TY - JOUR A1 - Fletcher, D. C. A1 - Hunter, R. A1 - Xia, W. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Blackburn, E. A1 - Kulak, A. A1 - Xin, H. A1 - Schnepp, Z. T1 - Scalable synthesis of dispersible iron carbide (Fe3C) nanoparticles by ‘nanocasting’ JF - Journal of Materials Chemistry A N2 - Metal carbides have shown great promise in a wide range of applications due to their unique catalytic, electrocatalytic and magnetic properties. However, the scalable production of dispersible metal carbide nanoparticles remains a challenge. Here, we report a simple and scalable route to dispersible iron carbide (Fe3C) nanoparticles. This uses MgO nanoparticles as a removable ‘cast’ to synthesize Fe3C nanoparticles from Prussian blue (KFeIII[FeII(CN)6]). Electron tomography demonstrates how nanoparticles of the MgO cast encase the Fe3C nanoparticles to prevent sintering and agglomeration during the high-temperature synthesis. The MgO cast is readily removed with ethylenediaminetetraacetic acid (EDTA) to generate Fe3C nanoparticles that can be used to produce a colloidal ferrofluid or dispersed on a support material. KW - Small-angle scattering KW - SAXS KW - Metal carbides KW - Nanoparticles KW - Nanocasting PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486295 DO - https://doi.org/10.1039/C9TA06876G SN - 2050-7488 SN - 2050-7496 VL - 7 IS - 33 SP - 19506 EP - 19512 PB - Royal Society of Chemistry (RSC) AN - OPUS4-48629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - Microwave-Assisted Synthesis of Ultrasmall Zinc Oxide Nanoparticles JF - Langmuir N2 - We report on ultrasmall zinc oxide single-crystalline nanoparticles of narrow size distribution and long-term colloidal stability. These oleate-stabilized nanoparticles were synthesized using microwave-assisted synthesis for 5 min, corresponding to a 99% decrease in synthesis time, when compared to the conventional synthesis method. It was observed that the average particle radius increases from 2.6 ± 0.1 to 3.8 ± 0.1 nm upon increasing synthesis temperature from 125 to 200 °C. This change also corresponded to observed changes in the optical band gap and the fluorescence energy of the particles, from 3.44 ± 0.01 to 3.36 ± 0.01 eV and from 2.20 ± 0.01 to 2.04 ± 0.01 eV, respectively. Small-angle X-ray scattering, dynamic light scattering, and UV–vis and fluorescence spectroscopy were employed for particle characterization. Debye–Scherrer analysis of the X-ray diffraction (XRD) pattern reveals a linear increase of the crystallite size with synthesis temperature. The consideration of the convolution of a Lorentz function with a Gaussian function for data correction of the instrumental peak broadening has a considerable influence on the values for the crystallite size. Williamson–Hall XRD analyses in the form of the uniform deformation model, uniform stress deformation model, and uniform deformation energy density model revealed a substantial increase of strain, stress, and deformation energy density of the crystallites with decreasing size. Exponential and power law models were utilized for quantification of strain, stress, and deformation energy density. KW - SAXS KW - Zinc oxide KW - Microwave synthesis KW - Nanoparticles PY - 2019 DO - https://doi.org/10.1021/acs.langmuir.9b01921 SN - 0743-7463 VL - 35 IS - 38 SP - 12469 EP - 12482 PB - American Chemical Society CY - Washington, D.C., USA AN - OPUS4-49136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Saloga, Patrick E. J. A1 - Stock, V. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - Environmental impact of ZnO nanoparticles evaluated by in vitro simulated digestion JF - ACS Applied Nano Materials N2 - ZnO nanoparticles are found in different food and consumer products, and their toxicological effects are still under investigation. It is therefore important to understand their behavior in the gastrointestinal tract. Here, we used an in vitro model to assess the physicochemical fate of ZnO nanoparticles during the digestive process in artificial saliva, stomach juice, and intestinal juice. Atomic absorption spectrometry and small-angle X-ray scattering were employed to investigate two ZnO nanomaterials, one intensively characterized reference material and soluble ZnCl2 in a broad range of concentrations between 25 and 1000 μg/mL in the intestinal fluid. Because food components may influence the behavior of nanomaterials in the gastrointestinal tract, starch, milk powder, and olive oil were used to mimic carbohydrates, protein, and fat, respectively. Additionally, ion release of all Zn species was assessed in cell culture media and compared to artificial intestinal juice to investigate relevance of typical cell culture conditions in ZnO nanotoxicology. ZnCl2 as well as the ZnO species were present as particles in artificial saliva but were solubilized completely in the acidic stomach juice. Interestingly, in the intestinal fluid a concentration-independent de novo formation of particles in the nanoscale range was shown. This was the case for all particles as well as for ZnCl2, regardless of the concentration used. Neither of the food components affected the behavior of any Zn species. On the contrary, all Zn species showed a Zn-concentration-dependent ion release in common cell culture medium. This questions the suitability of cell culture studies to investigate the effect of ZnO nanoparticles on intestinal cells. Our results show that Zn-containing nanoparticles reach the intestine. This underlines the importance of determining the influence of the test environment on nanoparticle fate. KW - SAXS KW - Digestion KW - Zinc oxide KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02236 VL - 3 IS - 1 SP - 724 EP - 733 AN - OPUS4-50288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Hoche, E. A1 - Stock, V. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Sieg, H. T1 - Intestinal and hepatic effects of iron oxide nanoparticles JF - Archives of Toxicology N2 - Iron oxide nanoparticles gain increasing attention due to their broad industrial use. However, safety concerns exist since their effects on human cells are still under investigation. The presence of iron oxide nanoparticles in the food pigment E172 has been shown recently. Here, we studied four iron oxide nanoparticles, one food pigment E172 and the ionic control FeSO4 regarding dissolution in biological media, uptake and transport, and cellular effects in vitro in human intestinal Caco-2 and HepaRG hepatocarcinoma cells. The iron oxide nanoparticles passed the gastrointestinal passage without dissolution and reached the intestine in the form of particles. Minor uptake was seen into Caco-2 cells but almost no transport to the basolateral site was detected for any of the tested particles. HepaRG cells showed higher particle uptake. Caco-2 cells showed no alterations in reactive oxygen species production, apoptosis, or mitochondrial membrane potential, whereas two particles induced apoptosis in HepaRG cells, and one altered mitochondrial membrane potential at non-cytotoxic concentrations. No correlation between physicochemical particle characteristics and cellular effects was observed, thus emphasizing the Need for case-by-case assessment of iron oxide nanoparticles. KW - Nanoparticles PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521651 DO - https://doi.org/10.1007/s00204-020-02960-7 VL - 95 IS - 3 SP - 895 EP - 905 PB - Springer AN - OPUS4-52165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chambers, M. S. A1 - Hunter, R. D. A1 - Hollamby, M. J. A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Danks, A. E. A1 - Schnepp, Z. T1 - In Situ and Ex Situ X‑ray Diffraction and Small-Angle X‑ray Scattering Investigations of the Sol−Gel Synthesis of Fe3N and Fe3C JF - Inorganic Chemistry N2 - Iron nitride (Fe3N) and iron carbide (Fe3C) nanoparticles can be prepared via sol−gel synthesis. While sol−gel methods are simple, it can be difficult to control the crystalline composition, i.e., to achieve a Rietveld-pure product. In a previous in situ synchrotron study of the sol−gel synthesis of Fe3N/Fe3C, we showed that the reaction proceeds as follows: Fe3O4 → FeOx → Fe3N → Fe3C. There was considerable overlap between the different phases, but we were unable to ascertain whether this was due to the experimental setup (side-on heating of a quartz capillary which could lead to thermal gradients) or whether individual particle reactions proceed at different rates. In this paper, we use in situ wide- and small-angle X-ray scattering (wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS)) to demonstrate that the overlapping phases are indeed due to variable reaction rates. While the initial oxide nanoparticles have a small range of diameters, the size range expands considerably and very rapidly during the oxide−nitride transition. This has implications for the isolation of Rietveld-pure Fe3N, and in an extensive laboratory study, we were indeed unable to isolate phasepure Fe3N. However, we made the surprising discovery that Rietveld-pure Fe3C nanoparticles can be produced at 500 °C with a sufficient furnace dwell time. This is considerably lower than the previous reports of the sol−gel synthesis of Fe3C nanoparticles. KW - Small-angle X-ray Scattering KW - SAXS KW - Diffraction KW - XRD KW - Scattering KW - Sol-gel KW - Iron nitride KW - Nanoparticles KW - Iron carbide KW - Catalyst KW - In-situ KW - Ex-situ KW - Synthesis KW - Synchrotron PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548226 DO - https://doi.org/10.1021/acs.inorgchem.1c03442 VL - 61 IS - 18 SP - 6742 EP - 6749 PB - ACS Publications CY - Washington AN - OPUS4-54822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deumer, J. A1 - Pauw, Brian Richard A1 - Marguet, S. A1 - Skroblin, D. A1 - Taché, O. A1 - Krumrey, M. A1 - Gollwitzer, C. T1 - Small-angle X-ray scattering: characterization of cubic Au nanoparticles using Debye’s scattering formula JF - Journal of Applied Crystallography N2 - A versatile software package in the form of a Python extension, named CDEF (computing Debye’s scattering formula for extraordinary form factors), is proposed to calculate approximate scattering profiles of arbitrarily shaped nanoparticles for small-angle X-ray scattering (SAXS). CDEF generates a quasi-randomly distributed point cloud in the desired particle shape and then applies the open-source software DEBYER for efficient evaluation of Debye’s scattering formula to calculate the SAXS pattern (https://github.com/j-from-b/CDEF). If self-correlation of the scattering signal is not omitted, the quasi-random distribution provides faster convergence compared with a true-random distribution of the scatterers, especially at higher momentum transfer. The usage of the software is demonstrated for the evaluation of scattering data of Au nanocubes with rounded edges, which were measured at the four-crystal monochromator beamline of PTB at the synchrotron radiation facility BESSY II in Berlin. The implementation is fast enough to run on a single desktop computer and perform model fits within minutes. The accuracy of the method was analyzed by comparison with analytically known form factors and verified with another implementation, the SPONGE, based on a similar principle with fewer approximations. Additionally, the SPONGE coupled to McSAS3 allows one to retrieve information on the uncertainty of the size distribution using a Monte Carlo uncertainty estimation algorithm. KW - X-ray scattering KW - SAXS KW - Non-spherical nanoparticles KW - Nanoparticles KW - Nanomaterials KW - Debye scattering equation KW - Simulation KW - Data fitting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557652 DO - https://doi.org/10.1107/S160057672200499X VL - 55 IS - Pt 4 SP - 993 EP - 1001 PB - International Union of Crystallography CY - Chester, England AN - OPUS4-55765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, J. A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - Towards automation of the polyol process for the synthesis of silver nanoparticles JF - Scientific Reports N2 - Metal nanoparticles have a substantial impact across diferent felds of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver nanoparticles are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize silver nanoparticles often do not result in well-defned products, the main obstacles being high polydispersity or a lack of particle size tunability. We describe an automated approach to on-demand synthesis of adjustable particles with mean radii of 3 and 5 nm using the polyol route. The polyol process is a promising route for silver nanoparticles e.g., to be used as reference materials. We characterised the as-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties. KW - Sillver KW - Nanoparticles KW - Automated synthesis KW - Chemputer KW - Scattering KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546803 DO - https://doi.org/10.1038/s41598-022-09774-w VL - 12 IS - 1 SP - 1 EP - 9 PB - Nature Springer AN - OPUS4-54680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - Aqueous Dispersions of Polypropylene: Toward Reference Materials for Characterizing Nanoplastics JF - Macromolecular Rapid Communications N2 - Microplastics and nanoplastics pollute the natural environment all over the world, but the full extent of the hazards posed by this waste is unclear. While research on microplastics is well advanced, little work has been done on nanoplastics. This discrepancy is mainly due to the lacking ability to detect nanoplastics in biologically and environmentally relevant matrices. Nanoplastics reference materials can help the development of suitable methods for identifying and quantifying nanoplastics in nature. The aim is to synthesize nanoplastics made from one of the most commonly used plastics, namely polypropylene. An easy way to produce long-term stable aqueous dispersions of polypropylene nanoparticles (nano polypropylene) is reported. The nanoplastic particles, prepared by mechanical breakdown, show a mean hydrodynamic diameter of D h = 180.5 ± 5.8 nm and a polydispersity index of PDI = 0.084 ± 0.02. No surfactant is needed to obtain dispersion which is stable for more than 6 months. The colloidal stability of the surfactant-free nano polypropylene dispersions is explained by their low zeta potential of 𝜻 = −43 ± 2 mV. KW - Nanoparticles KW - Reference Material KW - Nanoplastics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571799 DO - https://doi.org/10.1002/marc.202200874 SN - 1022-1336 VL - 44 IS - 6 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hunter, R. D. A1 - Hayward, E. C. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Kulak, A. A1 - Guan, S. A1 - Schnepp, Z. T1 - The effect of nitrogen on the synthesis of porous carbons by iron-catalyzed graphitization JF - Materials Advances N2 - This paper reports a systematic study into the effect of nitrogen on iron-catalyzed graphitization of biomass. Chitin, chitosan, N-acetylglucosamine, gelatin and glycine were selected to represent nitrogen-rich saccharides and amino-acid/polypeptide biomass precursors. The materials were pyrolyzed with an iron catalyst to produce carbons with a wide range of chemical and structural features such as mesoporosity and nitrogen-doping. Many authors have reported the synthesis of nitrogen-doped carbons by pyrolysis and these have diverse applications. However, this is the first systematic study of how nitrogen affects pyrolysis of biomass and importantly the catalytic graphitization step. Our data demonstrates that nitrogen inhibits graphitization but that some nitrogen survives the catalytic graphitization process to become incorporated into various chemical environments in the carbon product. KW - Graphitization KW - Nanoparticles KW - Nanocomposite KW - Porous carbon KW - Nitrogen KW - Scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575351 DO - https://doi.org/10.1039/d3ma00039g VL - 4 SP - 2070 EP - 2077 PB - Royal Society of Chemistry AN - OPUS4-57535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, Holger A1 - Schaar, Caroline A1 - Fouquet, Nicole A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Braeuning, Albert T1 - Particulate iron oxide food colorants (E 172) during artificial digestion and their uptake and impact on intestinal cells JF - Toxicology in Vitro N2 - Iron oxide of various structures is frequently used as food colorant (E 172). The spectrum of colors ranges from yellow over orange, red, and brown to black, depending on the chemical structure of the material. E 172 is mostly sold as solid powder. Recent studies have demonstrated the presence of nanoscaled particles in E 172 samples, often to a very high extent. This makes it necessary to investigate the fate of these particles after oral uptake. In this study, 7 differently structured commercially available E 172 food colorants (2 x Yellow FeO(OH), 2 x Red Fe2O3, 1 x Orange Fe2O3 + FeO(OH) and 2 x Black Fe3O4) were investigated for particle dissolution, ion release, cellular uptake, crossing of the intestinal barrier and toxicological impact on intestinal cells. Dissolution was analyzed in water, cell culture medium and artificial digestion fluids. Small-angle X-ray scattering (SAXS) was employed for determination of the specific surface area of the colorants in the digestion fluids. Cellular uptake, transport and toxicological effects were studied using human differentiated Caco-2 cells as an in vitro model of the intestinal barrier. For all materials, a strong interaction with the intestinal cells was observed, albeit there was only a limited dissolution, and no toxic in vitro effects on human cells were recorded. KW - Toxicology KW - Nanoparticles KW - Small-angle X-ray scattering KW - SAXS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593935 DO - https://doi.org/10.1016/j.tiv.2024.105772 VL - 96 SP - 1 EP - 12 PB - Elsevier BV AN - OPUS4-59393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Maxi B. A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Loeschner, Katrin A1 - Givelet, Lucas A1 - Fahrenson, Christoph A1 - Braeuning, Albert A1 - Sieg, Holger T1 - Influence of artificial digestion on characteristics and intestinal cellular effects of micro-, submicro- and nanoplastics JF - Food and Chemical Toxicology N2 - The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles. KW - Toxicology KW - Nanoparticles KW - Dynamic Light Scattering KW - Nanoplastics KW - Microplastics KW - Reference Method KW - Reference Material PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593947 DO - https://doi.org/10.1016/j.fct.2023.114423 VL - 184 SP - 1 EP - 16 PB - Elsevier BV AN - OPUS4-59394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -