TY - JOUR A1 - Grauel, Bettina A1 - Würth, Christian A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Andresen, Elina A1 - Roik, Janina A1 - Recknagel, Sebastian A1 - Haase, M. A1 - Resch-Genger, Ute T1 - Volume and surface effects on two-photonic and three-photonic processes in dry co-doped upconversion nanocrystals N2 - Despite considerable advances in synthesizing high-quality core/shell upconversion (UC) nanocrystals (NC; UCNC) and UCNC photophysics, the application of near-infrared (NIR)-excitable lanthanide-doped UCNC in the life and material sciences is still hampered by the relatively low upconversion luminescence (UCL) of UCNC of small size or thin protecting shell. To obtain deeper insights into energy transfer and surface quenching processes involving Yb3+ and Er3+ ions, we examined energy loss processes in differently sized solid core NaYF4 nanocrystals doped with either Yb3+ (YbNC; 20% Yb3+) or Er3+ (ErNC; 2% Er3+) and co-doped with Yb3+ and Er3+ (YbErNC; 20% Yb3+ and 2% Er3+) without a surface protection shell and coated with a thin and a thick NaYF4 shell in comparison to single and co-doped bulk materials. Luminescence studies at 375 nm excitation demonstrate backenergy transfer (BET) from the 4G11/2 state of Er3+ to the 2F5/2 state of Yb3+, through which the red Er3+ 4F9/2 state is efficiently populated. Excitation power density (P)-dependent steady state and time-resolved photoluminescence measurements at different excitation and emission wavelengths enable to separate surface-related and volume-related effects for two-photonic and threephotonic processes involved in UCL and indicate a different influence of surface passivation on the green and red Er3+ emission. The intensity and lifetime of the latter respond particularly to an increase in volume of the active UCNC core. We provide a threedimensional random walk model to describe these effects that can be used in the future to predict the UCL behavior of UCNC. KW - Nano KW - Nanomaterial KW - Upconversion KW - Nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Pphotophysics KW - Lifetime KW - Sensor KW - Excitation KW - Power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535317 DO - https://doi.org/10.1007/s12274-021-3727-y SN - 1998-0124 VL - 15 IS - 3 SP - 2362 EP - 2373 PB - Springer AN - OPUS4-53531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Würth, Christian A1 - Wolter, C. A1 - Weller, H. A1 - Resch-Genger, Ute T1 - Excitation wavelength dependence of the photoluminescence quantum yield and decay behavior of CdSe/CdS quantum dot/quantum rods with different aspect ratios N2 - The excitation wavelength (lexc) dependence of the photoluminescence (PL) quantum yield (FPL) and decay behavior (tPL) of a series of CdSe/CdS quantum dot/Quantum rods (QDQRs), consisting of the same spherical CdSe core and rod-shaped CdS shells, with aspect ratios ranging from 2 to 20 was characterized. lexc between 400–565 nm were chosen to cover the first excitonic absorption band of the CdSe core material, the onset of absorption of the CDs shell, and the region of predominant shell absorption. A strong lexc dependence of relative and absolutely measured FPL and tPL was found particularly for the longer QDQRs with higher aspect ratios. This is attributed to combined contributions from a length-dependent shell-to-core exciton localization efficiency, an increasing number of defect states within the shell for the longest QDQRs, and probably also the presence of absorbing, yet non-emitting shell material. Although the FPL values of the QDQRs decrease at shorter wavelength, the extremely high extinction coefficients introduced by the shell outweigh this effect, leading to significantly higher brightness values at wavelengths below the absorption onset of the CdS Shell compared with direct excitation of the CdSe cores. Moreover, our results present also an interesting example for the comparability of absolutely measured FPL using an integrating sphere setup and FPL values measured relative to common FPL standards, and underline the Need for a correction for particle scattering for QDQRs with high aspect ratios. KW - Quantum dot KW - Quantum rod KW - Quantum yield KW - Integrating sphere KW - Decay time PY - 2017 DO - https://doi.org/10.1039/C7CP02142A SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 19 SP - 12509 EP - 12516 PB - Royal Society of Chemistry (RSC) AN - OPUS4-40814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Fa, X. A1 - Yang, J. A1 - Cheng, Z. A1 - Ansari, A. A. A1 - Ou, Jun A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Preparation of core–shell structured NaYF4:Yb3+/ Tm3+@NaYF4:Yb3+/Er3+ nanoparticles with high sensitivity, low resolution and good reliability and application of their fluorescence temperature properties N2 - A series of NaYF4:Yb3+/Tm3+@NaYF4:Yb3+/Er3+ nanoparticles doped with Tm3+ and Er3+ were successfully prepared by the solvothermal method. Under 980 nm laser excitation, intense upconversion emission peaks of Tm3+ and Er3+ were observed for all samples. By doping Tm3+ and Er3+ with core–shell partitioning, not only a significant increase in fluorescence intensity could be achieved, but also simultaneous temperature measurements on multiple thermocouple energy levels could be realised. In addition, the temperature sensing performance of different thermocouple energy levels was also investigated, and it was found that the 3 F3 → 3 H6 and 1 G4 → 3 F4 thermocouple energy level pairs of Tm3+ were the best, with maximum absolute sensitivity and maximum relative sensitivity of up to 0.0250 K−1 and 2.155% K−1 respectively, higher than the sensitivity of other thermocouple energy levels. It has a temperature resolution of less than 0.0139 K, which is lower than that of most materials available today. By using this material as a probe to build a fiber optic temperature sensor platform, it was found to have reliable temperature measurement performance. KW - Flourescence KW - Optical probe KW - Sensor KW - Dye KW - Temperature KW - Nano KW - Particle KW - Upconversion KW - Lanthanide KW - Qantum yield KW - Quality assurance KW - Monitoring KW - Infrastructure PY - 2022 DO - https://doi.org/10.1039/d1ce01729b VL - 24 IS - 9 SP - 1752 EP - 1763 PB - RSC Publishing AN - OPUS4-54416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Enhanced photon upconversion using erbium-doped nanoparticles interacting with silicon metasurfaces N2 - Photon upconversion (UC) using trivalent erbium (Er+3) doped crystals is a promising concept to harness near infrared photons of the solar spectrum which cannot be directly absorbed by silicon solar cells. However, their UC efficiency at low-intensity 1 sun illumination is not relevant on device level so far. Exploiting giant near-field enhancement effects on metasurfaces is an appealing approach to enable efficient UC at low irradiance conditions. Here, we report on more than 1000-fold enhanced photon UC of NaYF4:Er+3 nanoparticles interacting with the near-fields supported by a silicon metasurface under 1550 nm excitation. T2 - 48th Photovoltaic Specialists Conference (PVSC) CY - Online meeting DA - 20.06.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer KW - Photonic crystal KW - Enhancement strategy PY - 2021 DO - https://doi.org/10.1109/pvsc43889.2021.9518495 SP - 1 EP - 3 PB - IEEE CY - Berlin AN - OPUS4-53786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Quantitation of luminescent properties of Yb and Ho co-doped NaYF4 colloidal nanoparticles - novel active-core-active-shell materials and novel characterization methods N2 - At the core of luminescence color and lifetime tuning of rare earth doped upconverting nanoparticles (UCNPs) is the understanding of the impact of the particle architecture for commonly used sensitizer (S) and activator (A) ions. In this respect, we present here a series of core@shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions, where the same dopant concentrations were distributed in different particle architectures following the scheme: YbHo core and YbHo@..., …@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core-shell NPs. As revealed by quantitative steady state and time-resolved luminescence studies, the relative spatial distribution of the A and S ions in the UCNPs and their protection from surface quenching has critical impact on their luminescent characteristics. Interestingly, although the increased amount of Yb3+ ions boosts UCNP performance by increasing the absorption, the Yb3+ ions can also dissipate the energy stored in the material through energy migration to surface, thereby reducing the overall energy transfer efficiency to the activator ions. T2 - COST Workshop CY - Aveiro, Portugal DA - 30.06.2017 KW - Upconversion KW - Nanoparticle KW - Flourescence KW - Core-shell architecture KW - NIR KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - Ho(III) KW - Yb(III) PY - 2017 AN - OPUS4-41161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bandi, V.G. A1 - Luciano, M.P. A1 - Saccomano, M. A1 - Patel, N.L. A1 - Bischof, Th. S. A1 - Lingg, J.G.P. A1 - Tsrunchev, P.T. A1 - Nix, M.N. A1 - Ruehle, Bastian A1 - Sanders, C. A1 - Riffle, L. A1 - Robinson, C.M. A1 - Difilippantonio, S. A1 - Kalen, J.D. A1 - Resch-Genger, Ute A1 - Ivanic, J. A1 - Bruns, O.T. A1 - Schnermann, M. T1 - Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines N2 - Recent progress has shown that using wavelengths between 1,000 and 2,000 nm, referred to as the shortwave-infrared or near-infrared (NIR)-II range, can enable high-resolution in vivo imaging at depths not possible with conventional optical wavelengths. However, few bioconjugatable probes of the type that have proven invaluable for multiplexed imaging in the visible and NIR range are available for imaging these wavelengths. Using rational design, we have generated persulfonated indocyanine dyes with absorbance maxima at 872 and 1,072 nm through catechol-ring and aryl-ring fusion, respectively, onto the nonamethine scaffold. Multiplexed two-color and three-color in vivo imaging using monoclonal antibody and dextran conjugates in several tumor models illustrate the benefits of concurrent labeling of the tumor and healthy surrounding tissue and lymphatics. These efforts are enabled by complementary advances in a custom-built NIR/shortwave-infrared imaging setup and software package for multicolor real-time imaging. KW - Photoluminescence KW - Fluorescence KW - Dye KW - Cyanine KW - Antibody KW - Bioconjugate KW - Conjugate KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - NIR KW - SWIR KW - Mechanism KW - Imaging KW - Application KW - Contrast agent KW - Bioimaging PY - 2021 DO - https://doi.org/10.1038/s41592-022-01394-6 VL - 19 IS - 3 SP - 353 EP - 358 PB - Nature Research AN - OPUS4-54465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Fischer, S. A1 - Grauel, Bettina A1 - Alivisatos, A. P. A1 - Resch-Genger, Ute T1 - Quantum Yields, Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell Upconverting Nanoparticles N2 - We synthesized and characterized a set of ultrasmall hexagonal-phase NaGdF4: 20% Yb3+, 2% Er3+ upconversion nanoparticles with core diameters of 3.7 ± 0.5 nm. In order to assess passivation effects and the influence of possible core−shell intermixing and to identify optimum particle structures for combined imaging in the visible and near-infrared (vis−NIR: 410−850 nm) and short-wave infrared (SWIR: 1520 nm), NaYF4 shells of varying thicknesses (monolayer to 10 nm) were introduced and the influence of this parameter on the upconversion and downshifting photoluminescence of these particles was studied at different excitation power densities. This included excitation power-dependent emission spectra, slope factors, quantum yields, and excited state decay kinetics. These measurements revealed enhancement factors of the upconversion quantum yield of >10 000 in the low power region and an excitation power density-independent quantum yield of the downshifted emission at 1520 nm between 0.1 and 14%. The optimized shell thickness for combined vis and SWIR imaging was identified as 5 nm. Moreover, lifetimes and quantum yields can be continuously tuned by shell thickness which can be exploited for lifetime multiplexing and encoding. The fact that we did not observe a saturation of the upconversion quantum yield or the excited state decay kinetics with increasing shell thickness is ascribed to a strong intermixing of the active core with the inert shell during the shelling procedure. This indicates the potential of spectroscopic tools to detect cation intermixing. KW - Nanoparticle KW - Upconversion KW - Quenching PY - 2018 DO - https://doi.org/10.1021/jacs.8b01458 IS - 140 SP - 4922 EP - 4928 PB - American Chemical Society AN - OPUS4-45378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Meng, M. A1 - Zhang, R. A1 - Cheng, Z. A1 - Fa, X. A1 - Yang, J. A1 - Ansari, A. A. A1 - Ou, Jun A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Retraction: Effect of Ca2+ doping on the upconversion luminescence properties of NaYF4:Yb3+/Tm3+ nanoparticles and study of its temperature measurement performance N2 - Retraction of "Effect of Ca2+ doping on the upconversion luminescence properties of NaYF4:Yb3+/Tm3+ nanoparticles and study of its temperature measurement performance" by Mingzhou Meng et al., CrystEngComm, 2022, 24, 4887–4898, https://doi.org/10.1039/D2CE00562J. The Royal Society of Chemistry, with the agreement of the authors, hereby wholly retracts this CrystEngComm article due to concerns with the reliability of the data. PY - 2023 DO - https://doi.org/10.1039/d3ce90111d SN - 1466-8033 VL - 25 IS - 33 SP - 4768 PB - Royal Society of Chemistry CY - London AN - OPUS4-58494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maisuls, I. A1 - Wang, Cui A1 - Gutierrez Suburu, M. E. A1 - Wilde, S. A1 - Daniliuc, C.-G. A1 - Brunink, D. A1 - Doltsinis, N. L. A1 - Ostendorp, S. A1 - Kösters, J. A1 - Resch-Genger, Ute A1 - Strassert, C. A. T1 - Ligand-controlled and nanoconfinement-boosted luminescence employing Pt(II) and Pd(II) complexes: from color-tunable aggregation-enhanced dual emitters towards self-referenced oxygen reporters N2 - In this work, we describe the synthesis, structural and photophysical characterization of four novel Pd(II) and Pt(II) complexes bearing tetradentate luminophoric ligands with high photoluminescence quantum yields (FL) and long excited state lifetimes (s) at room temperature, where the results were interpreted by means of DFT calculations. Incorporation of fluorine atoms into the tetradentate ligand favors aggregation and thereby, a shortened average distance between the metal centers, which provides accessibility to metal–metal-to-ligand charge-transfer (3MMLCT) excimers acting as red-shifted Energy traps if compared with the monomeric entities. This supramolecular approach provides an elegant way to enable room-temperature phosphorescence from Pd(II) complexes, which are otherwise quenched by a thermal population of dissociative states due to a lower ligand field splitting. Encapsulation of These complexes in 100 nm-sized aminated polystyrene nanoparticles enables concentration-controlled aggregation-enhanced dual emission. This phenomenon facilitates the tunability of the absorption and emission colors while providing a rigidified environment supporting an enhanced FL up to about 80% and extended s exceeding 100 ms. Additionally, these nanoarrays constitute rare examples for selfreferenced oxygen reporters, since the phosphorescence of the aggregates is insensitive to external influences, whereas the monomeric species drop in luminescence lifetime and intensity with increasing triplet molecular dioxygen concentrations (diffusion-controlled quenching). KW - Fluorescence KW - Multiplexing KW - Lifetime KW - Bead KW - Particle KW - Dye KW - Barcoding KW - Encoding KW - Quantum yield KW - Label KW - Reporter KW - Pd(II) KW - Pt(II) KW - Complex KW - NMR KW - X-ray KW - Sythesis KW - Aggregation KW - Monomer KW - Color PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525288 DO - https://doi.org/10.1039/d0sc06126c VL - 12 IS - 9 SP - 3270 EP - 3281 PB - Royal Society of Chemistry AN - OPUS4-52528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Pauli, Jutta A1 - Weigert, Florian T1 - Quantitative optical-spectroscopic characterization of luminescent nanomaterials - Photoluminescence Quantum Yields N2 - Accurate and quantitative photoluminescence measurements are mandatory for the comparison of different emitter classes and the rational design of the next generation of molecular and nanoscale reporters as well as for most applications relying on their luminescence features in the life and material sciences and nanobiophotonics. In the following, procedures for the determination of the spectroscopic key parameter photoluminescence quantum yield, i.e., the number of emitted per absorbed photons, in the UV/vis/NIR/SWIR are presented including pitfalls and achievable uncertainties and material-specific effects related to certain emitter classes are addressed. Special emphasis is dedicated to luminescent nanocrystals. T2 - International Workshop on "Emerging Nanomaterials for Displays and SSL" CY - Dresden, Germany DA - 11.11.2021 KW - Nano KW - Nanomaterial KW - Nanocrystal KW - Semiconductor quantum dot KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Brightness KW - NIR KW - SWIR KW - Method KW - Uncertainty KW - Rreference material PY - 2021 AN - OPUS4-53783 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Design, characterization, and application of fluorescent sensor particles N2 - pH and oxygen are amongst the most important and frequently measured analytes in the life and material sciences, indicating, e.g., diseases and corrosion processes. This includes the optical monitoring of pH in living cells for studying cellular internalization pathways, such as phagocytosis, endocytosis, and receptor ligand internalization with the aid of molecular and nanoscale fluorescent sensors. Nanoparticle (NP)-based sensors, that are labeled or stained with a multitude of sensor dyes, have several advantages as compare to conventional molecular probes like enhanced brightness, i.e., amplified signals, ease of designing ratiometric systems by combining analyte sensitive and inert reference dyes, and increased photostability. Moreover, this can enable the use of hydrophobic dyes in aqueous environments. Versatile templates and carriers for the fabrication of nanosensors by the staining and/or labelling with different fluorophores and sensor molecules or surface functionalized NP like silica (SiO2-NP) and polystyrene (PS-NP) particles provide. Here we present the design of a versatile platform of color emissive nanosensors and stimuli-responsive microparticles for the measurement of pH, oxygen, and other targets utilizing both types of matrices and sets of spectrally distinguishable sensor and reference dyes and their characterization and demonstrate the applicability of representative sensor particle for cellular studies. T2 - Vortrag bei dem Projekttreffen MicraGen CY - Copenhagen, Denmark DA - 18.08.2022 KW - Dye KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Integrating sphere spectroscopy KW - Sensor KW - pH KW - Oxygen KW - Microfluidics KW - Cancer KW - Cell KW - Life sciences PY - 2022 AN - OPUS4-57049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, P. A1 - Morales-Marquez, R. A1 - Cervas, G. A1 - Hernandez Medel, A. A1 - Ogayar, M. P. A1 - Jimenez de Aberasturi, D. A1 - de Isidro-Gomez, A. I. A1 - Torres-Padro, A. A1 - Palomares, F. J. A1 - Garcia-Orrit, S. A1 - Sousa, C. T. A1 - Espinosa, A. A1 - Telle, H. H. A1 - Ortgies, D. H. A1 - Vega-Mayoral, V. A1 - Cabanillas-Gonzalez, J. A1 - Rodriguez, E. M. A1 - Resch-Genger, Ute A1 - Wegner, Karl David A1 - Juarez, B. H. T1 - The role of temperature in the photoluminescence quantum yield (PLQY) of Ag2S-based nanocrystals N2 - Highly emissive Ag2S nanocrystals (NCs) passivated with a gradated shell incorporating Se and Zn were synthesized in air, and the temperature dependence of their photoluminescence quantum yield (PLQY) was quantified in both organic and aqueous media at B1200 nm. The relevance of this parameter, measured at physiological temperatures, is highlighted for applications that rely on the near infrared (NIR) photoluminescence of NCs, such as deep NIR imaging or luminescence nanothermometry. Hyperspectral NIR imaging shows that Ag2S-based NCs with a PLQY in organic media of about 10% are inefficient for imaging at 40 8C through 20 mm thick tissue with low laser irradiation power densities. In contrast, water-transferred Ag2S-based NCs with an initial PLQY of 2% in water exhibit improved robustness against temperature changes, enabling improved imaging performance. KW - Quantum dots KW - Ag2S KW - Fluorescence KW - Nanomaterial design KW - Advanced nanomaterials KW - Shortwave infrared (SWIR) KW - Temperature sensing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613877 DO - https://doi.org/10.1039/D4MH01016G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-61387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlögl, Johanna A1 - Krappe, Alexander R. A1 - Fürstenwerth, Paul C. A1 - Brosius, Amelie L. A1 - Fasting, Carlo A1 - Hoffmann, Kurt F. A1 - Resch-Genger, Ute A1 - Eigler, Siegfried A1 - Steinhauer, Simon A1 - Riedel, Sebastian T1 - Luminescent Perhalofluoro Trityl Radicals N2 - In this proof-of-concept study, we show that polyfluorinated trityl radicals with the, to this date, highest fluorination grade can be accessed in quantitative yields in a straightforward manner starting from the perfluorinated trityl cation. The trityl skeleton is functionalized with trimethylsilyl halides to yield perhalofluoro trityl cations, which are subsequently reduced using commercial zinc powder. In this way, we prepare three perhalofluoro trityl radicals and analyze the impact of the fluorine ligands on their electro-optical properties, revealing some interesting trends. In comparison to literature-known polychlorinated trityl radicals, the new polyfluorinated derivatives exhibit substantially higher fluorescence quantum yields, longer luminescence lifetimes, and an expanded emission range that extends into the yellow spectral region. They further display enhanced photostability under light irradiation. In radical-stained polystyrene nanoparticles, an additional broad emission band in the red−NIR wavelength region is observed, which is attributed to excimer formation. Finally, the stability of the new radicals is investigated under ambient conditions, showing the slow conversion with atmospheric oxygen yielding the respective peroxides, which are characterized by single-crystal X-ray diffraction. All in all, our study extends the present scope of luminescent trityl radicals, as the functionalization of the perfluorinated cationic precursor unlocks the path toward a vast variety of polyfluorinated trityl radicals. KW - Dye KW - Fluorescence KW - Radical KW - Synthesis KW - Mechanism KW - Signal enhancement KW - Nano KW - Particle KW - Characterization KW - Quantum yield KW - Photophysics KW - Lifetime KW - Polarity KW - Polymer KW - Solvatchromism KW - Excimer PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647973 DO - https://doi.org/10.1021/jacs.5c16418 SN - 0002-7863 VL - 147 IS - 46 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-64797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Zhenlong, F. A1 - Yang, J. A1 - Ansari, A. A1 - Ou, Jun A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Retracted article: Effect of Ca2+ doping on the upconversion luminescence properties of NaYF4:Yb3+/Tm3+ nanoparticles and study of its temperature measurement performance N2 - A solvothermal method was used to prepare a series of Yb3+/Tm3+/Ca2+ co-doped NaYF4 nanoparticles with different Ca2+ contents. Strong upconversion blue fluorescence could be observed under 980 nm laser excitation of the samples. The effect of different Ca2+ contents on the luminescence intensity was investigated, and it was found that the UV-vis upconversion luminescence increased and then decreased with an increasing Ca2+ concentration during the increase of the Ca2+ content from 0 mol% to 25 mol%, reaching the strongest fluorescence at 15 mol%, which was up to about 28 times stronger than that without Ca2+ doping. Furthermore, the mechanism was investigated, and it was found that the doping of Ca2+ disrupted the symmetry of the crystal field, resulting in a significant enhancement of the overall fluorescence. Applied to fluorescence intensity ratio thermometry, the absolute and relative sensitivities are as high as 0.0418 K−1 and 2.31% K−1, respectively, with a minimum temperature resolution of 0.0129 K. KW - Sensor KW - Temperature KW - Lanthanide KW - Luminescence KW - Nanoparticles KW - Upconversion KW - Advanced materials PY - 2022 DO - https://doi.org/10.1039/D2CE00562J SN - 1466-8033 VL - 24 IS - 27 SP - 4887 EP - 4898 PB - Royal Society of Chemistry CY - London AN - OPUS4-56952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Research and development in material and life sciences and quality assurance at BAM N2 - Research and development activities at BAM are presented with Special Focus on bioanalysis and biophotonics. This includes Topics from the Focus Areas Material, Environment, and Analytical Sciences. Also, Job opportunities at BAM are emphasized. T2 - MPI CY - Göttingen, Germany DA - 26.10.2017 KW - Analytics KW - Materials KW - Fluorometry KW - Sensors KW - Biophotonics KW - Microbiology KW - Reference material KW - Standard KW - Calibration KW - Nanoparticle PY - 2017 AN - OPUS4-43132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bertorelle, F. A1 - Wegner, Karl David A1 - Berkulic, M. P. A1 - Fakhouri, H. A1 - Comby-Zerbino, C. A1 - Sagar, A. A1 - Bernadó, P. A1 - Resch-Genger, Ute A1 - Bonacic-Koutecký, V. A1 - Le Guével, X. A1 - Antoine, R. T1 - Tailoring the NIR-II Photoluminescence of Single Thiolated Au25 Nanoclusters by Selective Binding to Proteins N2 - Atomically precise gold nanoclusters are a fascinating class of nanomaterials that exhibit molecule-like properties and have outstanding photoluminescence (PL). Their ultrasmall size, molecular chemistry, and biocompatibility make them extremely appealing for selective biomolecule labeling in investigations of biological mechanisms at the cellular and anatomical levels. In this work, we report a simple route to incorporate a preformed Au25 nanocluster into a model bovine serum albumin (BSA) protein. A new approach combining small-angle X-ray scattering and molecular modeling provides a clear localization of a single Au25 within the protein to a cysteine residue on the gold nanocluster surface. Attaching Au25 to BSA strikingly modifies the PL properties with enhancement and a redshift in the second near-infrared (NIR-II) window. This study paves the way to conrol the design of selective sensitive probes in biomolecules through a ligand-based strategy to enable the optical detection of biomolecules in a cellular environment by live imaging. KW - Fluorescence KW - Aggregation KW - Signal enhancement KW - Cluster KW - Nano KW - Metal KW - NIRII KW - SWIR KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Synthesis KW - Protein KW - Imaging KW - Bioimaging KW - Ligand KW - Gold PY - 2022 DO - https://doi.org/10.1002/chem.202200570 SN - 1521-3765 VL - 28 IS - 39 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cheng, Z. A1 - Meng, M. A1 - Qiao, X. A1 - Liu, Y. A1 - Resch-Genger, Ute A1 - Ou, J. T1 - The synthesis of Er3+/Yb3+/K+ triple-doped NaYF4 phosphors and its high sensitivity optical thermometers at low power N2 - Optical Thermometry is popular among researchers because of its non-contact, high sensitivity, and fast measurement properties. In the present experiment, Er3+/Yb3+/K+ co-doped NaYF4 nanoparticles with different K+ concentrations were synthesized by solvothermal method, and the samples showed bright upconversion green emission under the excitation of a 980 nm laser. The powder X-ray diffractometer and transmission electron microscope were used to characterize the crystal structure and its surface morphology, respectively. The spectral characteristics of nanoparticles with K+ doping concentration from 10% to 30% (Molar ratio) were investigated by fluorescence spectroscopy, and it was observed that the fluorescence intensity reached the maximum at the K+ concentration of 20%, after which the intensity weakened when the K+ content continued to increase. According to the dependence between the luminescence intensity of the sample and the laser power density and fluorescence lifetime, the intrinsic mechanism was carefully investigated. Temperature-dependent spectra of the samples were recorded in the temperature range of 315–495 K, and the maximum values of absolute sensitivity (Sa) and relative sensitivity (Sr) were measured at 0.0041 K−1 (455 K) and 0.9220%K−1 (315 K). The experimental results show that K+/Er3+/Yb3+ triple-doped NaYF4 green fluorescent nanoparticles (GFNs) have good prospects for applications in display devices, temperature sensing, and other fields. KW - K+ doped KW - Upconversion luminescence KW - Optical temperature sensing KW - Thermal coupling energy level PY - 2023 DO - https://doi.org/10.1016/j.jallcom.2022.168299 VL - 937 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-57106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Wang, Cui A1 - You, Y. A1 - Förster, C. A1 - Schubert, H. A1 - Heinze, K. A1 - Seitz, M. T1 - NIR-NIR-Aufkonvertierung in molekularen Chrom-Ytterbium-Salzen N2 - Photonen-Aufkonvertierung in hetero-oligonuklearen, Metallkomplex-Architekturen mit organischen Liganden ist ein interessantes, aber bisher selten beobachtetes Phänomen, trotz des großen Potentials sowohl aus Sicht der Grundlagenforschung als auch aus der Anwendungsperspektive. Nun wurde ein neues photonisches Material aus molekularen Chrom(III)- und Ytterbium(III)-Komplexionen entwickelt. Dieses zeigt im Festkörper bei Raumtemperatur abhängig von der Anregungsleistungsdichte nach Anregung des 2F7/2! 2F5/2-3berganges des Ytterbiums bei ca. 980 nm eine kooperative Sensibilisierung der Chrom(III)-zentrierten 2E/2T1-Phosphoreszenz bei ca. 775 nm. Der Aufkonvertierungsprozess ist unempfindlich gegenüber Luftsauerstoff und kann in Gegenwart von Wassermolekülen im Kristallgitter beobachtet werden. KW - Crystal KW - Sensor KW - NIR KW - Yb(III) complex KW - Cr(III) KW - Upconversion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517217 DO - https://doi.org/10.1002/ange.202007200 VL - 132 IS - 42 SP - 18804 EP - 18808 PB - Angewandte Chemie AN - OPUS4-51721 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegner, Karl David A1 - Fischer, C. A1 - Resch-Genger, Ute T1 - Exploring Simple Particle-Based Signal Amplification Strategies in a Heterogeneous Sandwich Immunoassay with Optical Detection N2 - Heterogeneous sandwich immunoassays are widely used for biomarker detection in bioanalysis and medical diagnostics. The high analyte sensitivity of the current “gold standard” enzyme-linked immunosorbent assay (ELISA) originates from the signal-generating enzymatic amplification step, yielding a high number of optically detectable reporter molecules. For future point-of-care testing (POCT) and point-of-need applications, there is an increasing interest in more simple detection strategies that circumvent time-consuming and temperature-dependent enzymatic reactions. A common concept to aim for detection limits comparable to those of enzymatic amplification reactions is the usage of polymer nanoparticles (NP) stained with a large number of chromophores. We explored different simple NP-based signal amplification strategies for heterogeneous sandwich immunoassays that rely on an extraction-triggered release step of different types of optically detectable reporters. Therefore, streptavidinfunctionalized polystyrene particles (PSP) are utilized as carriers for (i) the fluorescent dye coumarin 153 (C153) and (ii) hemin (hem) molecules catalyzing the luminol reaction enabling chemiluminescence (CL) detection. Additionally, (iii) NP labeling with hemin-based microperoxidase MP11 was assessed. For each amplification approach, the PSP was first systematically optimized regarding size, loading concentration, and surface chemistry. Then, for an immunoassay for the inflammation marker C- eactive protein (CRP), the analyte sensitivity achievable with optimized PSP ystems was compared with the established ELISA concept for photometric and CL detection. Careful optimization led to a limit of detection (LOD) of 0.1 ng/mL for MP11-labeled PSP and CL detection, performing similarly well to a photometric ELISA (0.13 ng/mL), which demonstrates the huge potential of our novel assay concept. KW - Nanoparticle KW - Fluorescence KW - Immunoassay KW - Quality assurance KW - Antibody KW - Polymer KW - Dye KW - Signal enhancement KW - CRP KW - Biosensing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597853 DO - https://doi.org/10.1021/acs.analchem.3c03691 SN - 1520-6882 VL - 96 IS - 13 SP - 5078 EP - 5085 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-59785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Resch-Genger, Ute A1 - Abram, Sarah-Luise A1 - Tavernaro, Isabella A1 - Zou, Shan A1 - Johnston, Linda T1 - Behind the Paper: Nanoscale Reference and Test Materials for the Validation of Characterization Methods for Engineered Nanomaterials – Current State, Limitations and Needs N2 - Engineered nanomaterials (NMs) of different material composition, morphology, and surface chemistry are widely used in material and life sciences. For NM quality control and risk assessment, NM key properties must be characterized with validated methods, requiring reference materials (RMs). KW - Engineered Nanomaterials KW - Nanoscale reference materials KW - Interlaboratory comparisons KW - Traceability KW - Standardization and Regulation KW - Nano KW - Particle KW - Quality assurance KW - Surface chemistry PY - 2025 UR - https://communities.springernature.com/posts/nanoscale-reference-and-test-materials-for-the-validation-of-characterization-methods-for-engineered-nanomaterials-current-state-limitations-and-needs SP - 1 EP - 3 PB - Springer Nature CY - Online AN - OPUS4-62572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haroun, A. A. A. A1 - Derbala, H. A. A1 - Bassioni, G. A1 - Resch-Genger, Ute A1 - Shafik, E. S. A1 - Hassan, A. M. A. T1 - N-aminophthalimide as a novel UV-stabilizer to promote physico-mechanical properties of highdensity polyethylene (HDPE) N2 - This study aimed to evaluate the efficacy of Naminophthalimide (NAP) as a novel UV-stabilizer for highdensity polyethylene (HDPE) in improving its physicomechanical properties under UV exposure. NAP was synthesized by interaction between phthalimide and hydrazine hydrate. It was incorporated into HDPE with different weight ratios (1, 1.5, 2, and 3%), and its performancewas compared with Hostavin as a traditional UV stabilizer. The HDPE composites were exposed to UV irradiation for different periods (7 and 14 days) to evaluate their photodegradation behavior. Tensile strength, elongation at break were assessed before and after UV exposure. Also, oxidation induction time (OIT), melt flow rate (MFR), Vicat softening temperature were evaluated. Hostavin incorporation reduced tensile strength from 22.36 to 20.62MPa at higher concentrations. It has been found that 3% Hostavin, significantly improved elongation at break, increasing from 423% to 1,170%, suggesting enhanced flexibility. In contrast, NAP increased tensile strength to 22.9MPa and moderately enhanced elongation but slightly declined at 3%due to potential over-stabilization. Under UV exposure, retained tensile strength and elongation was improved with stabilizer content, which increasing tensile strength retention. The HDPE that containing NAP showed enhanced UV resistance and superior retention of mechanical properties compared to Hostavin. KW - Polymer KW - Advanced materials KW - Quality assurance KW - Stabilizer KW - Synthesis KW - Physico-mechanical properties PY - 2025 DO - https://doi.org/10.1515/polyeng-2024-0262 SN - 2191-0340 SP - 1 EP - 8 PB - De Gruyter CY - Berlin AN - OPUS4-63534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Reliable Photoluminescence Quantum Yields – New Reference Materials and Interlaboratory Comparisons N2 - The rational design and choice of molecular and nanoscale reporters, the comparison of different emitter classes, and photophysical and mechanistic studies require quantitative photoluminescence measurements and the reliable determination of the key performance parameter photoluminescence quantum yield (QY), i.e., the number of emitted per absorbed photons. This is of special importance for all photoluminescence applications in the life and material sciences in the UV/vis/NIR/SWIR. To improve the reliability and comparability of photoluminescence and QY measurements across laboratories, pitfalls, achievable uncertainties, and material-specific effects related to certain emitter classes must be explored. Also, suitable protocols and reference materials are needed which have been validated in interlaboratory comparisons for different wavelength regions and transparent and scattering luminophores.[1] Based on absolute and relative photoluminescence measurements of functional dyes and luminescent nanomaterials, reliable methods for determining QY of transparent and scattering luminophores, nonlinear emitters, and solid luminescent nanomaterials have been developed.[1-4] Thereby, material- and method-related uncertainties of relative and absolute QY measurements and achievable uncertainties could be quantified for linear and nonlinear UV/vis/NIR/SWIR emitters and lately for also luminescent and scattering materials and solid phoshors. In this context, we present the development and certification of a first set of UV/vis/NIR quantum yield standards with a complete uncertainty budget,[5] which present simple tools for a better comparability of QY measurements. In addition, a first interlaboratory comparison of absolute QY measurements of solid and scattering LED converter materials with integrating sphere spectroscopy has been performed.[5] The outcome of this study is presented, thereby addressing common pitfalls and measurement uncertainties and providing recommendations for the performance of reliable QY measurements of linear and non-linear emitters in transparent, scattering, and solid samples. T2 - Anakon 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Quality assurance KW - Reference material KW - Method KW - Fluorescence KW - Quantum yield KW - Absolute KW - Integrating sphere spectroscopy KW - Interlaboratory comparison KW - Dye KW - Film KW - Nano KW - Particle KW - Scattering KW - Uncertainty KW - LED converter PY - 2025 AN - OPUS4-62792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Osiopova, Viktoriia A1 - Tavernaro, Isabella A1 - Ge, L. A1 - Kitzmann, W. R. A1 - Heinze, K. A1 - Reithofer, M. R. A1 - Resch-Genger, Ute T1 - Complete protection of NIR-luminescent molecular rubies from oxygen quenching in air by L-arginine-mediated silica nanoparticles N2 - The application of emerging luminophores such as near-infrared (NIR) emissive complexes based on earth-abundant chromium as central ion and triplet-triplet annihilation upconversion (TTA-UC) systems in air as optical reporters for bioimaging or photonic materials for energy conversion requires simple and efficient strategies for their complete protection from uminescence quenching by oxygen. Therefore, we explored the influence of sol–gel synthesis routes on the oxygen protection efficiency of the resulting core and core/shell silica nanoparticles (SiO2 NPs), utilizing the molecular ruby-type luminophores CrPF6 ([Cr(ddpd)2](PF6)3; ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridin-2,6-diamine) and CrBF4 ([Cr(ddpd)2](BF4)3) with their oxygendependent, but polarity-, proticity-, viscosity-, and concentration-independent luminescence as optical probes for oxygen permeability. The sol–gel chemistry routes we assessed include the classical Stöber method and the underexplored Larginine approach, which relies on the controlled hydrolysis of tetraethoxysilane (TEOS) in a biphasic cyclohexane/water system with the catalyst L-arginine. As demonstrated by luminescence measurements of air- and argon-saturated dispersions of CrPF6- and CrBF4-stained SiO2 NPs of different size and particle architecture, utilizing the luminescence decay kinetics of argon-saturated solutions of CrPF6 and CrBF4 in acetonitrile (ACN) as benchmarks, only SiO2 NPs or shells synthesized by the L-arginine approach provided complete oxygen protection of the CrIII complexes under ambient conditions. We ascribe the different oxygen shielding efficiencies of the silica networks explored to differences in density and surface chemistry of the resulting nanomaterials and coatings, leading to different oxygen permeabilities. Our Larginine based silica encapsulation strategy can open the door for the efficient usage of oxygen-sensitive luminophores and TTA-UC systems as optical reporters and spectral shifters in air in the future. KW - Quality assurance KW - Fluorescence KW - Quantification KW - Advanced materials KW - Nano KW - Quantum yield KW - NIR KW - Characterization KW - Electron microscopy KW - Silica KW - Synthesis KW - Oxygen sensing KW - Surface KW - Doping KW - Lifetime KW - Cr(III) complex KW - Shielding KW - Sensing PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638271 DO - https://doi.org/10.26599/NR.2025.94907241 SN - 1998-0000 VL - 18 IS - 3 SP - 1 EP - 13 PB - SciOpen AN - OPUS4-63827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, Z. A1 - Musnier, B. A1 - Wegner, Karl David A1 - Henry, M. A1 - Chovelon, B. A1 - Desroches-Castan, A. A1 - Fertin, A. A1 - Resch-Genger, Ute A1 - Bailly, S. A1 - Coll, J.-L. A1 - Usson, Y, A1 - Josserand, V. A1 - Le Gúevel, X. T1 - High-Resolution Shortwave Infrared Imaging of Vascular Disorders Using Gold Nanoclusters N2 - We synthesized a generation of water-soluble, atomically precise gold nanoclusters (Au NCs) with anisotropic Surface containing a short dithiol pegylated chain (AuMHA/TDT). The AuMHA/TDT exhibit a high brightness (QY ∼ 6%) in the shortwave infrared (SWIR) spectrum with a detection above 1250 nm. Furthermore, they show an extended half-life in blood (t1/2ß = 19.54 ± 0.05 h) and a very weak accumulation in organs. We also developed a non-invasive, whole-body vascular imaging system in the SWIR window with high-resolution, benefiting from a series of Monte Carlo image processing. The imaging process enabled to improve contrast by 1 order of magnitude and enhance the spatial Resolution by 59%. After systemic administration of these nanoprobes in mice, we can quantify vessel complexity in depth (>4 mm), allowing to detect very subtle vascular disorders non-invasively in bone morphogenetic protein 9 (Bmp9)-deficient mice. The combination of these anisotropic surface charged Au NCs plus an improved SWIR imaging device allows a precise mapping at high-resolution and an in depth understanding of the organization of the vascular network in live animals. KW - Nanoparticle KW - Nanosensor KW - Fluorescence KW - Metal cluster KW - NIR KW - SWIR KW - Photophysics KW - Ligand KW - Size KW - Surface chemistry KW - Quantum yield KW - Mechanism KW - Lifetime KW - Decay kinetics PY - 2020 DO - https://doi.org/10.1021/acsnano.0c01174 VL - 14 IS - 4 SP - 4973 EP - 4981 PB - ACS Publication AN - OPUS4-50671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Fallisch, A. A1 - Petrov, E. P. A1 - Salhany, R. A1 - Forthman, C. A1 - Guttenberg, Z. A1 - Nitschke, R. T1 - Spectral fluorescence standards for the calibration and performance validation of fluorescence microscopes N2 - The standardization and calibration of fluorescence microscopy have become increasingly vital due to the wide-spread use of in life and materials sciences. As the demand for reliable and user-friendly methods to assess micro-scope performance grows, universal calibration tools accessible to both researchers and vendors are needed. To support the standardization of characterization methods in microscopy, it is crucial to provide calibration tools together with standardized operating procedures for their effective implementation. The public-funded project "FluMiKal"* develops calibration tools in the shape of typical microscopic slides to assess key parameters such as spatial resolution, point spread function, spectral sensitivity, linearity and sensitivity of the detection system. The focus is on creating calibration tools that are user-friendly, robust, and versatile in their application. This work addresses the critical parameter of wavelength-dependent spectral sensitivity, which affects the meas-ured signals from the instrument side, yielding instrument-specific data and instrument aging-induced changes over time. For this purpose, μ-slides from ibidi with six channels are used, allowing them to be filled with different solutions containing molecular or nanoscale fluorophores with well-characterized absorption and fluorescence properties. The certified spectral fluorescence standards BAM-F003, F004, F005, and F007 assessed provided as ethanolic solutions by the Federal Institute for Materials Research and Testing (BAM), cover a broad spectral range from the blue to the near-infrared [1], [2]. Dye-based slide prototypes have been used to determine the spectral sensitivity of confocal microscopes from different vendors with various detector types by acquiring the spectral data of the BAM dyes under standardized measurement conditions, demonstrating the applicability of this concept. Proof-of-concept experiments could demonstrate the proper sealing of the slides. Further experiments will explore long-term stability and their potential as standards for relative intensity calibrations. * FluMiKal is funded by the Federal Ministry for Economic Affairs and Climate Action, Germany (WIPANO FKZ 03TN0047B) [1] doi: 10.1007/4243_2008_028. [2] doi: 10.1007/s00216-024-05723-w. T2 - European Light Microscopy Initiative - ELMI 2025 CY - Heidelberg, Germany DA - 03.06.2025 KW - Fluorescence KW - Advanced material KW - Validation KW - Calibration KW - Method comparison KW - Reference material KW - Dye KW - Fluorescence standard KW - Microscopy KW - CLSM KW - Imaging PY - 2025 AN - OPUS4-64206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Reliable measurements of the photoluminescence quantum yield of transparent and scattering luminophores N2 - Optical measurements of transparent solutions of organic dyes and semiconductor quantum dots and scattering materials such as luminescent nanocomposites and microparticles and phosphors dispersed in liquid and solid matrices play an important role in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. A key performance parameter is the photoluminescence quantum yield QY, i.e., the number of emitted per number of absorbed photons. QY of transparent luminophore solutions can be obtained relative to a fluorescence QY standard of known QY.[1] Meanwhile, a first set of certified fluorescence QY standards is available.[2] Such relative QY measurements require a calibrated spectrofluorometer.[1,3] For determining QY of scattering liquid and solid samples, absolute measurements of QY with a calibrated integrating sphere setup are mandatory.[1,4,5] However, scattering QY standards are not available and uncertainties of such measurements have not yet been assessed in interlaboratory comparisons (ILCs). To determine typical sources of uncertainty of absolute QY measurements, we assessed the influence of the measurement geometry and the optical properties of the blank for determining the number of incident photons absorbed by the sample in an ILC using commercial integrating sphere setups and a custom-designed integrating sphere setup. Samples examined included transparent and scattering dye solutions, solid phosphors such as YAG:Ce optoceramics used as LED converter material, and polymer films stained with different amounts of phosphor microparticles. Matching QY values could be obtained for transparent dye solutions and scattering dispersions with a blank with scattering properties closely matching those of the sample, while QY measurements of optoceramic samples with different blanks revealed substantial differences of more than 20 %. Based on our data, we recommend non-absorbing blank materials with a high reflectivity (>95 %) such as a 2 mm-thick PTFE target placed on the sample holder as blanks. T2 - eMRS 2025 Fall Meeting CY - Warsaw, Poland DA - 15.09.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Advanced material KW - Synthesis KW - Characterization KW - Fluorescence quantum yield KW - Phosphor KW - Absolute KW - Integrating sphere spectroscopy KW - Dye KW - Standardization KW - Reference material KW - Interlaboratory comparison KW - Uncertainty PY - 2025 AN - OPUS4-64184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Z. A1 - Wegner, Karl David A1 - Stiegler, L. M. S. A1 - Zhou, X. A1 - Rezvani, A. A1 - Odungat, A. S. A1 - Zubiri, B. A. A1 - Wu, M. A1 - Spiecker, E. A1 - Walter, J. A1 - Resch-Genger, Ute A1 - Segets, D. T1 - Optimizing the Shelling Process of InP/ZnS Quantum Dots Using a Single-Source Shell Precursor: Implications for Lighting and Display Applications N2 - InP/ZnS core/shell quantum dots (QDs), recognized as highly promising heavy-metal-free emitters, are increasingly being utilized in lighting and display applications. Their synthesis in a tubular flow reactor enables production in a highly efficient, scalable, and reproducible manner, particularly when combined with a single-source shell precursor, such as zinc diethyldithiocarbamate (Zn(S2CNEt2)2). However, the photoluminescence quantum yield (PLQY) of QDs synthesized with this route remains significantly lower compared with those synthesized in batch reactors involving multiple steps for the shell growth. Our study identifies the formation of absorbing, yet nonemissive ZnS nanoparticles during the ZnS shell formation process as a main contributing factor to this discrepancy. By varying the shelling conditions, especially the shelling reaction temperature and InP core concentration, we investigated the formation of pure ZnS nanoparticles and their impact on the optical properties, particularly PLQY, of the resultant InP/ZnS QDs through ultraviolet−visible (UV−vis) absorption, steady-state and time-resolved photoluminescence (PL) spectroscopy, scanning transmission electron microscopy (STEM), and analytical ultracentrifugation (AUC) measurements. Our results suggest that process conditions, such as lower shelling temperatures or reduced InP core concentrations (resulting in a lower external surface area), encourage homogeneous nucleation of ZnS. This reduces the availability of shell precursors necessary for effective passivation of the InP core surfaces, ultimately resulting in lower PLQYs. These findings explain the origin of persistently underperforming PLQY of InP/ZnS QDs synthesized from this synthesis route and suggest further optimization strategies to improve their emission for lighting and display applications. KW - Nano KW - Particle KW - Synthesis KW - InP KW - Shell KW - Fluorescence KW - Quantum yield KW - ZnS KW - Semiconductor KW - Quantum dot KW - Flow reactor KW - Method KW - AUC KW - Size KW - Automation KW - Sensor PY - 2024 DO - https://doi.org/10.1021/acsanm.4c05265 SN - 2574-0970 VL - 7 IS - 20 SP - 24262 EP - 24273 PB - ACS Publications AN - OPUS4-61518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Soyka, J. P. A1 - Witte, J. F. A1 - Wiesner, A. A1 - Krappe, A. R. A1 - Wehner, D. A1 - Alnicola, N. A1 - Paulus, B. A1 - Resch-Genger, Ute A1 - Eigler, S. T1 - [3]Radialene Fluorophores with pH-Switchable Emission and Stable Absorption Maxima N2 - The first push–pull quino [3]radialene fluorescent dye is reported. Herein, the novel bis(dicyanomethylene)-[3]radialene electron acceptor is connected to a benzimidazole donor. With protonation, a substantial redshift of fluorescence wavelength is observed, while the absorption maximum remains stable. This process is accompanied with an increased fluorescence quantum yield to about 70%. Further, the findings are explained by a combined experimental and theoretical approach, and it is found that vibronic coupling plays a crucial role. This study highlights the yet unexplored potential of [3]radialene-based motifs for the design of environment-responsive fluorophores. KW - DADQ KW - Nanographene KW - fluorescence KW - Nano KW - Particle KW - Synthesis KW - Characterization KW - Advanced material KW - Quantum yield KW - Photophysic KW - pH KW - Probe KW - Sensor KW - Lifetime KW - Polarity PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642147 DO - https://doi.org/10.1002/ejoc.202500669 SN - 1099-0690 SP - 1 EP - 6 PB - Wiley-VCH CY - Weinheim AN - OPUS4-64214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Amouroux, B. A1 - Würth, Christian A1 - Roux, C. A1 - Eftekhari, A. A1 - Sliwa, M. A1 - Bouchet, A. A1 - Micheau, J.-C. A1 - Resch-Genger, Ute A1 - Coudret, C. T1 - Time-Resolved Rate Equation Analysis Disclose Kinetics Controlling Luminescence of Nanometer Tm-Upconverting Nanoparticles N2 - Upconversion luminescence of lanthanide-based upconversion nanoparticles (UCNPs) is a nonlinear step-wise process in which the consecutive absorption of multiple, low-energy photons results in the subsequent emission of a high-energy photon. The primary upconversion mechanism is energy transfer upconversion (ETU) from a sensitizer (Yb3+) to an activator (Tm3+). It requires the absorption of several excitation lowenergy photons by Yb3+, followed by the sequential energy transfer to Tm3+ions. Excited states relax to their ground states either radiatively by emitting a high-energy photon or non-radiatively by multiphonon relaxation through the crystalline host matrix. The time-resolved rise and decay luminescence curves of a set of five ultrasmall have been recorded under varying power near-infrared μs pulses. Six wavelengths have been used to monitor the evolution of the main Yb and Tm excited states. We use an average rate equations model to decipher the relationships between the compositional constraints and size of these ultrasmall UCNPs and the luminescence kinetic parameters. Several rate constants of ETU and other depopulation processes involving the multiple states of the Tm3+ energy scaffold have been retrieved from the simultaneous fit of the recorded curves. Their values have been interpreted by considering bulk and surface quenching, radiative and multi-phonon relaxations, and ion-to-ion hopping. Energy transfer between Yb3+ and Tm3+ is mainly occurring within neighbor atoms. The importance of mismatches on multiphonon relaxations, ETUs, and back-transfers has also been highlighted. For these numerical modeling, it appears that changing the composition and synthesis conditions with the aim to improve a single-specific parameter could remain a major challenge as this modification would automatically impact other properties with immediate consequences on UCNP dynamics. KW - Nano KW - Particle KW - Synthesis KW - Shell KW - Fluorescence KW - Lifetime KW - Decay kinetics KW - Method KW - Modelling KW - Quality assurance KW - Energy transfer KW - Upconversation PY - 2024 DO - https://doi.org/10.1021/acs.jpcc.4c04969 VL - 128 IS - 44 SP - 18836 EP - 18848 PB - ACS Publications AN - OPUS4-61645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Liu, Y. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, J. T1 - NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ Upconversion Nanoparticles for Optical Temperature Monitoring and Self-Heating in Photothermal Therapy N2 - The core−shell NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ upconversion nanoparticles were successfully prepared by a solvothermal method, and a layer of mesoporous silica (mSiO2) was successfully coated on the periphery of the core−shell nanoparticles to transform their surface from lipophilic to hydrophilic, further expanding their applications in biological tissues. The physical phase, morphology, structure, and fluorescence properties were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (TEM), Fourier infrared spectroscopy (FT-IR), ζ potential analysis, and fluorescence spectroscopy. It was found that the material has a hexagonal structure with good hydrophilicity and emits intense fluorescence under 980 nm pump laser excitation. The non-contact temperature sensing performance of nanoparticles was evaluated by analyzing the upconversion fluorescence of Tm3+ (1G4 → 3F4 and 3F3 → 3H6) in the temperature range of 284−344 K. The absolute and relative sensitivities were found to be 0.0067 K−1 and 1.08 % K−1, respectively, with high-temperature measurement reliability and good temperature cycling performance. More importantly, its temperature measurement in phosphate-buffered saline (PBS) solution is accurate. In addition, the temperature of the cells can be increased by adjusting the laser power density and laser irradiation time. Therefore, an optical temperature sensing platform was built to realize the application of real-time monitoring of cancer cell temperature and the dual function of photothermal therapy. KW - Sensor KW - Temperature KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Synthesis KW - Environment KW - Monitoring KW - Sensing KW - Nano KW - Life sciences KW - Upconversion PY - 2023 DO - https://doi.org/10.1021/acsanm.2c05110 VL - 6 IS - 1 SP - 759 EP - 771 PB - ACS Publications AN - OPUS4-57081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartmann, Yannic A1 - El Abbassi, Abdelouahad A1 - Mayer, Bernhard A1 - Resch-Genger, Ute A1 - Müller, Thomas J. J. T1 - Ester‐Aroyl‐S,N‐Ketene Acetals with Solid‐State Luminescence: AIEgens from Sequential Three‐Component Desymmetrization N2 - AbstractDi(hetero)aroyl dichlorides are desymmetrized upon sequential reaction with alcohols and 2‐methyl N‐benzyl thiazolium salts within the course of a one‐pot three‐component reaction yielding ester‐substituted aroyl‐S,N‐ketene acetals under mild conditions in good yields. A prerequisite for the concise one‐pot process is the different nucleophilicity of the alcohols and in situ generated S,N‐ketene acetals. The resulting compounds are merocyanines with dominant charge‐transfer absorption bands which are fluorescent in the solid state, but not in solution. In water/ethanol solvent mixtures of increasing water content, the water‐insoluble dyes display typical aggregation‐induced emission (AIE) characteristics. The water fraction inducing AIE as well as the emission color, and fluorescence quantum yield (Φf) of the aggregated dyes can be controlled by the alcohol part of the ester moiety. Encapsulation into polystyrene nanoparticles can lead to a considerable increase of the fluorescence quantum yield Φf to 30% as shown for a representatively chosen dye revealing the highest Φf of 11% within the dye series in the water/ethanol mixtures and enabling the usage of these dyes as fluorescent reporters in aqueous environments. KW - Dye KW - Fluorescence KW - Aggregation KW - Mechanism KW - Signal enhancement KW - Nano KW - Particle KW - Characterization KW - Quantum yield KW - Photophysics KW - Probe KW - Sensor KW - Lifetime KW - Polarity PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642400 DO - https://doi.org/10.1002/chem.202502071 SN - 0947-6539 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-64240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koshkina, Olga A1 - Westmeier, D. A1 - Lang, Thomas A1 - Bantz, C. A1 - Hahlbrock, A. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Braun, Ulrike A1 - Thiermann, Raphael A1 - Weise, C. A1 - Eravci, M. A1 - Mohr, B. A1 - Schlaad, H. A1 - Stauber, R. H. A1 - Docter, D. A1 - Bertin, Annabelle A1 - Maskos, M. T1 - Tuning the surface of nanoparticles: Impact of poly(2-ethyl-2-oxazoline) on protein adsorption in serum and cellular uptake N2 - Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2-ethyl-2-oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated nanoparticles versus nanoparticles coated with poly(ethylene glycol) (PEG) and non-coated positively and negatively charged nanoparticles are compared. Therefore, fluorescent poly(organosiloxane) nanoparticles of 15 nm radius are synthesized, which are used as a scaffold for surface modification in a grafting onto approach. With multi-angle dynamic light scattering, asymmetrical flow field-flow fractionation, gel electrophoresis, and liquid chromatography-mass spectrometry, it is demonstrated that protein adsorption on PEtOxylated nanoparticles is extremely low, similar as on PEGylated nanoparticles. Moreover, quantitative microscopy reveals that PEtOxylation significantly reduces the non-specific cellular uptake, particularly by macrophage-like cells. Collectively, studies demonstrate that PEtOx is a very effective alternative to PEG for stealth modification of the surface of nanoparticles. KW - Poloxazolines KW - Protein corona KW - Cellular uptake PY - 2016 DO - https://doi.org/10.1002/mabi.201600074 SN - 1616-5187 SN - 1616-5195 VL - 16 IS - 9 SP - 1287 EP - 1300 AN - OPUS4-37369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Li, Z. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, Jun T1 - Preparation of NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles and application of their fluorescence temperature sensing properties N2 - The NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles were successfully prepared by the solvothermal method, and the samples were pure hexagonal phase with good crystallinity and homogeneous size, asevidenced by XRD and TEM analysis. The FT-IR analysis shows that β-CD is successfully encapsulated on the surface of NaYF4: Yb3+/Tm3+@NaYF4 nanoparticles. The fluorescence intensity 3and lifetime were significantly increased after coating the inert layer on the surface of core nanoparticles. After further surface modification of β-CD, the fluorescence intensity and fluorescence lifetime were reduced, but the overall fluorescence was stronger. Temperature measurements using the fluorescence intensity ratio technique were found to have relatively low reliability and absolute sensitivity for temperature measurements using thermally coupled energy levels. However, the reliability of temperature measurements using non-thermally coupled energy levels is significantly higher and the absolute sensitivity is much higher than for measurements at thermally coupled levels. Since the maximum absolute sensitivity, maximum relative sensitivity and minimum temperature resolution are determined to be 0.1179 K-1, 2.19 %K􀀀 1 and 0.00019 K, respectively, NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles are expected to be widely used in the biomedical field due to their feasibility, reliability, non-toxicity and harmlessness. KW - Upconversion KW - Surface modification KW - Fluorescence intensity ratio KW - Thermally coupled levels KW - Non-thermally coupled levels PY - 2023 DO - https://doi.org/10.1016/j.optmat.2022.113389 SN - 0925-3467 VL - 136 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-57105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oskoei, P. A1 - Nogueira, J. A1 - Keller, Lisa-Marie A1 - Andresen, Elina A1 - Maturi, F. E. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Daniel-da-Silva, A. L. A1 - Carlos, L. D. A1 - Oliviera, H. T1 - Effects of doxorubicin-loaded UCNP@MSN core-shell particles with a thermoresponsive nanovalve in melanoma cells N2 - Melanoma, one of the most aggressive forms of skin cancer, has an increasingly higher incidence. When detected in advanced stages, tumour eradication is often incomplete, contributing to poor prognosis with conventional treatments. Upconversion nanoparticles (UCNPs) haveunique optical properties that allow their effective use in several biomedical applications. This includes the excitability under near-infrared (NIR) excitation light, which has a relatively high penetration depth in tissue, a multitude of characteristic emission bands in the ultraviolet (UV), visible (Vis), NIR, and short-wave infrared (SWIR), along with long luminescence lifetimes, and high photostability. Mesoporous silica nanoparticles (MSN) with nanovalves or derived coatings have widely been used for triggered and targeted drug delivery in the past. Anticancer drugs can be loaded into the pores of MSN, enabling spatiotemporally controlled drug release. KW - Nano KW - Particle KW - Silica KW - Upconversation KW - Lanthanide KW - Triggered release KW - Temperature KW - Cell studies KW - Drug KW - Toxicity studies PY - 2024 DO - https://doi.org/10.1016/j.toxlet.2024.07.237 SN - 0378-4274 VL - 399 IS - Supplement 2 SP - S89 EP - S90 PB - Elsevier B.V. AN - OPUS4-62571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Amouroux, B. A1 - Eftekhari, A. A1 - Roux, C. A1 - Micheau, J. A1 - Roblin, P. A1 - Pasturel, M. A1 - Gauffre, F. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Sliwa, M. A1 - Bouchet, A. A1 - Coudret, C. T1 - Synthesis and Emission Dynamics of Sub-3 nm Upconversion Nanoparticles N2 - Reducing the size of upconversion nanoparticles (UCNPs) down to a few nm yields luminescent materials containing a very small number of emitters. Considering the bottom limit of one activator per particle ultrasmall UCNPs offer an unprecedented platform to study the contributions of the energy transfers at play in upconversion luminescence. Maintaining detectable emission despite the limited number of emitting ions and the high surface-to-volume ratio requires suitable particle architectures. Na(Gd-Yb)F4:Tm3+ emissive sub-3 nm diameter 𝜷-phase UCNPs are prepared using a gadolinium-rich composition in situ mixing of the precursors and a microwave high-temperature cycling sequence allowing precise control of the particle size and dispersity. These cores are coated with a NaGdF4 inert shell to minimize the deleterious influence of surface quenching (SQ). Time-resolved luminescence measurements combining standard NIR excitation of the Yb3+ sensitizer and direct UV excitation of the Tm3+ activator are performed to quantify cross relaxation and surface quenching processes. The fine tuning of the number of activators per particle via an optimized synthesis pathway along with the use of an appropriate excitation scheme enabled to provide an accurate analysis of the different mechanisms at play in these model nanoparticles and to characterize the structure of the core-shell architecture. KW - Lanthanide KW - Nanoparticle KW - Luminescence KW - Quantitative spectroscopy KW - Quantum yield KW - Energy transfer KW - Quality assurance KW - Synthesis KW - Surface modification KW - Photophysics PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606877 DO - https://doi.org/10.1002/adom.202303283 SN - 2195-1071 SP - 1 EP - 13 AN - OPUS4-60687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nirmalananthan-Budau, Nithiya A1 - Budau, J. H. A1 - Moldenhauer, Daniel A1 - Hermann, G. A1 - Kraus, Werner A1 - Hoffmann, Katrin A1 - Paulus, Beate A1 - Resch-Genger, Ute T1 - Substitution pattern controlled aggregation-induced emission in donor-acceptor-donor dyes with one and two propeller-like triphenylamine donors N2 - We present a comparative study of the spectroscopic properties of the donor–acceptor–donor substituted dyes triphenylamine-allylidenemalononitrile-julolidine (TMJ) and triphenylamine-allylidenemalononitriletriphenylamine (TMT), bearing one and two propeller-like triphenylamine donor moieties, in solvents of varying polarity and viscosity and in the aggregated and solid state. Our results reveal control of the aggregation-induced spectroscopic changes and the packing motifs of the dye molecules in the solid state by the chemical nature and structure of the second nitrogen-containing donor, i.e., a planar and a rigid julolidine or a twisted triphenyl group. Assuming that the TMT and TMJ aggregates show a comparable arrangement of the molecules to the respective crystals, these different molecular interactions in the solid state are responsible for aggregation induced emission (AIE) in the case of TMT and its absence for TMJ. Moreover, a versatile strategy for the fluorescence enhancement of only weakly emissive AIE dyes is shown, turning these dyes into bright nanoscale fluorescent reporters by using them as stains for preformed polymer particles. KW - Nano KW - Nanoparticle KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Dye KW - Enhancement KW - Particle KW - Polarity KW - AIE KW - Aggregation KW - Aggregation-induced emission KW - Solid state emission PY - 2020 DO - https://doi.org/10.1039/d0cp00413h VL - 22 IS - 25 SP - 14142 EP - 14154 AN - OPUS4-50967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroyuk, O. A1 - Raievska, O. A1 - Barabash, A. A1 - Batentschuk, M. A1 - Osvet, A. A1 - Fiedler, Saskia A1 - Resch-Genger, Ute A1 - Hauch, J. A1 - Brabec, C. J. T1 - "Green" synthesis of highly luminescent lead-free Cs2AgxNa1-xBiyIn1-yCl6 perovskites N2 - A new “green” and mild synthesis of highly stable microcrystalline Cs2AgxNa1-xBiyIn1-yCl6 (CANBIC) perovskites under ambient conditions was developed that is scalable to the multi-gram production. Under UV illumination, the CANBIC perovskites emit intense broadband photoluminescence (PL) with a quantum yield (QY) of 92% observed for x = 0.35 and y = 0.01-0.02. The combination of strong UV absorbance and broadband visible emission, high PL QY, and long PL lifetimes of up to 1.4 μs, along with an outstanding stability makes these CANBICs a promising material class for many optical applications. KW - Fluorescence KW - Perovskites KW - Solar cell KW - Automated synthesis KW - Green synthesis KW - Quantum yield KW - Integrating sphere spectroscopy KW - Absolute fluorescence KW - Quality assurance KW - Nano KW - Particle KW - Application KW - Semiconductor KW - Quantum dot KW - Renewable energy PY - 2022 DO - https://doi.org/10.1039/d2tc02055f SN - 2050-7526 VL - 10 IS - 27 SP - 9938 EP - 9944 PB - Royal Society of Chemistry AN - OPUS4-55453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Nirmalananthan-Budau, Nithiya A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute T1 - Analyzing the surface of functional nanomaterials — how to quantify the total and derivatizable number of functional groups and ligands N2 - Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address methodand material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5–10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization. KW - Functional group quantification KW - Surface ligand KW - Nanomaterial KW - Optical detection KW - Electrochemical titration KW - Nanosafety (Safe-by-design) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533597 DO - https://doi.org/10.1007/s00604-021-04960-5 VL - 188 IS - 10 SP - 1 EP - 28 PB - Springer Nature AN - OPUS4-53359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, C. A1 - Schäferling, Michael A1 - Resch-Genger, Ute A1 - Gradzielski, M. T1 - Solvothermal Synthesis of Lanthanide-doped NaYF4 Upconversion N2 - Lanthanide-doped NaYF4 upconversion nano- and microcrystals were synthesized via a facile solvothermal approach. Thereby, the influence of volume ratios of ethylene glycol (EG)/H2O, molar ratios of NH4F/RE3+ (RE3+ represents the total amount of Y3+ and rare-earth dopant ions), Gd3+ ion contents, types of activator dopant ions, and different organic co-solvents on the crystal phase, size, and morphology of the resulting particles were studied systematically. A possible formation mechanism for the growth of crystals of different morphology is discussed. Our results show that the transition from the α- to the β-phase mainly depends on the volume ratio of EG/H2O and the molar ratio of NH4F/RE3+, while the morphology and size could be controlled by the type of organic co-solvent and Gd3+ dopant ions. Furthermore, the reaction time has to be long enough to convert α-NaYF4 into β-NaYF4 during the growth process to optimize the upconversion luminescence. The formation of larger β-NaYF4 crystals, which possess a higher upconversion luminescence than smaller particles, proceeds via intermediates of smaller crystals of cubic structure. In summary, our synthetic approach presents a facile route to tailor the size, Crystal phase, morphology, and luminescence features of upconversion materials. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Photoluminescence KW - Lanthanide KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Single particle KW - Brightness KW - NIR KW - Synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520307 DO - https://doi.org/10.1002/cnma.202000564 VL - 7 IS - 2 SP - 174 EP - 183 PB - Wiley AN - OPUS4-52030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bastos, V. A1 - Oskoei, P. A1 - Andresen, Elina A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Oliveira, H. T1 - Stability, dissolution, and cytotoxicity of NaYF4‑upconversion nanoparticles with different coatings N2 - Upconversion nanoparticles (UCNPs) have attracted considerable attention owing to their unique photophysical properties. Their utilization in biomedical applications depends on the understanding of their transformations under physiological conditions and their potential toxicity. In this study, NaYF4: Yb,Er UCNPs, widely used for luminescence and photophysical studies, were modified with a set of four different coordinatively bound surface ligands, i.e., citrate, alendronate (AA), ethylendiamine tetra(methylene phosphonate) (EDTMP), and poly(maleic anhydride-alt-1-octadecene) (PMAO), as well as silica coatings with two different thicknesses. Subsequently, the aging-induced release of fluoride ions in water and cell culture media and their cytotoxic profile to human keratinocytes were assessed in parallel to the cytotoxic evaluation of the ligands, sodium fluoride and the lanthanide ions. The cytotoxicity studies of UCNPs with different surface modifications demonstrated the good biocompatibility of EDTMP-UCNPs and PMAO-UCNPs, which is in line with the low amount of fluoride ions released from these samples. An efficient prevention of UCNP dissolution and release of cytotoxic ions, as well as low cytotoxicity was also observed for UCNPs with a sufficiently thick silica shell. Overall, our results provide new insights into the understanding of the contribution of surface chemistry to the stability, dissolution behavior, and cytotoxicity of UCNPs. Altogether, the results obtained are highly important for future applications of UCNPs in the life sciences and bioimaging studies. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Excitation power density KW - Surface chemistry KW - Coating PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544681 DO - https://doi.org/10.1038/s41598-022-07630-5 SN - 2045-2322 VL - 12 SP - 1 EP - 13 PB - Springer Nature CY - London AN - OPUS4-54468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Nirmalananthan-Budau, Nithiya A1 - Weigert, Florian A1 - Götze, J. P. A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores N2 - The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects. KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Theory KW - Quantum yield KW - Mechanism KW - Quantum chemistry KW - Modelling KW - Aggregation KW - Lifetime KW - Single particle KW - Microscopy KW - Solid KW - Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531138 DO - https://doi.org/10.1039/d1cp02534a SP - 1 EP - 9 PB - Royal Society of Chemistry AN - OPUS4-53113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le Guevel, X. A1 - Wegner, Karl David A1 - Würth, Christian A1 - Baulin, V. A. A1 - Musnier, B. A1 - Josserand, V. A1 - Resch-Genger, Ute A1 - Koll, J-C T1 - Tailoring the SWIR emission of gold nanoclusters by surface ligand rigidification and their application in 3D bioimaging N2 - The influence of solvent polarity and surface ligand rigidification on the SWIR emission profile of gold nanoclusters with an anistropic surface was investigated. A strong enhancement of the SWIR emission band at 1200 nm was observed when measuring in different local environments: in solution, in polymer composites, and in solids. SWIR in vivo imaging of mice assisted by deep learning after intravenous administration of these gold nanoclusters provides high definition pseudo-3D views of vascular blood vessels. KW - Nano KW - Nanomaterial KW - Metal cluster KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - NIR KW - SWIR KW - Ligand KW - Gold KW - Mechanism KW - Charge transfer KW - Enhancement strategy KW - Imaging KW - Application KW - Contrast agent PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543582 DO - https://doi.org/10.1039/D1CC06737K VL - 58 IS - 18 SP - 2967 EP - 2970 PB - RSC AN - OPUS4-54358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Kaiser, Martin A1 - Wilhelm, Stefan A1 - Grauel, Bettina A1 - Hirsch, Th. A1 - Resch-Genger, Ute T1 - Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents N2 - The rational design of brighter upconversion nanoparticles (UCNPs) requires a better understanding of the radiationless deactivation pathways in these materials. Here, we demonstrate the potential of excitation power density (P)-dependent studies of upconversion (UC) luminescence intensities, slope factors, and absolute quantum yields (ΦUC) of popular β-NaYF4:20% Yb3+,2% Er3+ UCNPs of different surface chemistries in organic solvents, D2O, and water as a tool to gain deeper insight into the UC mechanism including population and deactivation pathways particularly of the red emission. Our measurements, covering a P regime of three orders of magnitude, reveal a strong difference of the P-dependence of the ratio of the green and red luminescence bands (Ig/r) in water and organic solvents and P-dependent population pathways of the different emissive energy levels of Er3+. In summary, we provide experimental evidence for three photon processes in UCNPs, particularly for the red emission. Moreover, we demonstrate changes in the excited population dynamics via bi- and triphotonic processes dependent on the environment, surface chemistry, and P, and validate our findings theoretically KW - Upconverion KW - Quantum Yield KW - Photo physics PY - 2017 UR - http://pubs.rsc.org/en/content/articlepdf/2017/nr/c7nr00092h DO - https://doi.org/10.1039/c7nr00092h SN - 2040-3364 SN - 2040-3372 VL - 9 IS - 12 SP - 4283 EP - 4294 PB - The Royal Society of Chemistry AN - OPUS4-39849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abram, Sarah-Luise A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute A1 - Johnston, L. J. A1 - Zou, S. T1 - Nanoscale reference and test materials for the validation of characterization methods for engineered nanomaterials — current state, limitations, and needs N2 - The rational design of engineered nanomaterials (NMs) with improved functionality and their increasing industrial application requires reliable, validated, and ultimately standardized characterization methods for their application-relevant, physicochemical key properties such as size, size distribution, shape, or surface chemistry. This calls for nanoscale (certified) reference materials (CRMs; RMs) and well-characterized reference test materials (RTMs) termed also quality control (QC) samples, assessed, e.g., in interlaboratory comparisons, for the validation and standardization of commonly used characterization methods. Thereby, increasing concerns regarding potential risks of NMs are also addressed and the road for safe and sustainable-by-design concepts for the development of new functional NMs and their use as nanomedicines is paved. With this respect, we will provide an overview of relevant international standardization and regulatory activities, definitions, and recommendations on characterization methods and review currently available organic or inorganic nanoscale CRMs, RMs, and RTMs, including their characterization or certification. In addition, we will highlight typical applications to streamline the regulatory approval process and improve manufacturability including the special challenges imposed by the colloidal nature and sometimes limited stability of NMs. Subsequently, we will critically assess the limitations of currently available nanoscale RMs and RTMs and address the gaps to be filled in the future such as the availability of NMs that come with reference data on properties other than commonly addressed particle size, such as surface chemistry or particle number concentration, or more closely resemble commercially available formulations or address application-relevant matrices. KW - Nano KW - Particle KW - Silica KW - Quality assurance KW - Reference material KW - Review KW - Surface chemistry KW - Size KW - Shape KW - Particle number concentration KW - Lipid nanoparticles KW - Metal nanoparticles KW - Liposomes PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625746 DO - https://doi.org/10.1007/s00216-024-05719-6 SN - 1618-2650 SP - 1 EP - 21 PB - Springer AN - OPUS4-62574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Labrador-Paez, Lucia, L. A1 - Kankare, J. A1 - Hyppanen, I. A1 - Soukka, T. A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Widengren, J A1 - Liu, H. T1 - Frequency-Domain Method for Characterization of Upconversion Luminescence Kinetics N2 - The frequency-domain (FD) method provides an alternative to the commonly used time-domain (TD) approach in characterizing the luminescence kinetics of luminophores, with its own strengths, e.g., the capability to decouple multiple lifetime components with higher reliability and accuracy. While extensively explored for characterizing luminophores with down-shifted emission, this method has not been investigated for studying nonlinear luminescent materials such as lanthanide-doped upconversion nanoparticles (UCNPs), featuring more complicated kinetics. In this work, employing a simplified rate-equation model representing a standard two-photon energy-transfer upconversion process, we thoroughly analyzed the response of the luminescence of UCNPs in the FD method. We found that the FD method can potentially obtain from a single experiment the effective decay rates of three critical energy states of the sensitizer/activator ions involved in the upconversion process. The validity of the FD method is demonstrated by experimental data, agreeing reasonably well with the results obtained by TD methods. KW - Quality assurance KW - Luminescence KW - Method KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Lifetime KW - Method development PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597435 DO - https://doi.org/10.1021/acs.jpclett.3c00269 SP - 3436 EP - 3444 AN - OPUS4-59743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Introduction to Fluorescence Spectroscopy N2 - A brief introduction to fluorescence spectroscopy will be provided, ranging from typically measured fluorescence quantities over instrument-specific contributions to measured fluorescence signals to selected applications. In this context, an overview of the photoluminescence properties of molecular and nanoscale luminescence reporters will be given including a brief insight into their photophysics and fluorescence standards designed by division Biophotonics for the calibration and instrument performance validation of fluorescence measuring devices will be presented. T2 - Analytical Academy CY - Berlin, Germany DA - 13.01.2020 KW - Linearity KW - Fluorescence KW - Dye KW - Quality assurance KW - Nnano particle KW - Method KW - Measurement uncertainty KW - Quantification PY - 2020 AN - OPUS4-51618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Absolute Fluorescence Measurements > 800 nm - Setup Design, Challenges, and Characterization of Semiconductor and Lanthanide-based Nanocrystals N2 - There is an increasing interest in optical reporters like semiconductor and lanthanide-based nanocrystals with emission > 800 nm and recently also > 1000 nm for bioanalysis, medical diagnostics, and safety barcodes. Mandatory for the comparison of different emitter classes and the rational design of the next generation of reporters for the short wavelength infrared (SWIR) region are reliable and quantitative photoluminescence measurements in this challenging wavelength region. This is of special relevance for nanocrystalline emitters like semiconductor quantum dots and rods as well as for upconversion and downconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Such measurements are currently hampered by the lack of suitable methods and standards for instrument calibration and validation as well as by the lack of quantum yield standards with emission > 800 nm and especially > 1000 nm. In this respect, we present the design of integrating sphere setups for absolute and excitation power densitydependent measurements of emission spectra and quantum yields in the wavelength region of 650 to 1650 nm including calibration strategies and first candidates for potential fluorescence standards. Subsequently, the photoluminescence properties of different types of nanocrystals are presented and discussed including absolute photoluminescence measurements of upconversion and down conversion emission in different solvents. T2 - MRS 2017 CY - Boston, MA, USA DA - 26.11.2017 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Semiconductor quantum dot KW - SWIR KW - Quantum yield KW - Energy transfer KW - Size PY - 2017 AN - OPUS4-43202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Career Options in Public Service N2 - In the following, an overview of possible career options for chemists is presented covering metrology institutes, departmental research institutes of ministries, Federal and state research institutes and options in areas such as Federal or state institutions in charge of occupational safety, the German armed forces, wastewater treatment plants and labs/institutes controlling water quality, and museums. Thereby also examples and personal insights of the daily work routine are provided for some employers. T2 - Career-Workshop ChiÖD CY - Karlsruhe, Germany DA - 02.04.2025 KW - Quality assurance KW - Reference analysis KW - Standardization KW - Metrology KW - Reference products KW - Reference materials KW - Mission PY - 2025 AN - OPUS4-62867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, L. A1 - Jakobs, F. A1 - Spelthann, S. A1 - Zaremba, D. A1 - Radunz, Sebastian A1 - Resch-Genger, Ute A1 - Evert, R. A1 - Kielhorn, J. A1 - Kowalsky, W. A1 - Johannes, H.-H. T1 - Integration of β-NaYF4 Upconversion Nanoparticles into Polymers for Polymer Optical Fiber Applications N2 - Producing active polymer optical fibers (POFs) is a key step towards new applications such as fluorescent fiber solar concentrators (FFSCs), sensors, contactless coupling devices, or fiber integrated light sources and lasers. Therefore, integration of fluorescent nanoparticles into the polymer matrix is necessary and becomes accessible via in situ polymerization. For optical applications, the polymer has to fulfill various requirements such as chemical and physical stability, optical transparency in the application-relevant spectral region as well as a good synthetic accessibility. A common material for these is poly(methyl methacrylate) (PMMA). The β-phase NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNP) were synthesized from the rare earth salts via thermal decomposition method in high-boiling point solvent 1-octadecene and capping agent oleic acid. Current results show hazy samples of the polymer with integrated nanoparticles made from monomer solution of methyl methacrylate. However, further optical tuning such as increasing the transparency of the bulk samples by changing the monomer solution to non-polar n-butyl methacrylate (nButMA) or cyclohexyl methacrylate (CHMA) or further optimization of the UCNP shell could lead to more suitable polymer bulk samples. T2 - PCNSPA 2018 - Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications CY - St. Petersburg, Russia DA - 04.06.2018 KW - Copolymer KW - Active fibers KW - Rare earth nanoparticles KW - Upconversion PY - 2018 SP - 1 EP - 9 AN - OPUS4-45883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -