TY - CONF A1 - Weltschev, Margit A1 - Schwarzer, Stefanie T1 - Suitable test method for the determination of the environmental stress cracking behaviour of polyethylene terephthalate as material for dangerous goods packagings T2 - Fifth International Symposium Frontiers in Polymer Science N2 - Polyethylene terephthalate (PET) is used as material for packagings for the transport of dangerous goods due to its high strength and stiffness. For this reason, the wall thickness and weight of the packagings can be reduced. According to the European dangerous goods regulations RID and ADR, samples of PET design types of packagings for dangerous goods must be pre-stored with the original filling good for six months at 23 °C, before the design type tests can be carried out. For packagings made of polyethylene (PE) tests to prove the stress cracking resistance by using laboratory methods are possible to reduce time and costs. Therefore, standard liquids, simulating the different types of damaging effects on PE are defined in RID and ADR. However, there is no information and research available about the damaging mechanisms on PET, especially regarding to stress cracking resistance and test methods. One laboratory test method is the Full Notch Creep Test (FNCT), which was developed for polyethylene (PE) and is described in the standards EN ISO 13274 and EN 15507. It was investigated whether testing specimens made of PET with a full coplanar notch around the middle of the specimens show weakening after the impact of a tensile force in the standard liquid (5 % wetting solution) at 50 °C. The tests showed that this method couldn’t be used for PET because the specimens broke during notching due to the high brittleness of PET. Another disadvantage is the very time-consuming temper process for twelve hours after molding of the sheets. Another test method is described in BAM’s Dangerous Goods Rule BAM-GGR 015. This test was carried out with 1l PET bottles, which were filled with a 5% wetting solution and mounted with a clamping tool for 28 days at 40°C. Tensile test specimens were cut out afterwards from the middle of the bottles in the deformed areas. The tensile properties of the PET specimens couldn’t be determined due to the hardness of the material. The only test method to provide information about the stress cracking resistance of PET was to perform stacking tests with PET design types of packagings. 1l bottles made of PET were filled with the standard liquid (5 % wetting solution) and stored with a stacking load for 28 days at 40°C according to EN ISO 16495. The test bottles of PET passed the stacking tests. In conclusion, samples of PET design types of packagings for dangerous goods must be pre-stored with the original filling good for six months at 23 °C, before the design type tests can be carried out. T2 - Fifth International Symposium Frontiers in Polymer Science CY - Seville, Spain DA - 17.05.2017 KW - Polyethylene terephthalate KW - Stress cracking resistance KW - Laboratory method KW - Dangerous goods packaging PY - 2017 SP - P3.002, 113 EP - 113 PB - Elsevier Limited AN - OPUS4-40429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Schwarzer, Stefanie A1 - Eiben, Mario T1 - Suitable test method for the determination of the environmental stress cracking behaviour of polyethylene terephthalate as material for dangerous goods packagings N2 - The chemical industry has expressed great interest in using polyethylene terephthalate (PET) as material for packagings for the transport of dangerous goods. Due to the high strength and stiffness of PET, the wall thickness and weight of packagings can be reduced. The aim of this work was to find a laboratory test method for the determination of the stress cracking resistance of PET. One test method is the Full Notch Creep Test (FNCT), which was developed for polyethylene (PE) and is described in the standards EN ISO 13274 and EN 15507. It was investigated whether testing specimens made of PET with a full coplanar notch around the middle of the specimens show weakening after the impact of a tensile force in a wetting solution at 50°C. Unfortunately, this method couldn’t be used for PET because the specimens broke during notching due to the high brittleness of PET. The molding of the sheets and the following temper process for twelve hours are very time-consuming, Another possibility is laid down in BAM’s Dangerous Goods Rule BAM-GGR 015. This test was carried out with 1l PET bottles, which were filled with a 5% wetting solution and mounted with a clamping tool for 28 days at 40°C. Tensile test specimens were cut out afterwards from the middle of the bottles in the deformed areas. The tensile properties of the PET specimens couldn’t be determined due to the hardness of the material. In conclusion, the only way to provide information about the stress cracking resistance of PET was to perform stacking tests with PET design types of packagings. 1l bottles made of PET were filled with a 5% wetting solution and stored with a stacking load for 28 days at 40°C according to EN ISO 16495. The test bottles of PET passed the stacking tests. T2 - Fifth International Symposium Frontiers in Polymer Science CY - Seville, Spain DA - 17.05.2017 KW - Polyethylene terephthalate KW - Stress cracking resistance KW - Laboratory method KW - Dangerous goods packaging PY - 2017 AN - OPUS4-40438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -