TY - JOUR A1 - Häberle, Nicolas A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Falkenberg, Rainer A1 - Kahlcke, Ole T1 - Application of multi-phase viscoplastic material modelling to computational welding mechanics of grade-s960ql steel JF - Comptes Rendus Mecanique - Computational methods in welding and additive manufacturing/Simulation numérique des procédés de soudage et de fabrication additive N2 - The sound numerical prediction of welding-induced thermal stresses, residual stresses, and distortions strongly depends on the accurate description of a welded material’s thermomechanical deformation behaviour. In this work, we provide experimental data on the viscoplastic deformation behaviour of a grade-s960ql steel up to a temperature of 1000 ◦C. In addition, a multi-phase viscoplastic material model is proposed, which accounts for the experimentally observed isothermal deformation behaviour of grade-s960ql steel base and austenitised material, as well as for athermal contributions that originate from solid-state phase transformations. The multi-phase viscoplastic and a classic rateindependent isotropic hardening material model were applied in the numerical simulations of both-ends-fixed bar Satoh tests and a single-pass gas metal arc weld. The influence of material modelling choices on the agreement between numerical simulation and experimental results is discussed, and recommendations for further work are given. KW - Residual stress KW - Viscoplasticity KW - Material modeling KW - Grade S960QL steel PY - 2018 DO - https://doi.org/10.1016/j.crme.2018.08.001 VL - 346 IS - 11 SP - 1018 EP - 1032 PB - Elsevier Masson SAS AN - OPUS4-46512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jentzsch, Stefan A1 - Stock, Daniel A1 - Häcker, Ralf A1 - Klingbeil, Dietmar A1 - Kindrachuk, Vitaliy T1 - Numerical and experimental investigations on metal shear band formation at high strain rates with a Hopkinson bar setup N2 - The essence of dynamic failure is closely linked to the formation of adiabatic shear bands (ASB), which result from the localization of shear strain under high deformation speeds accompanied by a rapid temperature increase. Understanding this phenomenon is crucial in view of safety issues when impacts of fast rotating machine components (i.e. aircraft turbine blades) may occur. Our contribution addresses both the experimental evidence and characterization of ASBs due to high-speed impact tests at the Split HOPKINSON pressure bar (SHPB) setup and the finite element analysis to determine the parameters of the underlying constitutive model, which is closely related to JOHNSON-COOK (JC) material model. Experimental investigations were performed on notched shear specimens made of the fine -grained structural steel S690QL and the displacements in the regions affected by shear localization were measured with subset-based local Digital Image Correlation (DIC). The displacement fields, obtained in the SHPB tests, were considered as an objective to validate and to identify the constitutive parameters with. The JC model could reasonably reproduce the displacement distribution. In order to overcome the issues with mesh dependency we provide a nonlocal extension based on the implicit gradient model approach. T2 - GAMM Annual Meeting 2023 CY - Dresden, Germany DA - 30.05.2023 KW - Gradient-enhanced damage KW - Adiabatic shear bands KW - Split Hopkinson bar KW - Digital image correlation KW - Viscoplasticity KW - Finite element analysis PY - 2023 AN - OPUS4-57827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -