TY - JOUR A1 - Tuma, Dirk A1 - Shafi, P. M. A1 - Mohapatra, D. A1 - Reddy, V. P. A1 - Dhakal, G. A1 - Kumar, D. R. A1 - Brousse, T. A1 - Shim, J.-J. T1 - Sr- and Fe-substituted LaMnO3 Perovskite: Fundamental insight and possible use in asymmetric hybrid supercapacitor JF - Energy Storage Materials N2 - The symmetry or structural stability of ABO3-type perovskite oxides depends largely on the size of ‘A’ and ‘B’ cations, which determines the material properties. The partial substitution of these cations may be used to tune these properties. The ionic sizes and valence states of the cations play an important role in improving the prop- erties of perovskite. In this study, the substitution of La3+ with Sr2+ with a larger ionic radius and Mn3+ with Fe3+ with a similar ionic radius favored both the crystal symmetry and the mixed ionic–electronic conductivity of the perovskite. Electrodes based on La0.7Sr0.3Mn0.5Fe0.5O3 (LSMFO55) exhibited a faradaic behavior with a specific capacity of 330 C g−1 (92 mAh g−1 ) at 12C rate, while this electrode maintained a capacity of 259 C g−1 at 240C (charge or discharge in 15 s). Additionally, exohedral carbon nano-onions (CNO) were introduced as a negative electrode to design an asymmetric hybrid supercapacitor (AHS) with a widened cell voltage. The use of CNO as a negative electrode in the AHS improved the rate capability drastically compared to the use of rGO. This device maintained a good energy density even at an extra-high charging rate (600C) owing to its outstanding rate capability. The high-rate performance of the LSMFO55//CNO AHS can be elucidated by successful fabrication with a mixed ionic–electronic conductive positive electrode and a CNO negative electrode. Tuning the electronic and ionic conductivities by cationic substitution and adopting an appropriate carbon-derived negative electrode (such as CNO) can provide a practical high-rate hybrid device using various perovskites. KW - Perovskite KW - Carbon nano-onion KW - Supercapacitor PY - 2022 DO - https://doi.org/10.1016/j.ensm.2021.11.028 SN - 2405-8297 VL - 45 SP - 119 EP - 129 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-54882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Iqbal, S. A1 - Mady, A. H. A1 - Kim, Y.-I. A1 - Javed, U. A1 - Shafi, P. M. A1 - Nguyen, V. Q. A1 - Hussain, I. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Self-templated hollow nanospheres of B-site engineered non-stoichiometric perovskite for supercapacitive energy storage via anion-intercalation mechanism JF - Journal of Colloid and Interface Science N2 - The continual increase in energy demand and inconsistent supply have attracted attention towards sustainable energy storage/conversion devices, such as electrochemical capacitors with high energy densities and power densities. Perovskite oxides have received significant attention as anion-intercalation electrode materials for electrochemical capacitors. In this study, hollow nanospheres of nonstoichiometric cubic perovskite fluorides, KNi1-xCoxF3-delta (x = 0.2; delta = 0.33) (KNCF-0.2) have been synthesized using a localized Ostwald ripening. The electrochemical performance of the non-stoichiometric perovskite has been studied in an aqueous 3 M KOH electrolyte to categorically investigate the fluorine-vacancy-mediated charge storage capabilities. High capacities up to 198.55 mA h g-1 or 714.8 C g-1 (equivalent to 1435 F g-1) have been obtained through oxygen anion-intercalation mechanism (peroxide pathway, O-). The results have been validated using ICP (inductively coupled Plasma mass spectrometry) analysis and cyclic voltammetry. An asymmetric supercapacitor device has been fabricated by coupling KNCF-0.2 with activated carbon to deliver a high energy density of 40 W h kg-1 as well as excellent cycling stability of 98 % for 10,000 cycles. The special attributes of hollow-spherical, non-stoichiometric perovskite (KNCF-0.2) have exhibited immense promise for their usability as anion-intercalation type electrodes in supercapacitors. KW - Nanospheres KW - Perovskite KW - Supercapacitor PY - 2021 DO - https://doi.org/10.1016/j.jcis.2021.03.147 SN - 0021-9797 VL - 600 SP - 729 EP - 739 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-52873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Cong A1 - Giovannelli, F. A1 - Chartier, T. A1 - Delorme, F. T1 - Thermoelectric properties of doubly substituted La0.95Sr0.05Co1-xCrxO3 (0 ≤ x ≤ 0.5) ceramics N2 - Dense La0.95Sr0.05Co1-xCrxO3 (0 ≤ x ≤ 0.5) ceramics were synthesized by solid-state reaction and conventional sintering. Room-temperature crystal structure and microstructure were investigated and the thermoelectric properties were measured in the temperature range 323 K – 1020 K. All compositions are single phase with rhombohedral structure, and the lattice parameter of La0.95Sr0.05Co1-xCrxO3 increases with increasing Cr content. La0.95Sr0.05Co1-xCrxO3 is a p-type small polaron conductor. The charge carrier concentration is determined by both substitution of La3+ with Sr2+ and thermally-activated charge disproportionation of Co3+ and / or Cr3+. Above 550 K, the substitution of Co with Cr increases the Seebeck coefficient and reduces the electrical conductivity. Below 550 K, the trend of Seebeck coefficient with Cr content is not clear due to the thermally activated charge disproportionation. At low temperature, the electrical conductivity shows a minimum with Cr content of x = 0.4, as a result of trapped polarons in the Cr sites. By substituting Co with Cr, the power factor below 800 K is reduced and that above 800 K is improved. The thermal conductivity is effectively reduced by doping Cr. The highest ZT value of 0.053 at 373 K is achieved for x = 0, but it decreases rapidly with increasing temperature. Substitution of Co with Cr can effectively improve the ZT values at high temperatures. In the temperature range 700 K – 1000 K, ZT increases with increasing Cr content, the highest being 0.04 at 1000 K for the composition with x = 0.5, more than 4 times the value of the La0.95Sr0.05CoO3 compound. T2 - International / European Conference on Thermoelectrics CY - Caen, France DA - 02.07.2018 KW - Double substitution KW - Thermoelectrics KW - P-type KW - Perovskite PY - 2018 AN - OPUS4-45396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, J. A1 - Güttler, Arne A1 - Richter, Maria A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Wegner, Karl David A1 - Würth, Christian T1 - Photoluminescence Quantum Yields of Luminescent Nanocrystals and Particles in the UV/vis/NIR/SWIR N2 - The rational design of functional luminescent materials such as semiconductor quantum dots and lanthanide-based upconversion nanoparticles, all photophysical and mechanistic studies, and the comparison of different emitters require accurate and quantitative photoluminescence measurements. Particularly the reliable determination of the key performance parameter photoluminescence quantum yield (f), the number of emitted per absorbed photons, and the brightness are of special importance for luminescence applications in the life and material sciences and nano(bio)photonics.[1] In this context, examples for absolute measurements of the photoluminescence quantum yields of UV/vis/NIR/SWIR emissive semiconductor quantum dots and rods, made from different materials, and spectrally shifting lanthanide upconversion nanocrystals with different surface chemistries in transparent matrices are presented including excitation wavelength and power density dependent studies utilizing integration sphere spectroscopy.[2,3] In addition, procedures for the absolute determination of the photoluminescence quantum yields of scattering dispersions of larger size quantum rods and differently sized inorganic particles have been developed as well as procedures for the characterization of solid luminescent nanomaterials such as different perovskites and YAG:Cer converter materials.[4] Thereby, challenges and pitfalls of f measurements in different wavelength regions including the SWIR and material-specific effects related to certain emitter classes are addressed, achievable uncertainties are quantified, and relative and absolute measurements of photoluminescence quantum yield measurements are compared to underline limitations of the former approach. Finally, a set of novel UV/vis/NIR quantum yield standards is presented including their certification with a complete uncertainty budget.[5] T2 - NANAX 10 CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Fluorescence KW - Optical spectroscopy KW - Reference data KW - Traceability KW - NIR KW - Scattering KW - Reference material KW - Certification KW - Quality assurance KW - Dye KW - Reference product KW - SWIR KW - Nano KW - Particle KW - Perovskite KW - Integrating sphere spectroscopy KW - Quantum yield PY - 2023 AN - OPUS4-58238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alam, F. A1 - Wegner, Karl David A1 - Pouget, S. A1 - Amidani, L. A1 - Kvashnina, K. A1 - Aldakov, D. A1 - Reiss, P. T1 - Eu2+: A suitable substituent for Pb2+ in CsPbX3 perovskite nanocrystals? JF - Journal of Chemical Physics N2 - Eu2+ is used to replace toxic Pb2+ in metal halide perovskite nanocrystals (NCs). The synthesis implies injection of cesium oleate into a solution of europium (II) bromide at an experimentally determined optimum temperature of 130 ○C and a reaction time of 60 s. Structural analysis indicates the formation of spherical CsEuBr3 nanoparticles with a mean size of 43 ± 7 nm. Using EuI2 instead of EuBr2 leads to the formation of 18-nm CsI nanoparticles, while EuCl2 does not show any reaction with cesium oleate forming 80-nm EuCl2 nanoparticles. The obtained CsEuBr3 NCs exhibit bright blue emission at 413 nm (FWHM 30 nm) with a room temperature photoluminescence quantum yield of 39%. The emission originates from the Laporte-allowed 4f7–4f65d1 transition of Eu2+ and shows a PL decay time of 263 ns. The long-term stability of the optical properties is observed, making inorganic lead-free CsEuBr3 NCs promising deep blue emitters for optoelectronics. KW - Perovskite KW - Lead-free KW - fluorescence KW - anion-exchange PY - 2019 DO - https://doi.org/10.1063/1.5126473 SN - 0021-9606 VL - 151 SP - 231101-1 EP - 231101-7 PB - AIP Publishing AN - OPUS4-50696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -