TY - JOUR A1 - Gook, S. A1 - Midik, A. A1 - Biegler, M. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Joining 30 mm Thick Shipbuilding Steel Plates EH36 Using a Process Combination of Hybrid Laser Arc Welding and Submerged Arc Welding JF - Journal of Manufacturing and Materials Processing N2 - This article presents a cost-effective and reliable method for welding 30 mm thick sheets of shipbuilding steel EH36. The method proposes to perform butt welding in a two-run technique using hybrid laser arc welding (HLAW) and submerged arc welding (SAW). The HLAW is performed as a partial penetration weld with a penetration depth of approximately 25 mm. The SAWis carried out as a second run on the opposite side. With a SAWpenetration depth of 8 mm, the weld cross-section is closed with the reliable intersection of both passes. The advantages of the proposed welding method are: no need for forming of the HLAW root; the SAW pass can effectively eliminate pores in the HLAWroot; the high stability of the welding process regarding the preparation quality of the weld edges. Plasma cut edges can be welded without lack of fusion defects. The weld quality achieved is confirmed by destructive tests. KW - Shipbuilding steel KW - Hybrid laser arc welding KW - Submerged arc welding KW - Hardness KW - Bending test KW - Two-run welding technique KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556090 DO - https://doi.org/10.3390/jmmp6040084 SN - 2504-4494 VL - 6 IS - 4 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-55609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Krieger, S. A1 - Gumenyuk, Andrey A1 - El-Batahgy, A. M. A1 - Rethmeier, Michael T1 - Notch impact toughness of laser beam welded thick sheets of cryogenic nickel alloyed steel X8Ni9 JF - Procedia CIRP N2 - The paper deals with the investigations of the impact toughness of laser beam welded 14.5 mm thick sheets made of cryogenic steel X8Ni9 as a function of preheating. This 9% nickel alloyed steel is widely used in the liquefied natural gas (LNG) industry. An application of highly efficient welding processes such as high-power laser beam welding (LBW) in LNG sector requires an understanding of the interactions between the LBW process parameters and weld properties, in particular the impact toughness. The results show that the original fine-grained martensitic microstructure of the base metal (BM) is significantly changed by melting and crystallization during the LBW, what can lead to a decrease in the impact toughness of the weld metal (WM) below the required level. An optimal preheating temperature range leads to the favorable thermal welding cycle and is of remarkable importance for maintaining the notch impact toughness of laser beam welded joints of these thick steel sheets. A parameter window was identified in which V-notch impact toughness comparable to that of the BM at -196 °C was achieved. KW - Cryogenic steel KW - Laser beam welding KW - Preheating KW - Welding thermal cycle KW - Microstructure KW - Hardness KW - V-notch impact toughness PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513250 DO - https://doi.org/10.1016/j.procir.2020.09.095 VL - 94 SP - 627 EP - 631 PB - Elsevier B.V. AN - OPUS4-51325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -