TY - CONF A1 - Zhu, Jiangchao A1 - Madia, Mauro T1 - Burst behaviours of aero-engine turbine disk at overspeed conditions N2 - This presentation focuses on the basic ideas and current status of the development of an arithmetical method to predict the failure rotational speed of turbine disks. The certification specification requires that a gas turbine aero-engine must hold 5 minutes at overspeed conditions without critical failure. Therefore, instead of experimental proof from spin-tests using test-disks similar to engine components, it is considered to use simple specimen with similar test conditions compared to real overspeed scenarios. These test conditions, or stress fields are determined using arithmetical method, e.g. finite element method, with consideration of fracture mechanics under quasi-static conditions with a given rotational speed. Failure modes like hoop burst and rim peeling are considered during determination of stress fields. Various crack-tip parameters are used to explore the similarity of stress field between simple specimen and real overspeed scenarios. Additionally, probabilistic aspects and the implementation of a global stability criterion for overspeed analysis are also considered. T2 - 43rd Materials Mechanics Seminar CY - Sani, Chalkidiki, Greece DA - 06.06.2022 KW - Structural integrity KW - Fracture mechanics KW - Turbine disk KW - Overspeed PY - 2022 AN - OPUS4-55081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhu, Jiangchao A1 - Madia, Mauro T1 - Fracture mechanics-based structural integrity assessment of aero-engine turbine disks under overspeed conditions N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on production-similar disks. While these tests provide, on the one hand, a reliable definition of the critical conditions for real components, on the other hand they represent a relevant cost item for engine manufacturers. The aim of this work is to present part of a fracture mechanics-based procedure under development which aims at replacing the tests on production-similar disks with lab tests on fracture mechanics specimens. In particular, the rim-peeling failure mode is considered as case study. A semi-circular surface crack is modelled at the most stressed region at the diaphragm of a turbine disk, with the crack plane perpendicular to the radial direction. The crack is therefore subjected to a biaxial stress state and grows under increasing rotational speed until it triggers the rim-peeling failure. The finite element simulation of the cracked disk considers the real thermal and mechanical loading conditions. In order to design a lab representative specimen, beside the crack driving force, expressed in terms of J-integral, also the constraint to plastic deformation e.g., stress triaxiality, at the crack-tip must be similar for the same crack in the specimen and in the disk. This has been achieved and as expected, both the highest J-integral and constraint factor are calculated at the same location along the crack front for both disk and specimen. The results of the structural integrity assessment in the form of a Failure Assessment Diagram (FAD) show good agreement between designed specimen and disk both in terms of expected failure mode and value of the critical speed. Probabilistic aspects are also considered in the calculations. T2 - Turbo Expo 2022 CY - Rotterdam, Netherlands DA - 13.06.2022 KW - Structural integrity KW - Fracture mechanics KW - Turbine disk KW - Overspeed PY - 2022 AN - OPUS4-55082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhu, Jiangchao A1 - Madia, Mauro A1 - Schurig, Michael A1 - Fedelich, Bernard A1 - Schlums, H. A1 - Zerbst, Uwe T1 - Burst Behaviours Of Aero Engine Turbine Disk At Overspeed Conditions T2 - 43rd International Conference on Material Mechanics N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on production-similar disks. The aim of this work is to present part of a fracture mechanics-based procedure under development which aims at replacing the tests on production-similar disks with lab tests on fracture mechanics specimens. The finite element simulation of the cracked disk considers the real thermal and mechanical loading conditions. In order to design a lab representative specimen, beside the crack driving force, expressed in terms of 𝐽-integral, also the constraint to plastic deformation e.g., stress triaxiality, at the crack-tip must be similar for the same crack in the specimen and in the disk. This has been achieved and as expected, both the highest 𝐽 -integral and constraint factor are calculated at the same location along the crack front for both disk and specimen. The results of the structural integrity assessment in the form of a Failure Assessment Diagram (FAD) show good agreement between designed specimen and disk both in terms of expected failure mode and value of the critical speed. In addition, probabilistic aspects are also considered in the calculations. T2 - 43rd Int. Conference on Materials Mechanics, June 5-10, 2022, Greece CY - Sani, Chalkidiki, Greece DA - 05.06.2022 KW - Structural integrity KW - Turbine disk KW - Fracture mechanics KW - Overspeed PY - 2022 SP - 1 EP - 13 AN - OPUS4-57279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -