TY - CONF A1 - Launert, B. A1 - Rhode, Michael A1 - Kromm, Arne A1 - Pasternak, H. A1 - Kannengießer, Thomas T1 - Measurement and numerical modeling of residual stress distribution in welded HSLA component-like I-girders N2 - Welded I-girders are used in many applications in steel construction, especially a tailored mixture of different plate thicknesses is difficult to manufacture by rolling. Residual stresses are mainly caused by welding and it is in most cases impractical to anneal the structures. Eurocode 3 (EC 3) does not provide any specific residual stress pattern. Hence, the decision for a particular problem has to be taken by the designer. Stability failures are often decisive in the design of steel beam and column members. Many standards, including EC 3, permit the use of non-linear FEA for the design of structures. Load influencing imperfections are mainly geometric deviations from the ideal shape and residual stresses(both due to assembly or weld manufacturing). Currently the residual stresses are considered by simplified “robust” procedures fixed in common standards(such as EC 3. Models mostly based on specimens from mild steel. Information about high-strength steels is less available for realistic assessment of residual stresses in full-scale I-girders. Hence, the scope of this work is the measurement of residual welding stresses on component-like I-girders S355 and S690 by sectioning method and global structural welding simulation. T2 - 69th IIW Annual Assembly, Meeting of Subcommission II-A CY - Melbourne, Australia DA - 10.07.2016 KW - Residual stress KW - Welding KW - Load bearing capacity KW - Numerical modeling KW - Measurement PY - 2016 AN - OPUS4-37025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Boin, M. A1 - Kannengießer, Thomas A1 - Gibmeier, J. T1 - Influence of heat control on residual stresses in low transformation temperature (LTT) large scale welds N2 - Independent from the interpass temperature residual stresses in longitudinal direction were lower than in transverse direction. This applies for the surface as well as for the bulk of the welds. Residual stresses in the bulk were in general lower compared to stresses found on the surface. Compressive residual stresses as a result of the martensite formation were formed in the bulk weld metal, only. Independent from the LTT filler used high interpass temperatures were beneficial to reduce the stresses mainly in longitudinal direction. Lower interpass temperatures tend to narrow the tensile zone in the weld metal but they also prevent the formation of compressive residual stresses. T2 - ICRS10 CY - Sydney, Australia DA - 03.07.2016 KW - Phase transformation KW - LTT KW - Welding KW - Heat control KW - Residual stress PY - 2016 AN - OPUS4-37312 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Boin, M. A1 - Kannengießer, Thomas A1 - Gibmeier, J. T1 - Effect of interpass temperature on residual stresses in LTT welded joints N2 - Independent from the interpasstemperature residual stresses in longitudinal direction were lower than in transverse direction. This applies for the surface as well as for the bulk of the welds. -Residual stresses in the bulk were in general lower compared to stresses found on the surface. •Compressive residual stresses as a result of the martensite formation were formed in the bulk weld metal, only. •Independent from the LTT filler used high interpasstemperatures were beneficial to reduce the stresses mainly in longitudinal direction. •Lower interpasstemperatures tend to narrow the tensile zone in the weld metal but they also prevent the formation of compressive residual stresses. T2 - IIW2016 CY - Melbourne, Australia DA - 10.07.2016 KW - Phase transformation KW - Interpass temperature KW - LTT KW - Residual stress KW - Welding PY - 2016 AN - OPUS4-37313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Schasse, R. A1 - Xu, Ping A1 - Mente, Tobias A1 - Kannengießer, Thomas T1 - Influence of weld repair by gouging on the residual stresses in high strength steels N2 - Carbon arc-air gouging is a common technology when repairing defects in welded structures. Often this technique is applied in repeated cycles even on the same location of the joint. Due to the multiple heat input by gouging and subsequent re-welding, the residual stresses are strongly influenced. This can become crucial when microstructure and mechanical properties are adversely affected by multiple weld reparations. Knowledge about the relation of gouging and residual stresses is scarce but important when high strength steels, which are sensitive to residual stresses, are processed. The present study shows the effect of repair welding on a high strength steel structural element. The weld and the heat affected zone were subjected to multiple thermal cycles by gouging and subsequent repair welding. The residual stresses were determined by X-ray diffraction at different positions along the joint. The results showed that the residual stress level has increased by the repair cycles. This is most pronounced for the heat affected zone. Adapted welding procedures may prevent detrimental residual stress distributions. T2 - International Conference on Residual Stresses 10 CY - Sydney, Australia DA - 03.07.2016 KW - Repair welding KW - Residual stress KW - Carbon arc-air gouging PY - 2016 AN - OPUS4-36886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Rhode, Michael A1 - Launert, B. A1 - Dixneit, Jonny A1 - Kannengießer, Thomas A1 - Pasternak, H. T1 - Combining sectioning method and x-ray diffraction for evaluation of residual stresses in welded high strength steel components N2 - Residual stresses and distortions in welded I-girders for steel construction are relevant when evaluating the stability of steel beams and column members. The application of high strength steels allows smaller wall thicknesses compared to conventional steels. Therefore, the risk of buckling has to be considered carefully. Due to the lack of knowledge concerning the residual stresses present after welding in high strength steel components conservative assumptions of their level and distribution is typically applied. In this study I-girders made of steels showing strengths of 355 MPa and 690 MPa were welded with varying heat input. Due to the dimension of the I-girders and the complex geometry the accessibility for residual stress measurement using X-ray diffraction was limited. Therefore, saw cutting accompanied by strain gauge measurement has been used to produce smaller sections appropriate to apply X-ray diffraction. The stress relaxation measured by strain gauges has been added to residual stresses determined by X-ray diffraction to obtain the original stress level and distribution before sectioning. The combination of both techniques can produce robust residual stress values. From practical point of view afford for strain gauge application can be limited to a number of measuring positions solely to record the global amount of stress relaxation. X-ray diffraction can be applied after sectioning to determine the residual stresses with sufficient spatial resolution. T2 - International Conference on Residual Stresses 10 CY - Sydney, Australia DA - 03.07.2016 KW - Residual stress KW - Sectioning method KW - X-ray diffraction PY - 2016 AN - OPUS4-36887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Dixneit, Jonny T1 - Observation of martensite formation by combined use of synchrotron diffraction and dilatometry N2 - Welding residual stress engineering by means of an adjusted martensite phase transformation would be highly attractive as detrimental tensile residual stresses may be prevented already during welding without time and cost intensive post processing. The present study shows a synchrotron diffraction analysis of a martensitic steel subjected to thermo-mechanical load cycles. Experiments were conducted regarding the microstructural strain response during the austenite to martensite transformation. The strains are a function of the temperature and the specific loads applied during cooling. The relation between the transformation plasticity of the material, the amount of martensite formed and the arising strains can thus be assessed. The lattice plane specific strains were compared to experimental findings from (macro) dilatation tests. It is shown that the microscopic material behavior differs remarkably from the one observed on the macroscopic scale, what leads to characteristic residual stresses in the material. T2 - Material Science & Technology (MS&T16) 3rd International Workshop of In-situ Studies with Photons, Neutrons and Electrons Scattering CY - Salt Lake City, UT, USA DA - 23.10.2016 KW - Residual stress KW - Martensite KW - Dilatometry KW - Synchrotron diffraction KW - Neutron diffraction PY - 2016 AN - OPUS4-37999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Sonntag, Nadja A1 - Waikom Singh, Sharatchandra A1 - Bruno, Giovanni A1 - Skortzki, Birgit A1 - Kreutzbruck, Marc T1 - Metal magnetic memory technique - prospects and restrictions N2 - Magnetic testing methods are frequently applied in non-destructive evaluation of ferromagnetic materials. In the past decade, metal magnetic memory (MMM) technique according to ISO 24497 is gaining considerable interest in the magnetic NDT community. In contrast to traditional Magnetic Flux Leakage (MFL) testing, the inspection objects are not intentionally magnetized by an external magnetic field. Due to physical coupling between mechanical stress and magnetization in ferromagnetic materials, it is assumed that the distribution of the “natural” MFL (self-magnetic-leakage field, SMLF) indicate zones of different remanent magnetization, which in turn, correspond to the internal stress of specimen or in the most general sense to material degradation. Usually, MMM measurements are performed by relatively bulky magnetic inspection sensors providing a spatial resolution in millimetre range. High precision GMR (Giant Magneto Resistance) measurements in the micrometer regime along with image based representation and evaluation can provide a higher degree of information. We present a concise summary of a broader research project aimed at studying the correlation of magnetic structure and microstructure of steels. Particularly, we compare residual stress measurements in S235JR steel by means of neutron diffraction with high resolution magnetic field measurements. In addition, we discuss the influence of deformation-induced magnetization in plastically deformed specimens with and without notches due to various quasi-static and cyclic load levels. Furthermore, comparative measurements with common non-destructive testing methods are presented. Despite of a quantitative evaluation of material degradation, the in the field inspection by MMM remains problematic due to substantial influences on such as external magnetization, anisotropy of internal magnetization and material degradation, as well as geometry and surface effects of the inspection objects on SMFL signals. The prospects and restrictions of the MMM technique are discussed in this contribution. T2 - 19th World Conference on Non-Destructive Testing (WCNDT 2016) CY - Munich, Germany DA - 13.06.2016 KW - Materials characterisation KW - Standards and training (certification, qualification) KW - Residual stress KW - Magnetic testing KW - Neutron diffraction KW - GMR sensor (Giant Magneto Resistance) PY - 2016 AN - OPUS4-38356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -