transfer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597843 DO - https://doi.org/10.1007/s00216-024-05225-9 VL - 2024 SP - 1 EP - 11 PB - Springer CY - Cham AN - OPUS4-59784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Soares, J. X. A1 - Wegner, Karl David A1 - Ribeiro, D. S. M. A1 - Melo, A. A1 - Häusler, I. A1 - Santos, J. L. M. A1 - Resch-Genger, Ute T1 - Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control N2 - In the blossoming field of Cd-free semiconductor quantum dots (QDs), ternary I–III–VI QDs have received increasing attention due to the ease of the environmentally friendly synthesis of high-quality materials in water, their high photoluminescence (PL) Quantum yields (QYs) in the red and near infrared (NIR) region, and their inherently low toxicity. Moreover, their oxygen-insensitive long PL lifetimes of up to several hundreds of nanoseconds close a gap for applications exploiting the compound-specific parameter PL lifetime. To overcome the lack of reproducible synthetic methodologies and to enable a design-based control of their PL properties, we assessed and modelled the synthesis of high-quality MPA-capped AgInS2/ZnS (AIS/ZnS) QDs. Systematically refined Parameters included reaction time, temperature, Ag:In ratio, S:In ratio, Zn:In ratio, MPA:In ratio, and pH using a design-of-experiment approach. Guidance for the optimization was provided by mathematical models developed for the application-relevant PL parameters, maximum PL wavelength, QY, and PL lifetime as well as the elemental composition in terms of Ag:In:Zn ratio. With these experimental data-based models, MPA:In and Ag:In ratios and pH values were identified as the most important synthesis parameters for PL Control and an insight into the connection of these parameters could be gained. Subsequently, the experimental conditions to synthetize QDs with tunable emission and high QY were predicted. The excellent agreement between the predicted and experimentally found PL features confirmed the reliability of our methodology for the rational design of high quality AIS/ZnS QDs with defined PL features. This approach can be straightforwardly extended to other ternary and quaternary QDs and to doped QDs. KW - Modelling KW - Nanoparticle KW - AIS KW - Semiconductor quantum dot KW - Design of experiment KW - Photoluminescence KW - Quantum yield KW - Surface chemistry KW - Synthesis KW - Lifetime PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510075 DO - https://doi.org/10.1007/s12274-020-2876-8 VL - 13 IS - 9 SP - 2438 EP - 2450 PB - Springer AN - OPUS4-51007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Andresen, Elina A1 - Würth, Christian A1 - Weigert, Florian A1 - Frenzel, Florian T1 - Functional Luminophores – From Photophysics to Standardized Luminescence Measurements N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and short-wave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. These nanomaterials commonly have increasingly sophisticated core/shell particle architectures with shells of different chemical composition and thickness to minimize radiationless deactivation at the particle surface that is usually the main energy loss mechanism [1]. For lanthanide-based spectral shifters, particularly for very small nanoparticles, also surface coatings are needed which protect near-surface lanthanide ions from luminescence quenching by high energy vibrators like O-H groups and prevent the disintegration of these nanoparticles under high dilution conditions. [2,3,4]. The identification of optimum particle structures requires quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield [5,6], ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods [7,8], Moreover, in the case of upconversion nanoparticles with a multi-photonic and hence, excitation power density (P)-dependent luminescence, quantitative luminescence studies over a broad P range are required to identify particle architectures that are best suited for applications in fluorescence assays up to fluorescence microscopy. Here, we present methods to quantify the photoluminescence of these different types of emitters in the vis/NIR/SWIR and as function of P and demonstrate the importance of such measurements for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - Eingeladener Vortrag Uni Erlangen CY - Erlangen, Germany DA - 18.01.2023 KW - Semiconductor quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Reference material KW - Surface analysis KW - Quantification PY - 2023 AN - OPUS4-57011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Zhenlong, F. A1 - Yang, J. A1 - Ansari, A. A1 - Ou, Jun A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Retracted article: Effect of Ca2+ doping on the upconversion luminescence properties of NaYF4:Yb3+/Tm3+ nanoparticles and study of its temperature measurement performance N2 - A solvothermal method was used to prepare a series of Yb3+/Tm3+/Ca2+ co-doped NaYF4 nanoparticles with different Ca2+ contents. Strong upconversion blue fluorescence could be observed under 980 nm laser excitation of the samples. The effect of different Ca2+ contents on the luminescence intensity was investigated, and it was found that the UV-vis upconversion luminescence increased and then decreased with an increasing Ca2+ concentration during the increase of the Ca2+ content from 0 mol% to 25 mol%, reaching the strongest fluorescence at 15 mol%, which was up to about 28 times stronger than that without Ca2+ doping. Furthermore, the mechanism was investigated, and it was found that the doping of Ca2+ disrupted the symmetry of the crystal field, resulting in a significant enhancement of the overall fluorescence. Applied to fluorescence intensity ratio thermometry, the absolute and relative sensitivities are as high as 0.0418 K−1 and 2.31% K−1, respectively, with a minimum temperature resolution of 0.0129 K. KW - Sensor KW - Temperature KW - Lanthanide KW - Luminescence KW - Nanoparticles KW - Upconversion KW - Advanced materials PY - 2022 DO - https://doi.org/10.1039/D2CE00562J SN - 1466-8033 VL - 24 IS - 27 SP - 4887 EP - 4898 PB - Royal Society of Chemistry CY - London AN - OPUS4-56952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, J. A1 - Güttler, Arne A1 - Schneider, T. A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Fluorescence Quantum Yield Standards for the UV/Visible/NIR: Development, Traceable Characterization, and Certification N2 - The rational design of next generation molecular and nanoscale reporters and the comparison of different emitter classes require the determination of the fluorometric key performance parameter fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. Main prerequisites for reliable Φf measurements, which are for transparent luminophore solutions commonly done relative to a reference, i.e., a fluorescence quantum yield standard of known Φf, are reliable and validated instrument calibration procedures to consider wavelength-, polarization-, and time-dependent instrument specific signal contributions, and sufficiently well characterized fluorescence quantum yield standards. As the standard’s Φf value directly contributes to the calculation of the sample’s Φf, its accuracy presents one of the main sources of uncertainty of relative Φf measurements. To close this gap, we developed a first set of 12 fluorescence quantum yield standards, which absorb and emit in the wavelength region of 330−1000 nm and absolutely determined their Φf values with two independently calibrated integrating sphere setups. Criteria for standard selection and the configuration of these novel fluorescence reference materials are given, and the certification procedure is presented including homogeneity and stability studies and the calculation of complete uncertainty budgets for the certified Φf values. The ultimate goal is to provide the community of fluorescence users with available reference materials as a basis for an improved comparability and reliability of quantum yield data since the measurement of this spectroscopic key property is an essential part of the characterization of any new emitter. KW - Optical spectroscopy KW - Traceability KW - Reference product KW - Dye KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Certification KW - Quality assurance PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05530 VL - 95 SP - 5671 EP - 5677 PB - American Chemical Society AN - OPUS4-58151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Labrador-Paez, Lucia, L. A1 - Kankare, J. A1 - Hyppanen, I. A1 - Soukka, T. A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Widengren, J A1 - Liu, H. T1 - Frequency-Domain Method for Characterization of Upconversion Luminescence Kinetics N2 - The frequency-domain (FD) method provides an alternative to the commonly used time-domain (TD) approach in characterizing the luminescence kinetics of luminophores, with its own strengths, e.g., the capability to decouple multiple lifetime components with higher reliability and accuracy. While extensively explored for characterizing luminophores with down-shifted emission, this method has not been investigated for studying nonlinear luminescent materials such as lanthanide-doped upconversion nanoparticles (UCNPs), featuring more complicated kinetics. In this work, employing a simplified rate-equation model representing a standard two-photon energy-transfer upconversion process, we thoroughly analyzed the response of the luminescence of UCNPs in the FD method. We found that the FD method can potentially obtain from a single experiment the effective decay rates of three critical energy states of the sensitizer/activator ions involved in the upconversion process. The validity of the FD method is demonstrated by experimental data, agreeing reasonably well with the results obtained by TD methods. KW - Quality assurance KW - Luminescence KW - Method KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Lifetime KW - Method development PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597435 DO - https://doi.org/10.1021/acs.jpclett.3c00269 SP - 3436 EP - 3444 AN - OPUS4-59743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Design and Quantitative Characterization of Functional Molecular Chromophores and Nanomaterials with UV/vis/NIR/IR Emission – An Overview of Research Activities in Division Biophotonics N2 - In the focus of division Biophotonics are the design, preparation, analytical and spectroscopic characterization, and application of molecular and nanoscale functional materials, particularly materials with a photoluminescence in the visible, near infrared (NIR) and short-wave infrared (SWIR). This includes optical reporters for bioimaging and sensing, security and authentication barcodes, and materials for solid state lighting, energy conversion, and photovoltaics. For the identification of optimum particle structures quantitative spectroscopic studies are performed under application-relevant conditions, focusing on the key performance parameter photoluminescence quantum yield. In addition, simple, cost-efficient, and standardizable strategies for quantifying functional groups on the surface of nano- and microparticles are developed, here with a focus on optical assays and electrochemical titration methods, cross-validated by more advanced methods such as quantitative NMR. In addition, reference materials and reference products are developed for optical methods, particularly luminescence techniques, and for analytical methods utilized for the characterization of nanomaterials. T2 - Projekttreffen Nile-Chrome 2.0 CY - Mainz, Germany DA - 11.12.2023 KW - Fluorescence KW - Quantum yield KW - Optical spectroscopy KW - Reference material KW - Reference data KW - Quality assurance KW - Dye KW - Reference product KW - NIR KW - SWIR KW - Nano KW - Particle KW - Silica KW - Polymer KW - Surface group analysis KW - Sensor molecules PY - 2023 AN - OPUS4-59123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - Behind the Paper - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - In this contribution we highlight the importance of comparison for scientific research while developing a new, functional pH sensor system, and the valuable insights this can provide. KW - Dye KW - Optical Spectroscopy KW - pH probe KW - Silica and Polystyrene Particles KW - Nano KW - Surface groups KW - Safe-by-Design KW - Cell studies KW - Sensors KW - Particle Synthesis KW - Fluorescence PY - 2023 UR - https://communities.springernature.com/posts/dual-color-ph-probes-made-from-silica-and-polystyrene-nanoparticles-and-their-performance-in-cell-studies SP - 1 EP - 2 PB - Springer Nature CY - London AN - OPUS4-59150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Iglesias, C. A1 - Markovina, A. A1 - Nirmalananthan-Budau, N. A1 - Resch-Genger, Ute A1 - Klinger, D. T1 - Optically monitoring the microenvironment of a hydrophobic cargo in amphiphilic nanogels: influence of network composition on loading and release N2 - Amphiphilic nanogels (ANGs) are promising carriers for hydrophobic cargos such as drugs, dyes, and catalysts. Loading content and release kinetics of these compounds are controlled by type and number of hydrophobic groups in the amphiphilic copolymer network. Thus, understanding the interactions between cargo and colloidal carrier is mandatory for a tailor-made and cargo-specific ANG design. To systematically explore the influence of the network composition on these interactions, we prepared a set of ANGs of different amphiphilicity and loaded these ANGs with varying concentrations of the solvatochromic dye Nile Red (NR). Here, NR acts as a hydrophobic model cargo to optically probe the polarity of its microenvironment. Analysis of the NR emission spectra as well as measurements of the fluorescence quantum yields and decay kinetics revealed a decrease in the polarity of the NR microenvironment with increasing hydrophobicity of the hydrophobic groups in the ANG network and dye–dye interactions at higher loading concentrations. At low NR concentrations, the hydrophobic cargo NR is encapsulated in the hydrophobic domains. Increasing NR concentrations resulted in probe molecules located in a more hydrophilic environment, i.e., at the nanodomain border, and favored dye–dye interactions and NR aggregation. These results correlate well with release experiments, indicating first NR release from more hydrophilic network locations. Overall, our findings demonstrate the importance to understand carrier–drug interactions for efficient loading and controlled release profiles in amphiphilic nanogels. KW - Particle KW - Energy transfer KW - Limit of detection KW - Polymer KW - Luminescence KW - Quantitative spectroscopy KW - Nano KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Dye KW - Probe KW - Sensor KW - Nile Red PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601603 DO - https://doi.org/10.1039/d4nr00051j SN - 2040-3364 IS - 16 SP - 9525 EP - 9535 PB - The Royal Society of Chemistry AN - OPUS4-60160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Martynenko, Irina ED - Baimuratov, A. S. ED - Osipova, V. A. ED - Kuznetsova, V. A. ED - Purcell-Milton, F. ED - Rukhlenko, I. D. ED - Fedorov, A. V. ED - Gun'ko, Y. K. ED - Baranov, A. V. T1 - Excitation energy dependence of the photoluminescence quantum yield of core/shell CdSe/CdS quantum dots and correlation with circular dichroism N2 - Quantum dot (QD) based nanomaterials are very promising materials for the fabrication of optoelectronic devices like solar cells, light emitting diodes (LEDs), and photodetectors as well as as reporters for chemo- and biosensing and bioimaging. Many of These applications involve the monitoring of changes in photoluminescence intensity and energy transfer processes which can strongly depend on excitation wavelength or energy. In this work, we analyzed the excitation energy dependence (EED) of the photoluminescence quantum yields (PL QYs) and decay kinetics and the circular dichroism (CD) spectra of CdSe/CdS core/shell QDs with different thicknesses of the surface passivation shell. Our results demonstrate a strong correlation between the spectral position of local maxima observed in the EED of PL QY and the zero-crossing points of the CD profiles. Theoretical analysis of the energy band structure of the QDs with effective mass approximation suggests that these structures could correspond to exciton energy levels. This underlines the potential of CD spectroscopy for the study of electronic energy structure of chiroptically active nanocrystals which reveal quantum confinement effects. KW - Fluorescence KW - Semiconductor KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Lifetime KW - Nanocrystal KW - Cysteine KW - Thiol KW - Ligand KW - Quantum dot KW - CdSe KW - Exciton KW - Circular dichroism KW - Theory KW - Excitation spectra KW - Excitation energy dependence PY - 2017 DO - https://doi.org/10.1021/acs.chemmater.7b04478 SN - 0897-4756 SN - 1520-5002 VL - 30 IS - 2 SP - 465 EP - 471 PB - ACS Publications AN - OPUS4-44034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Wegmann, Marc A1 - Hannemann, M. A1 - Somma, V. A1 - Jochum, T. A1 - Niehaus, J. A1 - Roggenbuck, D. T1 - Automated determination of genotoxicity of nanoparticles with DNA-based optical assays - The NANOGENOTOX project N2 - The overall interest in nanotoxicity, triggered by the increasing use of nanomaterials in the material and life sciences, and the synthesis of an ever increasing number of new functional nanoparticles calls for standardized test procedures1,2 and for efficient approaches to screen the potential genotoxicity of these materials. Aiming at the development of fast and easy to use, automated microscopic methods for the determination of the genotoxicity of different types of nanoparticles, we assess the potential of the fluorometric γH2AX assay for this purpose. This assay, which can be run on an automated microscopic detection system, relies on the detection of DNA double strand breaks as a sign for genotoxicity3. Here, we provide first results obtained with broadly used nanomaterials like CdSe/CdS and InP/ZnS quantum dots as well as iron oxide, gold, and polymer particles of different surface chemistry with previously tested colloidal stability and different cell lines like Hep-2 and 8E11 cells, which reveal a dependence of the genotoxicity on the chemical composition as well as the surface chemistry of these nanomaterials. These studies will be also used to establish nanomaterials as positive and negative genotoxicity controls or standards for assay performance validation for users of this fluorometric genotoxicity assay. In the future, after proper validation, this microscopic platform technology will be expanded to other typical toxicity assays. T2 - SPIE 2018 CY - San Francisco, USA DA - 27.01.2018 KW - Nanoparticle KW - Fluorescence KW - Surface chemistry KW - Size KW - Assay KW - Microscopy KW - Nanotoxicity KW - Toxicity KW - Automation KW - Calibration KW - Standard PY - 2018 AN - OPUS4-44186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, K. A1 - Liu, H. A1 - Kraft, Marco A1 - Shikha, S. A1 - Zheng, X. A1 - Agren, H. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Zhang, Y. T1 - A protected excitation-energy reservoir for efficient upconversion luminescence N2 - Lanthanide-doped upconversion nanoparticles (UCNPs) are of great interest for biomedical applications. Currently, the applicability of UCNP bionanotechnology is hampered by the generally low luminescence intensity of UCNPs and inefficient energy Transfer from UCNPs to surface-bound chromophores used e.g. for photodynamic therapy or analyte sensing. In this work, we address the low-Efficiency issue by developing versatile core-Shell nanostructures, where high-concentration sensitizers and activators are confined in the core and Shell Region of representative hexagonal NaYF2:Yb,Er UCNPs. After Doping concentration optimization, the sensitizer-rich core is able to harvest/accumulate more excitation energy and generate almost one order of Magnitude higher luminescence intesity than conventional homogeneously doped nanostructures. At the same time, the activator Ions located in the Shell enable a ~6 times more efficient resonant energy Transfer from UCNPs to surface-bound acceptor dye molecules due to the short distance between donor-acceptor pairs. Our work provides new insights into the rational design of UCNPs and will greatly encrease the General applicability of upconversion nanotechnologies. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield KW - Integrating sphere spectroscopy KW - Method KW - Energy transfer KW - Shell KW - Particle architecture PY - 2017 DO - https://doi.org/10.1039/c7nr06900f SN - 2040-3372 SN - 2040-3364 VL - 10 IS - 1 SP - 250 EP - 259 PB - The Royal Society of Chemistry AN - OPUS4-43893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Scholz, Norman ED - Behnke, Thomas T1 - Determination of the critical micelle concentration of neutral and ionic surfactants with fluorometry, conductometry, and surface tension - a method comparison N2 - Micelles are of increasing importance as versatile carriers for hydrophobic substances and nanoprobes for a wide range of pharmaceutical, diagnostic, medical, and therapeutic applications. A key Parameter indicating the Formation and stability of micelles is the critical micelle concentration (CMC). In this respect, we determined the CMC of common anionic, cationic, and non-ionic surfactants fluorometrically using different fluorescent probes and fluorescence Parameters for Signal detection and ompared the results with conductometric and surface Tension measurements. Based upon These results, requirements, Advantages, and pitfalls of each methods are discussed. Our study underlines the versatility of fluorometric methods that do not impose specific requirements on surfactants and are especially suited for the quantification of very low CMC values. Conductivity and surface Tension measurements yield smaller uncertainties particularly for high CMC values, yet are more time- and substance consuming and not suitable for every surfactant. KW - Fluorescence KW - Methods KW - Critical micelle concentration (CMC) KW - Conductometry KW - Fluorescence probe KW - Dye KW - Nile Red KW - Pitfalls KW - Method evaluation KW - Uncertainty PY - 2017 DO - https://doi.org/10.1007/s10895-018-2209-4 SN - 1053-0509 SN - 1573-4994 VL - 28 IS - 1 SP - 465 EP - 476 AN - OPUS4-43905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kraft, Marco A1 - Kaiser, Martin A1 - Radunz, Sebastian A1 - Muhr, V. A1 - Hirsch, T. T1 - Effect of particle architecture, dopant concentration, size, and excitation power density on the luminescence efficiency of upconversion nanocrystals N2 - Lanthanide-based upconversion nanoparticles (UCNPs) offer new strategies for luminescence-based sensing and imaging. One of the best studied materials are hexagonal ß-NaYF4 UCNPs doped with 20% Yb3+ and 2% Er3+, which efficiently convert 976 nm light to photons emitted at 540 nm, 655 nm, and 845 nm, respectively, reveal Long luminescence lifetimes (> 100 µs), and are very photostable and chemically inters.[1,2] The properties of their upconversion (UC) luminescence (UCL) are, however, strongly influenced by particle size, concentration and spatial arrangement of dopant Ions, surface chemistry, and microenvironment.[3,4] In addition, the multiphotonic absorption processes responsible for UCL render UCL dependent on excitation power density (P). The rational design of brighter UCNPs particle architectures encouraged us to assess systematically the influence of these parameters on UCL for differently doped UCNPs relying on the commonly used ß-NaYf4 matrix using steady state and time resolved fluorometry as well as integrating sphere spectroscopy for P varied over almost three orders of magnitude. This includes comprehensive studies of the influence of size and shell, Yb3+ and Er3+ dopand concentrations, and energy Transfer processes from UCNPs to surface-bound organic dyes or vice versa [5]. Our results underline the need for really quantitative luminescence studies for mechanistic insights, the potential of high p to compensate for UCL surface quenching, and the matrix- and P-dependence of the optimum dopand concentration. T2 - BIOSPIE 2018 CY - San Francisco, USA DA - 27.01.2018 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Modeling KW - Size PY - 2018 AN - OPUS4-43939 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Geißsler, Daniel A1 - Behnke, Thomas A1 - Schneider, Ralf T1 - Simple and versatile methods for quantifying functional groups, ligands, and biomolecules on nanomaterials N2 - Many applications of nanomaterials in the life sciences require the controlled functionalization of these materials with ligands like polyethylene glycol (PEG) and/or biomolecules such as peptides, proteins, and DNA. This enables to tune their hydrophilicity and biocompatibility, minimize unspecific interactions, improve biofunction-nalization efficiencies, and enhance blood circulation times and is the ultimate prerequisite for their use as reporters in assays or the design of targeted optial probes for bioimaging. At the core of these functionalization strategies are reliable and validated methods for surface group and ligand quantification that can be preferably performed with routine laboratory instrumentation, require only small amounts of substances, and are suitable for many different types of nanomaterials. We present here versatile and simple concepts for the quantification of common functional groups, ligands, and biomolecules on different types of organic and inorganic nano-materials, using different types of optical reporters and method validation with the aid of multimodal reporters and mass balances. T2 - RSC Symposium on Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - PEG ligands KW - Surface group analysis KW - Upconverting nanoparticles KW - Integrating sphere spectroscopy KW - Absolute fluorescence quantum yield KW - Fluorescence decay kinetics PY - 2018 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-44986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Resch-Genger, Ute ED - Schäferling, Michael T1 - Luminescent nanoparticles for chemical sensing and imaging N2 - The implementation of fluorescent methods is of outstanding importance in the field of optical chemical sensor Technology and biosciences. Their bioanalytical applications are manifold including fluorescence microscopy, fluorescence in situ hybridization, DNA sequencing, fluorescence-activated cell sorting, immunoassays, analysis of DNA and Protein microarrays, and quantitative PCR, just to name a few examples. Particularly, fluorescence microscopy is a valuable method in the versatile field of biomedical imaging methods which nowadays utilizes different fluorescence Parameters like emission wavelength/Color and lifetime for the discrimination between different targets. Sectional Images are available with confocal microscopes. Tissue, cells or single cellular compartments can be stained and visualized with fluorescent dyes and biomolecules can be selectively labeled with fluorescent dyes to Monitor biomolecular interactions inside cells or at Membrane bound receptors. On the other hand , fluorophores can act as indicator (or "molecular probe") to visualize intrinsically colorless and non-fluorescent ionic and neutral analytes such as pH, Oxygen (pO2), metal ions, anions, hydrogen peroxide or bioactive small organic molecules such as Sugars or nucleotides. Thereby, their photoluminescent properties (fluorescence or phoporescence intensity, exitation and/or Emission wavelength, emission lifetime or anisotropy) respond to the presence of these species in their immediate Environment. In general, the use of luminescent probes has the advantage that they can be delivered directly into the sample, and detected in a contactless remote mode. By now, these probes are often encapsulated in different types of nanoparticles (NPs) made from (biodegradable) organic polymers, biopolymers or inorganic materials like silica or bound to their surface. KW - Fluorescence KW - Upconversion KW - NIR KW - Sensor KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Liftetime KW - Nanocrystal KW - Lanthanide KW - Semiconductor KW - Polymer KW - Silica KW - Imaging KW - Application KW - Dye KW - Quantum dot PY - 2017 SN - 978-3-319-48260-6 SN - 978-3-319-48259-0 DO - https://doi.org/10.1007/978-3-319-48260-6_5 SN - 1573-8086 SP - 71 EP - 109 PB - SPRINGER INTERNATIONAL PUBLISHING AG CY - Cham, Schweiz AN - OPUS4-44011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. T1 - Aufwärtskonvertierende NaYF4:Yb,Er/NaYF4‐Kern/Schale‐Nanokristalle mit hoher Lumineszenzquantenausbeute N2 - Eine modifizierte Syntheseroute auf der Basis wasserfreier Seltenerdacetate wurde zur Synthese aufwärtskonvertierender Kern/Schale‐Nanokristalle mit mittleren Größen zwischen 15 bis 45 nm eingesetzt. Die nahezu monodispersen Partikel bestehen aus einem NaYF4:Yb,Er‐Kern, dotiert mit 18 % Yb3+ und 2 % Er3+, und einer inerten Schale aus NaYF4, wobei die Dicke der Schale dem jeweiligen Radius des Kernpartikels entspricht. Absolutmessungen der Photolumineszenz‐Quantenausbeuten bei verschiedenen Anregungsleistungsdichten zeigen, dass die Quantenausbeuten von 45 nm Kern/Schale‐Partikeln schon fast an die Quantenausbeute des mikrokristallinen aufwärtskonvertierenden Leuchtstoffs heranreichen. Kleinere Kern/Schale‐Partikel, die nach der gleichen Methode hergestellt wurden, zeigen nur eine moderate Abnahme der Quantenausbeute. Beispielsweise ist die Quantenausbeute von 15 nm großen Kern/Schale‐Partikeln bei hohen Leistungsdichten (100 W cm−2) nur um einen Faktor drei kleiner als die des mikrokristallinen Leuchtstoffpulvers und um ungefähr einen Faktor 10 kleiner bei niedrigen Leistungsdichten (1 W cm−2). KW - Nicht lineare Prozesse KW - Nanopartikel KW - Quantenausbeute PY - 2018 DO - https://doi.org/10.1002/ange.201803083 VL - 130 IS - 28 SP - 8901 EP - 8905 PB - Wiley VCH Verlag AN - OPUS4-45573 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. T1 - NaYF4:Yb,Er/NaYF4 Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield N2 - Upconversion core/shell nanocrystals with different mean sizes ranging from 15 to 45 nm were prepared via a modified synthesis procedure based on anhydrous rare‐earth acetates. All particles consist of a core of NaYF4:Yb,Er, doped with 18 % Yb3+ and 2 % Er3+, and an inert shell of NaYF4, with the shell thickness being equal to the radius of the core particle. Absolute measurements of the photoluminescence quantum yield at a series of different excitation power densities show that the quantum yield of 45 nm core/shell particles is already very close to the quantum yield of microcrystalline upconversion phosphor powder. Smaller core/shell particles prepared by the same method show only a moderate decrease in quantum yield. The quantum yield of 15 nm core/shell particles, for instance, is reduced by a factor of three compared to the bulk upconversion phosphor at high power densities (100 W cm−2) and by approximately a factor of 10 at low power densities (1 W cm−2). KW - Core shell structure KW - Upconversion KW - Non lienear processes KW - Nanoparticle KW - Quantum yield PY - 2018 DO - https://doi.org/10.1002/anie.201803083 VL - 57 IS - 28 SP - 8765 EP - 8769 PB - Wiley-VCH AN - OPUS4-45574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saleta Reig, D. A1 - Grauel, Bettina A1 - Konyushkin, V. A. A1 - Nakladov, A. N. A1 - Federov, P. P. A1 - Busko, D. A1 - Howard, I. A. A1 - Richards, B. S. A1 - Resch-Genger, Ute A1 - Kuznetsov, S. V. A1 - Turshatov, A. A1 - Würth, Christian T1 - Upconversion properties of SrF2:Yb3+,Er3+ single N2 - Synthesis of new upconversion (UC) materials that can convert near-infrared excitation light into visible emission light with high efficiency has crucial importance for energy and bio-applications. Herein, SrF2 single crystals with a doping concentration of 2 mol% Er3+ and 2–8 mol% Yb3+ were synthesized and the optical properties were studied. The absorption cross-section of the different doping ions was calculated. To identify the most efficient and brightest material absolute excitation power dependent UC photoluminescence quantum yields (ϕUC) and brightness values were determined. In addition, excitation characteristics and luminescence lifetimes were analysed to understand the changes in population pathways and possible quenching mechanisms. A dominant two-photon population behaviour of the red and green emission bands was observed for all investigated doping concentrations of Yb3+ and Er3+. The ϕUC value of 6.5% measured using 230 W cm−2 of 976 nm excitation for SrF2 crystal co-doped with 2 mol% Er3+ and 3 mol% Yb3+. These findings broaden the scope of efficient UC materials apart from the record UC material β-NaYF4:Yb3+, Er3+ and provide benchmark values for cubic-phase and especially SrF2- nano and micrometer sized materials. KW - Luorescence KW - Upconversion KW - Crystal KW - Lanthanide KW - Quantum yield KW - Absolute KW - Lifetime KW - Er(III) KW - Quality assurance KW - Fluorescence standard KW - SrF2 PY - 2020 DO - https://doi.org/10.1039/c9tc06591a VL - 8 IS - 12 SP - 4093 EP - 4101 PB - Journal of Materials Chemistry C AN - OPUS4-50825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute T1 - Fluorescence calibration standards made from broadband emitters encapsulated in polymer beads for fluorescence microscopy and flow cytometry N2 - We present here the design and characterization of a set of spectral calibration beads. These calibration beads are intended for the determination and regular control of the spectral characteristics of fluorescence microscopes and other fluorescence measuring devices for the readout of bead-based assays. This set consists of micrometer-sized polymer beads loaded with dyes from the liquid Calibration Kit Spectral Fluorescence Standards developed and certified by BAM for the wavelength-dependent Determination of the spectral responsivity of fluorescencemeasuring devices like spectrofluorometers. To cover the wavelength Region from 400 to 800 nm, two new near-infrared emissive dyes were included, which were spectroscopically characterized in solution and encapsulated in the beads. The resulting set of beads presents the first step towards a new platform of spectral calibration beads for the determination of the spectral characteristics of fluorescence instruments like fluorescence microscopes, FCM setups, and microtiter plate readers, thereby meeting the increasing demand for reliable and comparable fluorescence data especially in strongly regulated areas, e.g., medical diagnostics. This will eventually provide the basis for standardized calibration procedures for imaging systems as an alternative to microchannel slides containing dye solutions previously reported by us. KW - Fluorescence standard KW - Fluorescence KW - Dye KW - Microscopy KW - Bead KW - Particle KW - NIR KW - calibration KW - Quality assurance KW - Traceability PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508117 DO - https://doi.org/10.1007/s00216-020-02664-y SN - 1618-2642 VL - 412 IS - 24 SP - 6499 EP - 6507 PB - Springer AN - OPUS4-50811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyerhofer, F. A1 - Dissinger, F. A1 - Weigert, Florian A1 - Jungclaus, J. A1 - Müller-Caspary, K. A1 - Waldvogel, S. R. A1 - Resch-Genger, Ute A1 - Voss, T. T1 - Citric Acid Based Carbon Dots with Amine Type Stabilizers: pHSpecific N2 - We report the synthesis and spectroscopic characteristics of two different sets of carbon dots (CDs) formed by hydrothermal reaction between citric acid and polyethylenimine (PEI) or 2,3-diaminopyridine (DAP). Although the formation of amide-based species and the presence of citrazinic acid type derivates assumed to be responsible for a blue emission is confirmed for both CDs by elemental analysis, infrared spectroscopy, and mass spectrometry, a higher abundance of sp2-hybridized nitrogen is observed for DAP-based CDs, which causes a red-shift of the n-π* absorption band relative to the one of PEI-based CDs. These CD Systems possess high photoluminescence quantum yields (QY) of ∼40% and ∼48% at neutral pH, demonstrating a possible tuning of the optical properties by the amine precursor. pH-Dependent spectroscopic studies revealed a drop in QY to < 9% (pH ∼ 1) and < 21% (pH ∼ 12) for both types of CDs under acidic and basic conditions. In contrast, significant differences in the pHdependency of the n-π* transitions are found for both CD types which are ascribed to different (de)protonation sequences of the CD-specific fluorophores and functional groups using Zeta potential analysis. KW - Fluorescence KW - Particle KW - Nano KW - Surface group analysis KW - Carbon dot KW - C-dot KW - Fluorescent probe KW - Quantum yield KW - Synthesis KW - IR KW - MS KW - Polymer KW - Ligand PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.9b11732 VL - 124 IS - 16 SP - 8894 EP - 8904 PB - American Chemical Society AN - OPUS4-50813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Güttler, Arne A1 - Kaiser, Martin A1 - Hatami, Soheil A1 - Resch-Genger, Ute T1 - Methods for the calibration of fluorescence setups and measurement of photoluminescence quantum yields N2 - Photoluminescence techniques are amongst the most widely used tools in the material and life sciences, with new and exciting applications continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for multiplexing, remote sensing, and miniaturization. Generally recognized drawbacks, however, are signals, that contain unwanted wavelength- and polarization contributions from instrument-dependent effects, which are also time-dependent due to aging of instrument-components, and difficulties to measure absolute fluorescence intensities, thus rendering the use of intensity standards mandatory for quantification. Recent developments in fluorescence-based assays in clinical, pharmaceutical, biotechnological and other areas, in conjunction with the increasing need for instrument performance validation and global trends to harmonize measurements have boosted the demand for robust, easy-to-use, readily-available, reliable, and well documented fluorescence standards. This includes e.g. fluorescence standards for the consideration of instrument-specific spectral and intensity distortions of measured signals and instrument performance validation as well as fluorescence intensity standards for the quantification from measured intensities and for signal refencing, thereby accounting for excitation light-induced intensity fluctuations. Moreover, there is an ever increasing need for fluorescence quantum yield standards with well known and preferably certified quantum yields. Moreover, although already challenging for the UV/vis/NIR spectral region, there is an increasing interest particularly by the fluorescence imaging community to expand the waveelngth region applied from the NIR to measurements > 1000 nm. Presently, there are no fluorescence standards for this wavelength region available, rendering the control of instrument calibration in this wavelength region basically impossible. In this respect, we present reliable and validated procedures for the calibration of fluorescence measuring devices from 300 nm to 1700 nm using different types of physical and chemical standards. Moreover, a new set of fluorescence quantum yield standards covering the UV/vis/NIR is been introduced that is currently under certification at BAM. T2 - Arbeitskreis, Mass Spectrometry Facility CY - University of Berkeley, CA, USA DA - 13.02.2016 KW - pharmaceutical KW - biotechnological PY - 2016 AN - OPUS4-35842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Levchuk, I. A1 - Würth, Christian A1 - Krause, F. A1 - Osvet, A. A1 - Batentschuk, M. A1 - Resch-Genger, Ute A1 - Kolbeck, C. A1 - Herre, P. A1 - Steinrück, H.P. A1 - Peukert, W. A1 - Brabec, C. J. T1 - Industrially scalable and cost-effective Mn2+ doped ZnxCd1-xS/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics N2 - We present colloidally stable and highly luminescent ZnxCd1_xS:Mn/ZnS core–shell nanocrystals (NCs) synthesized via a simple non-injection one-pot, two-step synthetic route, which can be easily upscaled. A systematic variation of the reaction component, parameters and thickness of the ZnS shell yielded doped nanocrystals with a very high photoluminescence quantum yield (pl) of 70%, which is the highest value yet reported for these Mn-doped sulfide-semiconductor NCs. These materials can be synthesized with high reproducibility in large quantities of the same high quality, i.e., the same pl using accordingly optimized reaction conditions. The application of these zero-reabsorption high quality NCs in the light conversion layers, deposited on top of a commercial monocrystalline silicon (mono-Si) solar cell, led to a significant enhancement of the external quantum efficiency (EQE) of this device in the ultraviolet spectral region between 300 and 400 nm up to ca. 12%. EQE enhancement is reflected by an increase in the power conversion efficiency (PCE) by nearly 0.5 percentage points and approached the theoretical limit (0.6%) expected from down-shifting for this Si solar cell. The resulting PCE may result in a BoM (bill of materials) cost reduction of app. 3% for mono-Si photovoltaic modules. Such small but distinct improvements are expected to pave the road for an industrial application of doped semiconductor NCs as cost-effective light converters for silicon photovoltaic (PV) and other optoelectronic applications. KW - photovoltaics KW - solar cell KW - photoluminescence quantum yield KW - nanocrystals PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-358594 DO - https://doi.org/10.1039/c5ee03165f VL - 9 SP - 1083 EP - 1094 PB - The Royal Society of Chemistry CY - Cambridge, England AN - OPUS4-35859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radunz, Sebastian A1 - Kraus, Werner A1 - Bischoff, F. A. A1 - Emmerling, Franziska A1 - Resch-Genger, Ute A1 - Tschiche, Harald T1 - Temperature- and Structure-Dependent Optical Properties and Photophysics of BODIPY Dyes N2 - We report on the temperature- and structural-dependent optical properties and photophysics of a set of boron dipyrromethene (BODIPY) dyes with different substitution patterns of their meso-aryl subunit. Single-crystal Xray diffraction analysis of the compounds enabled a classification of the dyes into a sterically hindered and a unhindered group. The steric hindrance refers to a blocked rotational motion of the aryl subunit around the bond connecting this moiety to the meso-position of the BODIPY core. The energy barriers related to this rotation were simulated by DFT calculations. As follows from the relatively low rotational barrier calculated to about 17 kcal/mol, a free rotation is only possible for sterically unhindered compounds. Rotational barriers of more than 40 kcal/mol determined for the sterically hindered compounds suggest an effective freezing of the rotational motion in These molecules. With the aid of temperature-dependent spectroscopic measurements, we could show that the ability to rotate directly affects the optical properties of our set of BODIPY dyes. This accounts for the strong temperature dependence of the fluorescence of the sterically unhindered compounds which show a drastic decrease in fluorescence quantum yield and a significant shortening in fluorescence lifetime upon heating. The optical properties of the sterically hindered compounds, however, are barely affected by temperature. Our results suggest a nonradiative deactivation of the first excited singlet state of the sterically unhindered compounds caused by a conical intersection of the potential energy surfaces of the Ground and first excited state which is accessible by rotation of the meso-subunit. This is in good agreement with previously reported deactivation mechanisms. In addition, our results suggest the presence of a second nonradiative depopulation pathway of the first excited singlet state which is particularly relevant for the sterically hindered compounds. KW - Fluorescence KW - Sensor KW - Switch KW - pH KW - BODIPY KW - Dye KW - Probe KW - Synthesis KW - Photophysics KW - Mechanism PY - 2020 DO - https://doi.org/10.1021/acs.jpca.9b11859 SN - 1089-5639 VL - 124 IS - 9 SP - 1787 EP - 1797 PB - American Chemical Society AN - OPUS4-50639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Wang, Cui A1 - You, Y. A1 - Förster, C. A1 - Schubert, H. A1 - Heinze, K. A1 - Seitz, M. T1 - NIR-NIR-Aufkonvertierung in molekularen Chrom-Ytterbium-Salzen N2 - Photonen-Aufkonvertierung in hetero-oligonuklearen, Metallkomplex-Architekturen mit organischen Liganden ist ein interessantes, aber bisher selten beobachtetes Phänomen, trotz des großen Potentials sowohl aus Sicht der Grundlagenforschung als auch aus der Anwendungsperspektive. Nun wurde ein neues photonisches Material aus molekularen Chrom(III)- und Ytterbium(III)-Komplexionen entwickelt. Dieses zeigt im Festkörper bei Raumtemperatur abhängig von der Anregungsleistungsdichte nach Anregung des 2F7/2! 2F5/2-3berganges des Ytterbiums bei ca. 980 nm eine kooperative Sensibilisierung der Chrom(III)-zentrierten 2E/2T1-Phosphoreszenz bei ca. 775 nm. Der Aufkonvertierungsprozess ist unempfindlich gegenüber Luftsauerstoff und kann in Gegenwart von Wassermolekülen im Kristallgitter beobachtet werden. KW - Crystal KW - Sensor KW - NIR KW - Yb(III) complex KW - Cr(III) KW - Upconversion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517217 DO - https://doi.org/10.1002/ange.202007200 VL - 132 IS - 42 SP - 18804 EP - 18808 PB - Angewandte Chemie AN - OPUS4-51721 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rietsch, P. A1 - Sobottka, S. A1 - Hoffmann, K. A1 - Popov, A. A. A1 - Hildebrandt, P. A1 - Sarkar, B. A1 - Resch-Genger, Ute A1 - Eigler, S. T1 - Between Aromatic and Quinoid Structure: A Symmetrical UV to Vis/NIR Benzothiadiazole Redox Switch N2 - Reversibly switching the light absorption of organic molecules by redox processes is of interest for applications in sensors, light harvesting, smart materials, and medical diagnostics. This work presents a symmetrical benzothiadiazole (BTD) derivative with a high fluorescence quantum yield in solution and in the crystalline state and shows by spectroelectrochemical analysis that reversible switching of UV absorption in the neutral state, to broadband Vis/NIR absorption in the 1st oxidized state, to sharp band Vis absorption in the 2nd oxidized state, is possible. For the one-electron oxidized species, formation of a delocalized radical is confirmed by electron paramagnetic resonance spectroelectrochemistry. Furthermore, our results reveal an increasing quinoidal distortion upon the 1st and 2nd oxidation, which can be used as the leitmotif for the development of BTD based redox switches. KW - Dye KW - Electrochemistry KW - Switch KW - Redox KW - Sensor KW - Photophysics KW - Quantum yield KW - photoluminescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517222 DO - https://doi.org/10.1002/chem.202004009 VL - 26 IS - 72 SP - 17361 EP - 17365 PB - Wiley-VCH GmbH AN - OPUS4-51722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Grabolle, Markus A1 - Starke, M. T1 - Highly fluorescent dye-nanoclay hybrid materials made from different dye classes N2 - Nanoclays like laponites, which are commercially avaible in large quantities for a very moderate price, provide a facile solubilization strategy for hydrophobic dyes without the need for chemical functionalization and can act as a carrier for a high number of dye molecules. This does not require reactive dyes, amplifies fluorescence signals from individual emitters due to the high number of dyes molecules per laponite disk, and renders hydrophobic emitters applicable in aqueous environments. Aiming at the rational design of bright dye-loaded nanoclays as a new class of fluorescent reporters for bioanalysis and material sciences and the identification of dye structure−property relationships, we screened a series of commercial fluorescent dyes, differing in dye class, charge, and character of the optical transitions involved, and studied the changes of their optical properties caused by clay adsorption at different dye loading concentrations. Upon the basis of our dye loading density-dependent absorption and fluorescence measurements with S2105 and Lumogen F Yellow 083, we could identify two promising dye−nanoclay hybrid materials that reveal high fluorescence quantum yields of the nanoclay-adsorbed dyes of at least 0.20 and low dye self-quenching even at high dye-loading densities of up to 50 dye molecules per laponite platelet. KW - nanoclay KW - laponite KW - fluorescence KW - organic dye KW - carrier system KW - fluorescent reporter KW - screening PY - 2016 DO - https://doi.org/10.1021/acs.langmuir.5b04297 SN - 0743-7463 VL - 2016 IS - 32 SP - 3506 EP - 3513 PB - Amer Chemical SOC CY - Washington, DC, USA AN - OPUS4-36511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardization of fluorescence measurements: Design, development, validation, and fabrication of format-adaptable fluorescence standards for intensity, spectral, and temporal quantities N2 - Photoluminescence techniques are amongst the most widely used tools in the material and life sciences, with new and exciting applications continuously emerging, due to their many advantages like comparative ease of use, unique sensitivity, non-invasive character, and potential for multiplexing, remote sensing, and miniaturization. Drawbacks are , however, signals, that contain unwanted wavelength- and polarization contributions from instrument-dependent effects, which are time-dependent due to the aging of instrument components, and difficulties to measure absolute fluorescence intensities. Thus, there is a considerable need for standards for intensity, spectral, and temporal fluorescence quantities to meet the increasing need for instrument performance validation and global trends to harmonize physicochemical measurements. In this respect, instrument calibration strategies together with different types of fluorescence standards are presented as well as design concepts for robust, easy-to-use, and format-adaptable fluorescence standards useable for the determination of different fluorescence parameters and a broad variety of fluorescence techniques. T2 - SALSA-Kolloquien CY - Berlin, Germany DA - 07.06.2016 KW - Fluorescence KW - Standard KW - Quality assurance KW - Spectral correction KW - Quantum yield PY - 2016 AN - OPUS4-37070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Behnke, Thomas A1 - Moser, Marko A1 - Quevedo, Pablo A1 - Nirmalananthan-Budau, Nithiya A1 - Weigert, Florian A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Ermilov, Eugeny A1 - Pauli, Jutta T1 - Simple methods, validation concepts, and reference materials for the characterization of functional nanomaterials and microparticles N2 - The surface chemistry / functionalization of nanomaterials and microparticles largely controls the stability of these materials as well as their solubility and subsequent biofunctionalization and their interactions with biological systems. Moreover, in the case of some nanomaterials like semiconductor quantum dots or lanthanide-based upconversion nanocrystals, the ligand shell strongly affects their optical properties, e.g., via passivation of surface states and traps that favor luminescence quenching or the protection of surface atoms from quenching water molecules. This renders analytical methods for the quantification of surface groups like functionalities very important. Targets of broad interest are here amino, carboxyl, alkine and maleimide groups used for common bioconjugation reactions and typical ligands like thiols and polyethylene glycol (PEG) molecules of varying length, used for the tuning of material hydrophilicity and biocompatibility, minimization of unspecific interactions, prevention of biofouling, and enhancement of blood circulation times as well as surface-bound biomolecules like streptavidin or other biomolecules relevant e.g., for diagnostic assays. Here, we focus on simple optical methods relying on standard laboratory instrumentation, validated by method comparison and/or mass balances and present examples for their use for the characterization of different types of nanomaterials and microparticles. T2 - Innovationsforum Senftenberg CY - Senftenberg, Germany DA - 01.06.2016 KW - Surface chemistry KW - Functional group analysis KW - Thiol assay KW - Fluorescence KW - Nanomaterial KW - Nanoparticle KW - PEG KW - Ligand KW - Semiconductor quantum dot KW - Quantum yield KW - Quantification KW - Method validation KW - Integrating sphere spectroscopy KW - Fluorescence standard PY - 2016 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-37111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Applications and challenges of luminescence-based detection methods in the life and material sciences N2 - Luminescence-based detection methods, ranging from fluorescence spectroscopy for photophysical and mechanistic studies over sensing applications, chromatographic separation techniques and the microarray technology with fluorescence detection to fluorescence microscopy, flow cytometry, single molecule spectroscopy, and molecular imaging to integrating sphere spectroscopy, are among the most widely used methods in the life and material sciences. This is due to e.g., their unique sensitivity enabling the detection of single molecules, potential for multiplexing, ease of combination with spatial resolution, and suitability for remote sensing. Many of these advantages are closely linked to the choice of suitable molecular and nanoscale fluorescent reporters, typically required for signal generation. This includes organic dyes without and with sensor function, fluorophore-encoded polymeric and silica nanoparticles as well as nanocrystalline systems like semiconductor quantum dots and upconversion phosphors, emitting in the visible (vis), near-infrared (NIR), and IR (infrared). Current challenges present the environment sensitivity of most fluorophores, rendering fluorescence spectra, measured intensities/fluorescence quantum yields, and fluorescence decay kinetics matrix-dependent, and instrument-specific distortions of measured fluorescence signals that need to be considered for quantification and comparability of data, particularly fluorescence spectra. Here, current applications of luminescence-based methods and different types of reporters will be presented. In this context, suitable spectroscopic tools for the characteri-zation of the optical properties of fluorescent reporters and fluorophore-encoded microparticles, analytical tools for the determination of the surface chemistry of different types of particles, and different multiplexing strategies will be discussed. T2 - 9th Meeting of Engineering of Functional Interfaces CY - Wildau,Germany DA - 03.07.2016 KW - Fluorescence KW - Multiplexing KW - Lifetime KW - Nanomaterial KW - Nanoparticle KW - PEG KW - Ligand KW - Semiconductor quantum dot KW - Quantum yield KW - Quantification KW - Upconversion nanoparticle KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence standard KW - Calibration PY - 2016 AN - OPUS4-37112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koshkina, Olga A1 - Westmeier, D. A1 - Lang, Thomas A1 - Bantz, C. A1 - Hahlbrock, A. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Braun, Ulrike A1 - Thiermann, Raphael A1 - Weise, C. A1 - Eravci, M. A1 - Mohr, B. A1 - Schlaad, H. A1 - Stauber, R. H. A1 - Docter, D. A1 - Bertin, Annabelle A1 - Maskos, M. T1 - Tuning the surface of nanoparticles: Impact of poly(2-ethyl-2-oxazoline) on protein adsorption in serum and cellular uptake N2 - Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2-ethyl-2-oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated nanoparticles versus nanoparticles coated with poly(ethylene glycol) (PEG) and non-coated positively and negatively charged nanoparticles are compared. Therefore, fluorescent poly(organosiloxane) nanoparticles of 15 nm radius are synthesized, which are used as a scaffold for surface modification in a grafting onto approach. With multi-angle dynamic light scattering, asymmetrical flow field-flow fractionation, gel electrophoresis, and liquid chromatography-mass spectrometry, it is demonstrated that protein adsorption on PEtOxylated nanoparticles is extremely low, similar as on PEGylated nanoparticles. Moreover, quantitative microscopy reveals that PEtOxylation significantly reduces the non-specific cellular uptake, particularly by macrophage-like cells. Collectively, studies demonstrate that PEtOx is a very effective alternative to PEG for stealth modification of the surface of nanoparticles. KW - Poloxazolines KW - Protein corona KW - Cellular uptake PY - 2016 DO - https://doi.org/10.1002/mabi.201600074 SN - 1616-5187 SN - 1616-5195 VL - 16 IS - 9 SP - 1287 EP - 1300 AN - OPUS4-37369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Sloniec-Myszk, Jagoda ED - Hennig, Andreas T1 - Chiral, J-aggregate-forming dyes for alternative signal modulation mechanisms in self-immolative enzyme-activatable optical probes N2 - Enzyme-activatable optical probes are important for future advances in cancer imaging, but may easily suffer from low signal-to-background ratios unless not optimized. To address this shortcoming, numerous mechanisms to modulate the fluorescence signal have been explored. We report herein newly synthesized probes based on selfimmolative linkers containing chiral J-aggregate-forming dyes. Signal modulation by formation of chiral J-aggregates is yet unexplored in optical enzyme probe design. The comprehensive characterization of the probes by absorption, CD, fluorescence, and time-resolved fluorescence spectroscopy revealed dye−dye interactions not observed for the free dyes in solution as well as dye−protein interactions with the enzyme. This suggested that J-aggregate formation is challenging to achieve with current probe design and that interactions of the dyes with the Enzyme may interfere with achieving high signal-to-background ratios. The detailed understanding of the interactions provided herein provides valuable guidelines for the future design of similar probes. KW - Signal amplification KW - Fluorescence KW - Quantum yield KW - Optical spectroscopy KW - Dye KW - Cyanine KW - Characterization KW - Assay KW - Chiral KW - Aggregation KW - Activatable probe PY - 2016 DO - https://doi.org/10.1021/acs.jpcb.5b10526 SN - 1520-5207 SN - 1520-6106 VL - 120 IS - 5 SP - 877 EP - 885 PB - ACS Publications AN - OPUS4-35949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Hatami, Soheil A1 - Würth, Christian A1 - Kaiser, Martin A1 - Leubner, S. A1 - Gaponik, N. A1 - Eychmüller, A. T1 - Absolute fluorescence measurements > 1000 nm - Setup design, calibration and standards N2 - There is an increasing interest in optical reporters like semiconductor quantum dots and upconversion nanophosphors with emission > 1000 nm for bioanalysis, medical diagnostics, and safety barcodes and hence, in reliable fluorescence measurements in this wavelength region, e.g., for the comparison of material performance and the rational design of new nanomaterials with improved properties. Here, we present the design of an integrating sphere setup for the absolute measurement of emission spectra and quantum yields in the wavelength region of 650 to 1600 nm and its calibration as well as examples for potential fluorescence standards from different reporter classes for the control of the reliability of such measurements. T2 - SPIE Photonics West 2016 CY - San Francisco, CA, USA DA - 15.02.2016 KW - IR fluorescence KW - Quantum dot KW - Upconversion nanocrystal KW - Integrating sphere spectroscopy KW - Absolute fluorescence quantum yield KW - Nanophosphor KW - Calibration PY - 2016 AN - OPUS4-35953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Behnke, Thomas A1 - Moser, Marko A1 - Schneider, Ralf A1 - Kraft, Marco A1 - Pauli, Jutta A1 - Kaiser, Martin A1 - Güttler, Arne T1 - Methods for the determination of the optical properties and the surface chemistry of fluorescent particles N2 - Fluorescent particles like nm- and m-sized polymeric beads doped or labeled with different types of fluorophores and nanocrystalline systems like quantum dots and upconversion phosphors emitting in the visible (vis), near-infrared (NIR), and IR (infrared) region are of increasing importance as fluorescent reporters for bioanalysis and medical diagnostics. The assessment and comparison of material performance and the development of rational design strategies for improved systems requires suitable spectroscopic tools for the determination of signal-relevant optical properties and analytical tools for the determination of the number of surface groups, ligands, biomolecules and /or fluorophores per bead. In this respect, suitable spectroscopic tools for the characterization of the optical properties of such materials like photoluminescence quantum yields and brightness values and the determination of their surface chemistry are introduced. This includes integrating sphere setups for absolute measurements of fluorescence quantum yields of liquid and solid, transparent and scattering materials in the wavelength region of 350 nm to 1600 nm at varying excitation power densities for the study of multi-photon processes and simple optical assays, validated by comparison with established analytical techniques relying on different detection principles. Here, different examples for the optical and analytical characterization of different types of nanoscale reporters are presented. T2 - MoLife Research Seminar CY - Bremen, Germany DA - 26.04.2016 KW - Optical assay KW - Fluorescence KW - Integrating sphere spectroscopy KW - Quantum yield KW - NIR KW - IR KW - Optical spectroscopy KW - Nanomaterials KW - Semiconducor nanocrystals KW - Upconversion nanocrystals KW - Surface analysis KW - Ligand analysis PY - 2016 AN - OPUS4-35954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Behnke, Thomas A1 - Moser, Marko A1 - Quevedo, Pablo A1 - Würth, Christian A1 - Krüger, Harald A1 - Nirmalanathan, Nithiya A1 - Pauli, Jutta A1 - Hoffmann, Katrin T1 - Design, characterization and application of molecular and nanoscale optical reporters and probes and method standardization N2 - Here, we present an overview of the research activities of division Biophotonics concerning the design and (bio)analytical application of molecular and nanoscale functional chromophores for e.g., biomarker analysis including methods for the reliable determination of their application relevant properties. This includes the absolute determination of their brightness and photoluminescemce quantum yield, determining the signal size from the material side, as well as the development of fluorescence standards for such measurements and instrument calibration strategies, thereby providing important prerequisites for the comparison of material performance, the mechanistic understanding of nonradiative decay channels, and the rational design of new optical reporters. Moreover, for particle-based systems, ranging from nm-sized semiconductor quantum dots to m-sized polymeric and silica beads, simple optical methods and assays for the assessment of their surface chemistry are presented, which enable the quantification of the number of total and derivatizable surface functionalities, ligands per particle and particle-bound biomolecules. In addition, validation concepts for such methods are introduced utilizing method comparisons, multimodal and cleavable probes. T2 - Seminar Microbiology of Interfaces CY - Magdeburg, Germany DA - 16.06.2016 KW - Biomarker PY - 2016 AN - OPUS4-36997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Michael A1 - Schneider, Rudolf A1 - Kraft, Marco A1 - Leubner, S. A1 - Gaponik, N. A1 - Eychmüller, A. A1 - Wilhelm, Stefan A1 - Hirsch, T. T1 - Characterization of nanocrystalline particles with NIR emission - Spectroscopic properties and surface group analysis N2 - There is an increasing interest in optical reporters like semiconductor quantum dots and upconversion nanocrystals with emission > 800 nm for bioanalysis, medical diagnostics, and safety barcodes. Prerequisites for the comparison of material performance, the mechanistic understanding of nonradiative decay channels, and the rational design of new nanomaterials with improved properties are reliable fluorescence measurements and validated methods for the assessment of their surface chemistry. The latter is of special relevance for nanocrystalline emitters, where surface states and the accessibility of emissive states by quenchers largely control accomplishable photoluminescence quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Here, we present the design of integrating sphere setups for the excitation power density-dependent absolute measurement of emission spectra and photoluminescence quantum yields in the wavelength region of 350 to 1600 nm and results from spectroscopic studies of semiconductor quantum dots and upconversion nanocrystals of different size and surface chemistries in various environments. Subsequently, examples for simple approaches to surface group and ligand analysis are presented. T2 - 1st International Biophotonics Conference CY - Singapure DA - 25.07.2016 KW - Fluorescence KW - Integrating sphere spectroscopy KW - Quantum yield KW - NIR KW - IR KW - Optical spectroscopy KW - Nanomaterials KW - Semiconducor nanocrystals KW - Surface analysis KW - Ligand analysis KW - Optical assay PY - 2016 AN - OPUS4-36998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Hatami, Soheil A1 - Leubner, S. A1 - Gaponik, N. A1 - Eychmüller, A. T1 - Absolute spectroscopic characterization of the optical properties of semiconductor and upconversion nanocrystals in the vis and IR N2 - Nanocrystalline fluorophores like semiconductor quantum dots and rods and recently also lanthanide-based upconversion phosphors with emission in the visible (vis), near-infrared (NIR), and IR (infrared) region are increasingly being used in bioimaging studies and fluorescence assays as well as in photovoltaics and solid state lighting. The assessment and comparison of material performance as well as the development of rational design strategies for improved systems require spectroscopic tools, which enable the determination of the signal-relevant optical properties like photoluminescence quantum yields and brightness values. In the case of nonlinear fluorescence as shown by upconversion materials, such measurements must be also performed as function of excitation power density. In this work, we report on methods for the absolute determination of the photoluminescence quantum yield and brightness of fluorescent particles in dispersion and as powders based on integrating sphere spectroscopy and underline the importance of such measurements for the understanding of the photophysics of such nanocrystals. T2 - International Conference on Fundamental Processes in Semiconductor Nanocrystals (FQDots16) CY - Berlin, Germany DA - 05.09.2016 KW - Fluorescence KW - Nanoparticle KW - Semiconductor quantum dot KW - Upconversion nanocrystal KW - NIR KW - Integrating sphere spectroscopy KW - Fluorescence quantum yield KW - Method PY - 2016 AN - OPUS4-38695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Ermilov, Eugeny A1 - Hoffmann, Katrin T1 - Suitable geometries for the measurement of photoluminescence quantum yields of luminescent and scattering samples – The DIN TNS project N2 - The characterization of the optical properties of photoluminescent systems, that scatter, like dispersions of nanoparticles with sizes exceeding about 25 nm or solid nanophosphors is of increasing importance for many applications in the life and material sciences. Examples present nanoscale optical reporters and dye-doped microparticles for bioimaging, fluorescence assays or DNA sequencing as well as nanocrystalline emitters like semiconductor quantum dots and rods or lanthanide-based nanophosphors embedded into solid matrices for solid state lighting, display technologies, or barcoding/security applications. The assessment and comparison of material performance as well as the development of rational design strategies for improved systems require spectroscopic tools, which enable the determination of the signal-relevant optical properties like photoluminescence quantum yields and brightness values. This encouraged us to built up an integrating sphere setup enabling absolute measurements of photoluminescence spectra and quantum yields of transparent and scattering photoluminescent dispersions and solid samples in different measurement geometries, i.e., direct and indirect illumination and the combination of both geometries and perform first measurements with selected emitters. Here, the design of this setup is presented and first recommendations concerning suitable measurement geometries are given. T2 - DKE-Sitzung CY - Frankfurt am Main, Germany DA - 31.08.2016 KW - Nanoparticle KW - Integrating sphere KW - Fluorescence KW - Quantum yield KW - Method KW - Standardization KW - Calibration KW - Reference material PY - 2016 AN - OPUS4-38643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Pauli, Jutta A1 - Behnke, Thomas A1 - Würth, Christian T1 - Standardization of Fluorescence Measurements in the UV/vis/NIR/IR - Needs for and requirements on calibration tools N2 - Photoluminescence techniques are amongst the most widely used tools in the life sciences, with new and exciting applications in medical diagnostics and molecular imaging continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for multiplexing, remote sensing, and miniaturization. General drawbacks are, however, signals, that contain unwanted wavelength- and polarization contributions from instrument-dependent effects, which are also time-dependent due to aging of instrument-components, and difficulties to measure absolute fluorescence intensities. Moreover, scattering systems require special measurement geometries and the interest in new optical reporters with emission > 1000 nm strategies for reliable measurements in the second diagnostic for the comparison of material performance and the rational design of new fluorophores with improved properties. Here, we present strategies to versatile method-adaptable liquid and solid fluorescence standards for different fluorescence parameters including traceable instrument calibration procedures and the design of integrating sphere setups for the absolute measurement of emission spectra and quantum yields in the wavelength region of 350 to 1600 nm. Examples are multi-emitter glasses, spectral fluorescence standards, and quantum yield standards for the UV/vis/NIR T2 - Spie Photonics west 2017 CY - San Francisco, USA DA - 28.01.2017 KW - Fluorescence standard KW - Instrument calibration KW - Integrating sphere spectroscopy KW - Absolute fluorescence quantum yield KW - Fluorescent glasses KW - Nanoparticles PY - 2017 AN - OPUS4-39074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -