TY - GEN A1 - Pauw, Brian Richard T1 - Trinamic TMCL IOC for exposing Trinamics motor controllers to EPICS CA N2 - Trinamic TMCL IOC is a Python package designed for controlling stepper motors connected to a Trinamic board using the TMCL language (all boards supported by PyTrinamic should now work, has been tested on the TMCM 6110 and the TMCM 6214). Since it is implementing the TMCL protocol, it should be easy to adapt to other Trinamic motor controller boards. This package assumes the motor controller is connected over a machine network via a network-to-serial converter, but the underlying PyTrinamic package allows for other connections too. This allows the control of attached motors via the EPICS Channel-Access virtual communications bus. If EPICS is not desired, plain Pythonic control via motion_control should also be possible. An example for this will be provided in the example.ipynb Jupyter notebook. This package leverages Caproto for EPICS IOCs and a modified PyTrinamic library for the motor board control, and interfaces between the two via an internal set of dataclasses. Configuration for the motors and boards are loaded from YAML files (see tests/testdata/example_config.yaml). The modifications to PyTrinamic involved extending their library with a socket interface. This was a minor modification that should eventually find its way into the official package (a pull request has been submitted). KW - Instrumentation KW - Motor controller KW - EPICS KW - Channel access KW - Instrument control KW - Laboratory automation PY - 2024 DO - https://doi.org/10.5281/zenodo.10792593 PB - Zenodo CY - Geneva AN - OPUS4-59624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schardt, Annika A1 - Schmitt, Johannes A1 - Engelhard, Carsten T1 - Cover image for the article "Single particle inductively coupled plasma mass spectrometry with nanosecond time resolution" N2 - Image for the front cover of the issue 39(2) of the JAAS (Journal of Analytical Atomic Spectrometry). See Annika Schardt et al., pp. 389–400. Image reproduced by permission of Annika Schardt, Johannes Schmitt and Carsten Engelhard. KW - Analytical chemistry KW - Nanoparticles KW - Single-particle characterization KW - Instrumentation KW - spICP-MS PY - 2024 DO - https://doi.org/10.1039/D4JA90005G SN - 1364-5544 SN - 0267-9477 VL - 39 IS - 2 SP - 295 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-62156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - How to manage a modern X-ray scattering lab – a modest example N2 - Introduction A good laboratory organization can help address the reproducibility crisis in science, and easily multiply the scientific output of a laboratory, while greatly elevating the quality of the measurements. We have demonstrated this for small- and wide-angle X-ray scattering in the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration). In the MOUSE, we have combined: a) a comprehensive laboratory workflow with b) a heavily modified, highly automated X-ray scattering instrument. This combination allows us to collect fully traceable scattering data, with a well-documented data flow (akin to what is found at the more automated beamlines). With two full-time researchers, the lab collects and interprets thousands of datasets, on hundreds of samples for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. While these numbers do not light a candle to those achieved by our hardworking compatriots at the synchrotron beamlines, the laboratory approach does allow us to continually modify and fine-tune the integral methodology. So for the last three years, we have incorporated e.g. FAIR principles, traceability, automated processing, data curation strategies, as well as a host of good scattering practices into the MOUSE system. We have concomitantly expanded our purview as specialists to include an increased responsibility for the entire scattering aspect of the resultant publications. This ensures full exploitation of the data quality, whilst avoiding common pitfalls. Talk scope This talk will present the MOUSE project as implemented to date, and will introduce foreseeable upgrades and changes. These upgrades include better pre-experiment sample scattering predictions to filter projects on the basis of their suitability, exploitation of the measurement database for detecting long-term changes and automated flagging of datasets, extending the measurement range through an Ultra-SAXS module, and enhancing MC fitting with sample scattering simulations for better matching of odd-shaped scatterers. T2 - 2021 joint virtual meeting of the African Light Source (AfLS), the African Physical Society (AfPS), and Pan African Conference on Crystallography (ePCCr) CY - Online meeting DA - 15.11.2021 KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Laboratory management KW - Databases KW - Data management KW - Data catalog KW - Scicat PY - 2021 UR - https://events.saip.org.za/event/170/contributions/7619/ AN - OPUS4-53811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - The MOUSE project - A meticulous approach for obtaining traceable, wide-range X-ray scattering information N2 - Herein, we provide a "systems architecture"-like overview and detailed discussions of the methodological and instrumental components that, together, comprise the "MOUSE" project (Methodology Optimization for UltrafineStructure Exploration). The MOUSE project provides scattering information on a wide variety of samples, with traceable dimensions for both the scattering vector (q) and the absolute scattering cross-section (I). The measurable scattering vector-range of 0.012≤ q (nm-1) ≤ 92, allows information across a hierarchy of structures with dimensions ranging from ca. 0.1 to 400 nm. In addition to details that comprise the MOUSE project, such as the organisation and traceable aspects, several representative examples are provided to demonstrate its flexibility. These include measurements on alumina membranes, the tobacco mosaic virus, and dual-source information that overcomes fluorescence limitations on ZIF-8 and iron-oxide-containing carbon catalyst materials. KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Traceability KW - Wide-range KW - Data curation KW - FAIR KW - Uncertainties KW - Nanomaterials KW - Nanometrology PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528669 DO - https://doi.org/10.1088/1748-0221/16/06/P06034 VL - 16 IS - 6 SP - 1 EP - 50 PB - IOP CY - Bristol, UK AN - OPUS4-52866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - X-ray Scattering for Nanostructure Quantification, and the Quest for the Perfect Experiment N2 - Compared to the clear, real-space images you can get from electron microscopy, X-ray scattering patterns are rather featureless. These patterns, however, contain structural information from all of the material structure illuminated by the X-ray beam. With this technique, you can measure nanoparticle dispersions, catalysts, composites, MOF powders, battery materials, light metal alloys and gels to reveal information on the structural features found within these materials. We have even measured many such materials for several research groups from the University of Birmingham, revealing structure features in the sub-nm to the micrometer range. Measuring an X-ray scattering pattern is relatively easy, but measuring a high-quality, useful pattern requires significant effort and good laboratory organization. Such laboratory organization can help address the reproducibility crisis in science, and easily multiply the scientific output of a laboratory, while greatly elevating the quality of the measurements. We have demonstrated this for small- and wide-angle X-ray scattering in the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration) [1]. With the MOUSE, we have combined: a) a comprehensive and highly automated laboratory workflow with b) a heavily modified X-ray scattering instrument. This combination allows us to collect fully traceable scattering data, within a well-documented, FAIR-compliant data flow (akin to what is found at the more automated synchrotron beamlines). With two full-time researchers, our lab collects and interprets thousands of datasets, on hundreds of samples, for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. T2 - School of Chemistry Seminars CY - Birmingham, UK DA - 10.11.2021 KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Nanostructure PY - 2021 UR - https://www.youtube.com/watch?v=N2kY4wbqeM4 AN - OPUS4-53810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmitt, Johannes T1 - Data acquisition system for single particle inductively coupled plasma mass spectrometry (spICP-MS) with nanosecond time resolution N2 - This study presents our data acquisition system prototype for single particle inductively coupled plasma mass spectrometry (spICP-MS) with nanosecond time resolution (nanoDAQ) and a matching data processing approach for time-resolved data in the nanosecond range. The system continuously samples the secondary electron multiplier (SEM) detector signal with a dwell time of approximately 2 ns and enables detection of gold nanoparticles (AuNP) as small as 7.5 nm with a commercial single quadrupole ICP-MS instrument. [1] Analysis of acquired transient data is based on the temporal distance between detector events and a derived ion event density. It was shown that the inverse logarithm of the distance between detector events is proportional to particle size. Also, the number of detector events per particle can be used to calibrate and determine the particle number concentration (PNC) of a nanoparticle dispersion. Particle-by-particle-based analysis of ion event density and other parameters derived from nanosecond time resolution show promising results. High data acquisition frequency of the systems allows recording of a statistically significant number of data points in 60 s or less, which leaves only the sample uptake and rinsing steps as remaining factors for limiting the total measurement time. T2 - 20th European Winter Conference on Plasma Spectrochemistry CY - Berlin, Germany DA - 02.03.2025 KW - ICP-MS KW - Instrumentation KW - Nano KW - Nanoparticle Characterization PY - 2025 AN - OPUS4-63599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelhard, Carsten T1 - On ICP-MS with Nanosecond Time Resolution: From Nanoparticles to Microplastics N2 - In this presentation, recent developments in inductively coupled plasma mass spectrometry (ICP-MS) instrumentation for particle characterization in complex mixtures will be reviewed. The current state-of-the-art in single-particle (sp) ICP-MS instrumentation for the detection and characterization of nanoparticles (NP) and microplastics (MPs) as well as remaining challenges will be discussed. While millisecond dwell times were used in the advent of spICP-MS, the use of microsecond dwell times helped to improve nanoparticle data quality and particle size detection limits. We could show that a custom-built high-speed data acquisition unit with microsecond time resolution (μsDAQ) can be used to successfully address issues of split-particle events and particle coincidence, to study the temporal profile of individual ion clouds, and to extend the linear dynamic range by compensating for dead time related count losses. Our latest development is an in-house built data acquisition system with nanosecond time resolution (nanoDAQ). Recording of the SEM signal by the nanoDAQ is performed on the nanosecond time scale with a dwell time of approximately 2 ns and enables detection of gold nanoparticles (AuNP) as small as 7.5 nm with a commercial single quadrupole ICP-MS instrument. [1] Analysis of acquired transient data is based on the temporal distance between detector events and a derived ion event density. It was shown that the inverse logarithm of the distance between detector events is proportional to particle size. Also, the number of detector events per particle can be used to calibrate and determine the particle number concentration (PNC) of a nanoparticle dispersion. In addition to inorganic nanoparticles, first results on the detection of microplastics with spICP-MS will be discussed. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Nano KW - Microplastics KW - Nanoparticle Characterization KW - ICP-MS KW - Instrumentation PY - 2025 AN - OPUS4-63580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelhard, Carsten T1 - From Particles to PFAS: Recent Advances in Plasma-based Instrumentation Development N2 - In this presentation, recent advances in plasma spectrochemistry with hot and cold plasma sources for the direct detection of nanoparticles as well as per- and polyfluoroalkyl substances (PFAS) will be discussed. In the first part, single-particle inductively coupled plasma mass spectrometry (spICP-MS) with an in-house built data acquisition system with nanosecond time resolution (nanoDAQ) will be presented. In the second part, we turn to a cooler plasma source. Specifically, a flowing atmospheric-pressure afterglow source (FAPA) and its application for the direct mass spectrometric analysis of PFAS will be discussed. T2 - 20th European Winter Conference on Plasma Spectrochemistry CY - Berlin, Germany DA - 02.03.2025 KW - ICP-MS KW - Instrumentation KW - Nano KW - Nanoparticle Characterization KW - PFAS PY - 2025 AN - OPUS4-63581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmitt, Johannes T1 - Data acquisition system for single particle inductively coupled plasma mass spectrometry (spICP-MS) with nanosecond time resolution N2 - This study presents our data acquisition system prototype for single particle inductively coupled plasma mass spectrometry (spICP-MS) with nanosecond time resolution (nanoDAQ) and a matching data processing approach for time-resolved data in the nanosecond range. The system continuously samples the secondary electron multiplier (SEM) detector signal with a dwell time of approximately 2 ns and enables detection of gold nanoparticles (AuNP) as small as 7.5 nm with a commercial single quadrupole ICP-MS instrument. [1] Analysis of acquired transient data is based on the temporal distance between detector events and a derived ion event density. It was shown that the inverse logarithm of the distance between detector events is proportional to particle size. Also, the number of detector events per particle can be used to calibrate and determine the particle number concentration (PNC) of a nanoparticle dispersion. [1] Particle-by-particle-based analysis of ion event density and other parameters derived from nanosecond time resolution show promising results. High data acquisition frequency of the systems allows recording of a statistically significant number of data points in 60 s or less, which leaves only the sample uptake and rinsing steps as remaining factors for limiting the total measurement time. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - ICP-MS KW - Instrumentation KW - Nano KW - Nanoparticle Characterization PY - 2025 AN - OPUS4-63603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittrich, Maria A1 - Paulo, Carlos A1 - Knabe, Nicole A1 - Sturm, Heinz A1 - Zaitsev, Vladimir A1 - Gorbushina, Anna T1 - Microscopic Raman study of fungal pigment using the genetically amenable rock inhabitant Knufia petricola as a model organism N2 - Fungal pigments such as melanin and carotenoids are distinctive markers of animal and plant pathogenic fungi as well as their environmental relatives. These complex pigments play important roles in pathogenicity and stress tolerance while also being useful as biomarkers. Accordingly, it is important to be able to identify in situ the pigments in black fungi, a group of clinical and environmental importance. In this study, wild-type and genetically modified strains of Knufia petricola A95 and wild fungal cells attached to ancient rock were investigated for their spectroscopic and microscopic Raman features and morphological appearance. Knockout mutants of melanin synthesis genes pks1 (polyketide synthase), sdh1 (scytalone dehydratase), and both pks1 and the carotenoid synthesis gene phd1 (phytoene desaturase) were studied We applied two different Raman microscopes using two lasers, with 633 nm and 488 nm wavelengths. We analyzed and compared Raman spectra between the measured reference substances and the mutant and wild-type strains. In the wild strain WT:A95, the peaks close to melanin peals were found at 1353 cm−1 and 1611 cm−1. There are no characteristic melanin peaks at 1580–1600 cm−1 and around 1350 cm−1 at the spectrum of the Δpks1/Δphd1 mutant and the Δsdh1 mutant. The Δpks1 mutant spectrum has the peaks at the beta-carotene v2 C-C in-plane stretch at 1155 cm−1 and v3 C-CH3 deformation at 1005 cm−1. The peaks of carotenoids and melanin were found in all mutants and the wild strain, except the Δpks1/Δphd1 mutant. Raman spectra allow for discrimination between the various pigments. Hence, interactions between natural fungal melanin, as well as other protective pigments, and complex environmental matrices can be characterized on a range of spatial and temporal scales. KW - Raman Spectroscopy KW - Instrumentation KW - Analytical Chemistry KW - Knufia petricola KW - Confocal microscopy KW - Atomic and Molecular Physics and Optics PY - 2023 DO - https://doi.org/10.1016/j.saa.2023.123250 SN - 1386-1425 VL - 303 SP - 1 EP - 11 PB - Elsevier BV AN - OPUS4-58792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -