TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Carrillo Salgado, Irene A1 - Le, Quynh Hoa T1 - Corrosion stability of piping steels in a circulating supercritical impure CO2 environment N2 - In supercritical impure CO2 (worst case scenario) highly alloyed Steels tend to pitting corrosion; iron and carbon steel tend to General corrosion, however, with low corrosion rates (< 0.1 mm/a) T2 - Kolloquium Uni Potsdam CY - Potsdam, Germany DA - 18.3.2016 KW - CCS KW - CO2 KW - Corrosion PY - 2016 AN - OPUS4-36990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - On the corrosion mechanism of CO2 transport pipeline steels caused by impurities: Roles of each impure components and benchmarks N2 - Carbon Capture, Utilization and Storage (CCUS) has been proposed as a promising technology for the mitigation of CO2 emissions into the atmosphere from fossil-fuel- operated power generation plants. As the reliability and cost effectiveness of the Pipeline transport network is crucial to the Overall operability and resilience of the CCUS system, it is vital to realize the possible corrosion risks of the employed Pipeline steels corresponding to the impurity Level of the gas source. Recent studies have shown that even the high alloyed materials might be susceptible to General and/or localized corrosion by the condensates forming from the impurities such as SOx, NOx, CO, O2 and water. Up to now, however, there is no regulation procedure which defines the maximum acceptable level of impurities and the combination of them for each employed pipeline steels. Herein, systematic experiment series were conducted by mixing pure CO2 gas with varying concentration of each impurity and with the varying combination of them. Each time, the mixture was then fed (1 L/min) into the reactor containing 12 specimens for 120-600 h at 5°C (to simulate the sub-level Pipeline transport). The resulted condensate was collected and analyzed by ionic chromatography and atomic Absorption spectroscopy to determine the chemical composition. In this study, the “worstcase scenario” gas mixture, containing 2.5 % H2O, 1.8 % O2, 1000 ppm NO2, and 220 ppm SO2 as impurities, resulted in the condensate containing H2SO4 0.114 M and HNO3 0.0184 M (pH 2.13). This “original” condensate was then reproduced to carry out exposure tests and electrochemical characterization including corrosion potentials and impedance spectroscopy in CO2 saturated condition for 7-14 days at the same temperature. The corrosion rate was also measured by mass loss method. We can conclude that, at the initial stage, HNO3 plays the dominant role in Fe dissolution process, while H2SO4 is responsible for the pit initiation followed by pitting corrosion. Future studies will be focused on the combination effect from the impurities and the exposure test under the regularly changing condensate to mimic the real CO2 pipeline system. T2 - Eurocorr 2016 CY - Montpellier, France DA - 11.09.2016 KW - Pipeline transport KW - Condensation KW - Corrosion KW - Carbon capture utilization KW - CO2 PY - 2016 AN - OPUS4-37752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Erning, Johann Wilhelm T1 - Pinguin di Jerman: Apa hubungannya dengan korosi? T1 - Penguins in Germany: What does it has to do with corrosion? N2 - A failure case in an animal enclosure at Hannover Zoo is presented. Reasons for corrosive failure and solutions are discussed. T2 - Lecture at Institut Teknologi Sepuluh Nopember (ITS) CY - Surabaya, Indonesia DA - 12.11.2018 KW - Corrosion KW - Marine PY - 2018 AN - OPUS4-46741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph T1 - Challenges for corrosion resistance of metallic materials in geothermal applications N2 - Corrosion aspects for use of metallic materials in geothermal applications are presented and discussed. T2 - Corrosion Workshop beim Geothermie Kongress 2018 CY - Essen, Germany DA - 27.11.2018 KW - Corrosion KW - Geothermal KW - Steel PY - 2018 AN - OPUS4-46744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.09.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion PY - 2019 AN - OPUS4-49302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Stoljarova, A. A1 - Regenspurg, S. T1 - Deposition of Brine Components on Materials in Geothermal Conditions T1 - ОСАЖДЕНИЕ КОМПОНЕНТОВ ГЕОТЕРМИЧЕСКИХ ВОД НА МАТЕРИАЛЫ В ГЕОТЕРМАЛЬНЫХ УСЛОВИЯХ N2 - Since geothermal wells are a feasible energy source to replace fossil fuel supply, many technologies have been developed to take advantage of geothermal energy. Nevertheless, service conditions in geothermal facilities are in many cases extreme in terms of corrosion due to the chemical composition of hydrothermal fluids and temperatures. Therefore, materials selection based on preliminary material qualification is essential to guarantee a secure and reliable operation of the facilities. During operation of a geothermal research facility in Groß Schönebeck copper and lead effects have been found downhole. Occurring mechanisms and measures to prevent precipitation or scaling needed to be investigated as well as potential influences of such precipitates on corrosion resistance of metallic materials used for equipment. This contribution deals with the evaluation of the corrosion behavior of carbon steel and corrosion resistant alloys in copper and/or lead containing artificial geothermal water, simulating the conditions in the Northern German Basin. The behavior of these materials in an artificial geothermal water obtained by electrochemical measurements and exposure tests are presented. While carbon steel exhibits precipitation and deposition, higher alloyed material shows different response to such species and a higher resistance in saline geothermal water. Basing on these results the suitability of the investigated corrosion resistant alloy is given for use in such conditions, whereas carbon steel creates difficulties due to its susceptibility to Cu- and Pb-precipitation. N2 - Поскольку геотермальные скважины являются реальным источником энергии для замены поставок ископаемого топлива, было разработано множество технологий для использования преимуществ геотермальной энергии. Тем не менее, условия эксплуатации на геотермальных установках во многих случаях являются экстремальными с точки зрения коррозии из-за химического состава гидротермальных жидкостей и температур. Таким образом, выбор материалов на основе предварительной квалификации имеет важное значение для обеспечения безопасной и надежной работы геотермальных объектов. Во время работы исследовательской установки в Грос Шёнебек (Groß Schönebeck) в скважине было обнаружено воздействие меди и свинца. Необходимо изучить возникшие механизмы и меры для предотвращения депозиции или образования коррозии, а также потенциальное влияние таких осаждений на коррозионную стойкость металлов, используемых для оборудования. Этот доклад посвящен оценке коррозионного поведения углеродистой стали и коррозионно-стойких сплавов в геотермальной воде, содержащей медь и / или свинец, моделирующей условия в Северогерманском бассейне (North German basin). Представлено поведение этих металлических материалов в геотермальной воде, полученной путем электрохимических измерений и испытаний на воздействие. В то время как углеродистая сталь демонстрирует коррозию и отложения, высоколегированный материал демонстрирует более высокую стойкость в соленой геотермальной воде. На основании этих результатов пригодность исследуемого коррозионно-стойкого сплава дана для использования в данных условиях, тогда как углеродистая сталь создает трудности из-за ее восприимчивости к депозиции солей меди и свинца. T2 - ХV International Conference Problems of Corrosion and Corrosion Protection of Materials “CORROSION-2020” CY - Online meeting DA - 15.10.2020 KW - Copper KW - Lead KW - Corrosion KW - Steel KW - Geothermal PY - 2020 UR - http://www.ipm.lviv.ua/corrosion2020/ AN - OPUS4-51438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Keserović, Amela A1 - Beck, Joana A1 - Sarmiento Klapper, Helmut A1 - Boduch, A. A1 - Dimper, Matthias A1 - Stoljarova, A. A1 - Faes, W. A1 - Zimmer, S. T1 - Metallic Materials for Geothermal Applications N2 - The aim of the work presented was the evaluation of corrosion resistance of various materials in geothermal Waters as a base to create a catalogue of suitable materials for applications in (not only) German geothermal power plants. Users shall be enabled to have a basis for designing such facilities. High alloyed corrosion resistant alloys are suitable and do not cause copper or lead deposition. They shall be chosen for future design of the piping system, either in massive or in cladded form, if crevices formation with non-metallic materials can be prevented! T2 - IFPEN-Workshop: Corrosion in Low-Carbon Energies CY - Online meeting DA - 03.11.2020 KW - Geothermal KW - Corrosion KW - Saline brine PY - 2020 AN - OPUS4-51511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Stoljarova, A. A1 - Regenspurg, S. T1 - Influence of Precipitating Brine Components on Materials Selection for Geothermal Applications N2 - By exposure and electrochemical tests in the laboratory the Cu- and Pb-effect on corrosion behavior and performance of carbon steel and a corrosion resistant alloy could be assessed. Critical material specific properties were determined by static exposure and electrochemical tests in artificial geothermal water with high salinity and low pH, containing Cu/Pb. It could be shown that significant Cu- resp. Pb-deposition and precipitation only occurred in combination with carbon steel. Corrosion resistant alloys (e. g. Cr- and Ni-dominated stainless steels) prevent the disturbing Cu-agglomeration resp. Pb-deposition. Therefore, they are suitable to be chosen for future design of geothermal piping system, either in massive or in cladded form. Regarding corrosion, formation of crevices with non-metallic materials shall be avoided. So, in addition to its already known limited corrosion resistance, carbon steel shall not be used when copper or lead species are content of the geothermal brine. Otherwise precipitation and/or deposition of metallic copper resp. lead must be expected, increasing the susceptibility of clogging the piping system. From the interactions and pitting corrosion point of view, corrosion resistant alloys (preferably Ni-rich) seem to be most favorable when selecting materials for applications in such geothermal brines. T2 - World Geothermal Congress CY - Online meeting DA - 15.06.2021 KW - Copper KW - Lead KW - Corrosion KW - Steel KW - Geothermal energy PY - 2021 AN - OPUS4-52829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Pötzsch, Sina A1 - Weltschev, Margit T1 - Compatibility of polymers exposed to heating oil blends with 10 % and 20 % biodiesel (FAME) N2 - Biodiesel (FAME) from rapeseed is an environmentally friendly alternative to common fossil fuels. It is also suitable to serve as blending component to fuels like heating oil. If the fuel composition is changed, materials compatibility must be guaranteed. Adding polar biodiesel to nonpolar heating oil, changes the blend’s solvency and might cause swelling, extraction and solvation of polymers. The objective of this research was to investigate the compatibility of polymeric materials, which are commonly used for components in middle distillate facilities, along with blends of heating oil and 20 % biodiesel (B20). For this propose, ACM, HNBR, FKM, PE, PA 6, POM, PUR and PVC were exposed to heating oil and B20 for 42 and 84 days at 40 °C. In addition, the polymers HNBR, FKM, PA, POM and PVC were also exposed at 70 °C. Furthermore, the resistance of polymers in eight-year aged B10 at 40 °C was evaluated. Ageing of biodiesel increases acidity which might propagate polymer corrosion. The materials were evaluated as resistant, if the loss in tensile properties (tensile strength and elongation at break) and Shore hardness remained under 15 % compared to the initial unexposed material values. For investigations under compressed conditions, the compression set was determined for specimens of ACM, FKM and HNBR after exposure in heating oil B0 and B20 for 3,7,14, 28, 56 and 90 days at 40 °C according to ISO 815-1. It was found that the resistance in B20 at 40 °C was given for all tested polymers except PUR. In the 8 years aged B10, PUR and POM were not compatible and ACM just conditionally compatible. At 70 °C, FKM and PVC were resistant in B20, whereas HNBR and PA 6 were not compatible. Swelling occurred for the elastomers ACM, HNBR and PUR. T2 - AMPP Annual International Corrosion Conference CY - Online Meeting DA - 19.04.2021 KW - Biodiesel KW - FAME KW - RME KW - Polymer in fuels KW - Corrosion PY - 2021 AN - OPUS4-52498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph T1 - Determination of Corrosivity: Approach according to UN Regulations N2 - “Corrosive to Metals” (H290) describes the general potential danger of a substance to metallic materials. Uniform and localized attack is considered. It has nothing to do with containment material. Corrosion resistance of materials is determined similarly, but with much lower threshold values. Manual shall provide a simple test to easily determine the aggressivity potential to cause corrosion on metallic materials. Even a simple test requires experienced personnel. There seems to be a need of awareness and understanding training for both officials and applicants. T2 - ECHA GHS Training CY - Online meeting DA - 16.03.2021 KW - Corrosivity KW - Dangerous good KW - Corrosion PY - 2021 AN - OPUS4-52295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Components in CO2-stream, corrosive to Materials to be Used in CC(U)S Applications N2 - CO2 quality specifications are not only a matter of CO2 purity (i.e. CO2 content). The “rest” also matters, in particular contents of reactive impurities affecting material corrosion (and rock alteration). Also chemical reactions in CO2 stream needs to be considered, in particular when combining CO2 streams of different compositions. T2 - WCO Forum at AMPP Annual International Corrosion Conference 2021 CY - Online Meeting DA - 26.04.2021 KW - Carbon capture storage KW - Corrosion PY - 2021 AN - OPUS4-52502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Aristia, Gabriela A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Le, Quynh Hoa T1 - Preliminary Study on Al2O3 Sol-Gel Coating for Corrosion Protection of Martensitic Stainless Steel in Artificial Geothermal Water N2 - Al2O3 coatings are often used as protective layers on steels against electrochemical and high-temperature corrosion because they are chemically inert and stable at elevated temperatures. This study presents preliminary work on the possibilities of using Al2O3 sol-gel coatings for corrosion protection of martensitic stainless steels in geothermal environments. Al2O3 sol-gel coatings were applied on UNS S42000, which is known to be susceptible to uniform and localized corrosion. The coated steel specimens were then tested in two types of artificial geothermal water, which simulate the geothermal fluids found in Sibayak (SBY), Indonesia, and North German Basin (NGB), Germany, respectively. SBY has pH 4 and 1.5 g/L of chloride ions, whereas NGB has a pH of 6 and 166 g/L of chloride ions. All experiments were carried out in autoclaves at 150 °C and 1 MPa under the deaerated condition. Evaluations were performed by investigating the surface profiles of both uncoated and coated steels before and after the corrosion test using a Laser Scanning Microscope (LSM) and Scanning Electron Microscope (SEM). Finally, Electrochemical Impedance Spectroscopy (EIS) was performed to compare the corrosion resistance of Al2O3 coated steels in SBY and NGB solutions. It was observed from the corrosion test that Al2O3 coatings are more suitable for use in the geothermal water with a higher pH. T2 - AMPP Annual International Corrosion Conference 2021 CY - Online Meeting DA - 19.04.2021 KW - Protective coating KW - Sol-gel coating KW - Geothermal KW - Martensitic steel KW - Corrosion PY - 2021 AN - OPUS4-52500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Aristia, Gabriela A1 - Le, Quynh Hoa T1 - Study of Polyaniline/Silicon Dioxide based Coating on Carbon Steel in Artificial Geothermal Brine N2 - By using the available resources in Indonesia, such as silicon dioxide and marine coating base, the PANI/SiO2 modified alkyd coating was able to protect carbon steel in a deaerated artificial geothermal water. The screening of coatings shows that the modification by adding individual pigment was not sufficient to protect carbon steel even during a short-term exposure, indicated by the discoloration after only seven days of exposure. Electrochemical tests indicated that there was no significant change in the Ecorr between the coated and uncoated carbon steel at room temperature. At 150 °C, the coated carbon steel has a lower potential than that of carbon steel, indicating that the coating is protecting carbon steel cathodically or slowing down the corrosion reaction. Finally, a long-term exposure test confirmed that the PANI/SiO2 modified coating successfully protects the carbon steel in the Sibayak artificial geothermal water up to 150 °C for 6 months. T2 - World Geothermal Congress CY - Online meeting DA - 15.06.2021 KW - Coatings KW - Corrosion KW - Polyaniline KW - Sibayak KW - SiO2 KW - Geothermal PY - 2021 AN - OPUS4-52831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Aristia, G. T1 - A Coating System for Corrosion Protection of Carbon Steel as an Alternative for High Alloyed Materials N2 - The screening of coatings shows that the modification by adding individual pigment was not sufficient to protect carbon steel even during a short-term exposure, indicated by the discoloration after only seven days of exposure. Electrochemical tests indicated that the coating cathodically protects carbon steel or slows down the corrosion reaction. A long-term exposure test confirmed that the PANI/SiO2 modified coating successfully protects the carbon steel in the Sibayak artificial geothermal water at 150 °C for 6 months. T2 - European Geothermal Congress CY - Berlin, Germany DA - 17.10.22 KW - Corrosion KW - Geothermal KW - Coatings KW - Polyaniniline KW - Silicate PY - 2022 AN - OPUS4-56084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph T1 - Evaluation of Corrosion Resistance of Metallic Materials in Geothermal Applications N2 - Evaluation of corrosion resistance of metallic materials is essential to assure safe and reliable operation of geothermal sites. One need to be aware that corrosion is not a material's but a system property, determined by medium, material and construction aspects. Various corrosion types have to be evaluated. Conditions in laboratory shall reflect on-site reality. Depending on brine composition and temperature suitability of metallic materials can be ranked. Most important outcome of the research is that highly saline geothermal brines require high alloyed materials, for safe long-term operation. T2 - Geothermal Essentials - Moving Geothermal Forward in Canada: Scaling and Corrosion (Surface Facilities) CY - Online Webinar DA - 16.03.2022 KW - Corrosion KW - Geothermal KW - Steel PY - 2022 AN - OPUS4-54482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Aristia, G. A1 - Le, Quynh Hoa T1 - Integrated Coating System for Corrosion Protection of Carbon Steel in Artificial Geothermal Brine N2 - Corrosive geothermal brines are a major challenge to geothermal power-plants. For cost reasons, plant designers prefer to use carbon and low alloyed steels, which are susceptible to uniform and localized corrosion when exposed to geothermal brines having acidic and saline properties. To solve such problem, coatings or inhibitors would be a protective solution as an alternative to the use of high alloyed materials. This study investigated a coating system consisting of polyaniline/silicon dioxide based on resources locally available in Indonesia. Protection against corrosion of carbon steel was shown by long-term (28 day) exposure and electrochemical tests of coated carbon steels, performed in an artificial acidic and saline geothermal brine, comparable to the conditions encountered at a site in Indonesia. Therefore, an integrated coating system is proposed for corrosion protection, combining the electrochemical functionality of polyaniline and the physical advantages of silica. T2 - AMPP International Corrosion Conference 2022 CY - San Antonio, TX, USA DA - 08.03.2022 KW - Geothermal KW - Corrosion KW - Coating KW - Polyaniline KW - Silicon dioxide PY - 2022 AN - OPUS4-54452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Stoljarova, A. A1 - Regenspurg, S. T1 - Influence of brine components on materials performance in geothermal applications N2 - Significant Cu-deposition and ‑precipitation only occurred in combination with carbon steel. High-alloyed materials prevent the disturbing Cu-agglomeration. Pb-deposition and ‑precipitation only occurred in combination with carbon steel. No negative Pb-effect could be observed in combination with high-alloyed steels. High alloyed corrosion resistant alloys are suitable and shall be chosen for future design of the piping system, either in massive or in cladded form, if formation of crevices with non-metallic materials can be excluded! T2 - EUROCORR 2022 CY - Berlin, Germany DA - 28.08.2022 KW - Corrosion KW - Geothermal KW - Copper PY - 2022 AN - OPUS4-55624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Corrosion Effects on Materials Considered for CC(U)S Applications N2 - Commercially available carbon steels are suitable for compression and pipelines as long as moisture content and impurities are limited. (water 50 to 100 ppmv, SO2 and NO2 ca. 100 ppmv) Corrosion rates increase with increasing water content. (0.2 – 20 mm/a) Condensation of acids and therefore droplet formation is always possible, even at low water contents. A low SO2 content within the CO2-stream might be more important than a low water content. Cr13-steels showed a general susceptibility to shallow pitting and pitting. So, they seem to be not suitable for CCUS applications. Low alloyed steels showed better corrosion behavior (predictable uniform corrosion). For direct contact with saline aquifer fluids only high alloyed steels shall be used. T2 - EFC Webinar CY - Online Meeting (Chongqing, China) DA - 18.05.2022 KW - Corrosion KW - CO2 quality KW - CO2 KW - CCS KW - CCU KW - Pipeline PY - 2022 AN - OPUS4-54854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Stoljarova, A. A1 - Regenspurg, S. T1 - Influence Of Brine Precipitates On Materials Performance In Geothermal Applications N2 - Significant Cu-deposition and precipitation only occurred in combination with carbon steel. High-alloyed materials prevent the disturbing Cu-agglomeration. Pb-deposition and precipitation only occurred in combination with carbon steel. No negative Pb-effect could be observed in combination with high-alloyed steels. High alloyed corrosion resistant alloys are suitable and shall be chosen for future design of the piping system, either in massive or in cladded form, to prevent unwanted interactions with brine components. T2 - AMPP Annual 2023 Conference CY - Denver, CO, USA DA - 19.03.2023 KW - Geothermal KW - Electrochemistry KW - Copper KW - Lead KW - Corrosion PY - 2023 AN - OPUS4-57237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -