TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Madia, Mauro T1 - Effect of heat treatment on the microstructure, residual stress state and fatigue properties of PBF-LB/M AlSi10Mg N2 - Al-Si alloys produced by Laser Powder Bed Fusion (PBF-LB/M) techniques allow the fabrication of lightweight free-shape components. Due to the extremely heterogeneous cooling and heating, PBF-LB/M induces high magnitude residual stress (RS) and a fine Si microstructure. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their evolution before and after post-process heat treatments (HT). T2 - Alloys for Additive Manufacturing Symposium 2022 (AAMS22) CY - Munich, Germany DA - 12.09.2022 KW - Neutron diffraction KW - X-ray diffraction KW - Crack propagation PY - 2022 AN - OPUS4-55871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Gao, J. A1 - Kruse, Julius A1 - Werner, Tiago A1 - Duarte, Larissa T1 - Determination of the Kitagawa-Takahashi diagram for the EA4T railway axle steel by means of the cyclic R-curve method N2 - The Kitagawa-Takahashi (KT) diagram is a well-established tool in the fatigue community for the prediction of the fatigue limit of metallic materials in presence of defects. Nevertheless, its determination is associated with a large number of fatigue tests carried out on specimens with artificial defects (notches) to describe the fatigue limit-defect size relationship in the short crack regime. The preparation of the specimens and the execution of the tests is time expensive. Therefore, few phenomenological models have been introduced in the past to provide a first approximation of the KT diagram based solely on the fatigue limit for smooth specimen and the fatigue crack propagation threshold for long cracks. Despite the use of such models is widely spread, these suffer from problems related to the uncertainties of the material parameters. Furthermore, the mechanics of short cracks, which is the physical mechanism behind the concept of the fatigue limit, is not considered. This work discusses the advantages and drawbacks of using short fatigue crack propagation models for predicting the fatigue limit of flawed metallic materials. The KT diagrams for a EA4T railway axle steel in as-received and full-hardened condition are approximated by means of the cyclic R-curve method. T2 - 13th International Fatigue Congress CY - Hiroshima, Japan DA - 06.11.2023 KW - Fatigue limit KW - Crack propagation KW - Short crack KW - Cyclic R-curve KW - EA4T railway axle steel PY - 2023 AN - OPUS4-58867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Nolze, Gert A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Ageing in additively manufactured metallic components: from powder to mechanical failure” an overview of the project agil N2 - An overview of the BAM funed Focus Area Materials Project "AGIL" will be presented. AGIL focussed on the stdiy of the ageing characteristics of additively manufactured austenitic stainless steel with a "powder to mechanical failure" Approach. Recent Highlights are presented and a perspective for future studies. T2 - Workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Residual stress KW - Additive Manufacturing KW - Non-destructive testing KW - Microstructure characterisation KW - Tensile testing KW - Fatigue KW - Crystal Plasticity Modelling KW - Crack propagation PY - 2019 AN - OPUS4-49823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -