TY - CONF A1 - Günster, Jens A1 - Meyer, Lena T1 - Laser beam melting additive manufacturing at μ-gravity N2 - At the Workshop "Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing" at the Institute of Materials Physics in Space, German Aerospace Center (DLR) in Cologne, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications in microgravity. T2 - Workshop 'Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing' CY - Cologne, Germany DA - 11.08.2022 KW - Additive manufacturing KW - In-space manufacturing KW - Microgravity KW - μ-gravity KW - Laser beam melting KW - Advanced manufacturing KW - Aerospace KW - Process monitoring PY - 2022 AN - OPUS4-56521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Quality Prediction in Directed Energy Deposition Using Artificial Neural Networks Based on Process Signals JF - Applied Sciences N2 - The Directed Energy Deposition process is used in a wide range of applications including the repair, coating or modification of existing structures and the additive manufacturing of individual parts. As the process is frequently applied in the aerospace industry, the requirements for quality assurance are extremely high. Therefore, more and more sensor systems are being implemented for process monitoring. To evaluate the generated data, suitable methods must be developed. A solution, in this context, was the application of artificial neural networks (ANNs). This article demonstrates how measurement data can be used as input data for ANNs. The measurement data were generated using a pyrometer, an emission spectrometer, a camera (Charge-Coupled Device) and a laser scanner. First, a concept for the extraction of relevant features from dynamic measurement data series was presented. The developed method was then applied to generate a data set for the quality prediction of various geometries, including weld beads, coatings and cubes. The results were compared to ANNs trained with process parameters such as laser power, scan speed and powder mass flow. It was shown that the use of measurement data provides additional value. Neural networks trained with measurement data achieve significantly higher prediction accuracy, especially for more complex geometries. KW - DED KW - Artificial neural network KW - Process monitoring KW - Quality assurance KW - Data preparation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547039 DO - https://doi.org/10.3390/app12083955 VL - 12 IS - 8 SP - 1 EP - 13 PB - MDPI AN - OPUS4-54703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Quality Prediction in Directed Energy Deposition Using Artificial Neural Networks Based on Process Signals JF - Applied Sciences N2 - The Directed Energy Deposition process is used in a wide range of applications including the repair, coating or modification of existing structures and the additive manufacturing of individual parts. As the process is frequently applied in the aerospace industry, the requirements for quality assurance are extremely high. Therefore, more and more sensor systems are being implemented for process monitoring. To evaluate the generated data, suitable methods must be developed. A solution, in this context, was the application of artificial neural networks (ANNs). This article demonstrates how measurement data can be used as input data for ANNs. The measurement data were generated using a pyrometer, an emission spectrometer, a camera (Charge-Coupled Device) and a laser scanner. First, a concept for the extraction of relevant features from dynamic measurement data series was presented. The developed method was then applied to generate a data set for the quality prediction of various geometries, including weld beads, coatings and cubes. The results were compared to ANNs trained with process parameters such as laser power, scan speed and powder mass flow. It was shown that the use of measurement data provides additional value. Neural networks trained with measurement data achieve significantly higher prediction accuracy, especially for more complex geometries. KW - DED KW - Artificial neural network KW - Data preparation KW - Quality assurance KW - Process monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555063 DO - https://doi.org/10.3390/app12083955 SN - 2076-3417 VL - 12 IS - 8 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography JF - Quantitative InfraRed Thermography Journal N2 - Additive manufacturing offers a range of novel applications. However, the manufacturing process is complex and the production of almost defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal additive manufacturing processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid wavelength infrared camera with those from a short wavelength infrared camera and those from a visual spectrum high-speed camera with band pass filter in the near infrared range. KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - LMD KW - Metal KW - MWIR KW - SWIR KW - NIR PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516318 DO - https://doi.org/10.1080/17686733.2020.1829889 VL - 19 IS - 2 SP - 97 EP - 114 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-51631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Maierhofer, Christiane T1 - Towards the determination of real process temperatures in the LMD process my multispectral thermography N2 - Due to the rapid thermal cycles involved in additive manufacturing of metals, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine their formation, in-process measurements of the temperature are needed. Since the part emissivity is strongly inhomogeneous and rapidly changing in the process, the applicability of thermography for the determination of thermodynamic temperatures is limited. Measuring the thermal radiation in different wavelengths simultaneously, temperature and emissivity can be separated. Here, we present results of a preliminary study using multispectral thermography to obtain real temperatures and emissivities in directed energy deposition (DED) processes. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 DO - https://doi.org/10.1117/12.2587881 AN - OPUS4-52515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Bruno, Giovanni A1 - Maierhofer, Christiane A1 - Altenburg, Simon T1 - On the Registration of Thermographic In Situ Monitoring Data and Computed Tomography Reference Data in the Scope of Defect Prediction in Laser Powder Bed Fusion JF - Metals N2 - The detection of internal irregularities is crucial for quality assessment in metal-based additive manufacturing (AM) technologies such as laser powder bed fusion (L-PBF). The utilization of in-process thermography as an in situ monitoring tool in combination with post-process X-ray micro computed tomography (XCT) as a reference technique has shown great potential for this aim. Due to the small irregularity dimensions, a precise registration of the datasets is necessary as a requirement for correlation. In this study, the registration of thermography and XCT reference datasets of a cylindric specimen containing keyhole pores is carried out for the development of a porosity prediction model. The considered datasets show variations in shape, data type and dimensionality, especially due to shrinkage and material elevation effects present in the manufactured part. Since the resulting deformations are challenging for registration, a novel preprocessing methodology is introduced that involves an adaptive volume adjustment algorithm which is based on the porosity distribution in the specimen. Thus, the implementation of a simple three-dimensional image-to-image registration is enabled. The results demonstrate the influence of the part deformation on the resulting porosity location and the importance of registration in terms of irregularity prediction. KW - Selective laser melting (SLM) KW - Laser powder bed fusion (L-PBF) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - X-ray computed tomography (XCT) KW - Defect detection KW - Image registration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549412 DO - https://doi.org/10.3390/met12060947 VL - 12 IS - 6 SP - 1 EP - 21 PB - MDPI AN - OPUS4-54941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Baesso, Ilaria A1 - Straße, Anne A1 - Pittner, Andreas A1 - Pignatelli, Giuseppe A1 - Seeger, Stefan A1 - Nazarzadehmoafi, Maryam A1 - Ehlers, Henrik A1 - Gohlke, Dirk A1 - Homann, Tobias A1 - Scheuschner, Nils A1 - Ulbricht, Alexander A1 - Heinrich, P. A1 - Maierhofer, Christiane T1 - Process monitoring of additive manufacturing of metals - an overview of the project ProMoAM N2 - The project ProMoAM is presented. The goal of the project is to evaluate which NDT techniques or combination of techniques is suited for in-situ quality assurance in additive manufacturing of metals. To this end, also 3d-data fusion and visualization techniques are applied. Additional ex-situ NDT-techniques are used as references for defect detection and quantification. Feasability studies for NDT-techniques that are presently not applicable for in-situ use are performed as well. The presentation gives a brief overview of the whole project and the different involved NDT-techniques. T2 - Workshop od Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - Process monitoring KW - NDT PY - 2019 AN - OPUS4-48087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Thermography and optical emission spectroscopy: Simultaneous temperature measurement during the LMD process N2 - For metal-based additive manufacturing, sensors and measuring systems for monitoring of the energy source, the build volume, the melt pool and the component geometry are already commercially available. Further methods of optics, spectroscopy and non-destructive testing are described in the literature as suitable for in-situ application, but there are only a few reports on practical implementations. Therefore, a new BAM project aims to develop process monitoring methods for the in-situ evaluation of the quality of additively manufactured metal components. In addition to passive and active thermography, this includes optical tomography, optical emission and absorption spectroscopy, eddy current testing, laminography, X-ray backscattering and photoacoustic methods. These methods are used in additive manufacturing systems for selective laser melting, laser metal deposition and wire arc additive manufacturing. To handle the sometimes huge amounts of data, algorithms for efficient preprocessing are developed and characteristics of the in-situ data are extracted and correlated to defects and inhomogeneities, which are determined using reference methods such as computer tomography and metallography. This process monitoring and fusion of data of different measurement techniques should result in a significant reduction of costly and time-consuming, destructive or non-destructive tests after the production of the component and at the same time reduce the production of scrap. Here, first results of simultaneous measurements of optical emission spectroscopy and thermography during the laser metal deposition process using 316L as building material are presented. Temperature values are extracted from spectroscopic data by fitting of blackbody emission spectra to the experimental data and compared with results from a thermographic camera. Measurements with and without powder flow reveal significant differences between welding at a pristine metal surface and previously melted positions on the build plate, illustrating the significant influence of the partial oxidation of the surface during the first welding process on subsequent welding. The measurement equipment can either be mounted stationary or following the laser path. While first results were obtained in the stationary mode, future applications for online monitoring of the build of whole parts in the mobile mode are planned. This research was funded by BAM within the focus area Material. T2 - 2nd international congress on welding, additive manufacturing and associated non-destructive testing CY - Metz, France DA - 05.06.2019 KW - Additive manufacturing KW - Laser metal deposition KW - Thermography KW - Optical emission spectroscopy KW - Process monitoring PY - 2019 AN - OPUS4-48228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Nowakowski, Susanna A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - Experimental Determination of the Emissivity of Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples JF - Metals N2 - Recording the temperature distribution of the layer under construction during laser powder bed fusion (L-PBF) is of utmost interest for a deep process understanding as well as for quality assurance and in situ monitoring means. While having a notable number of thermal monitoring approaches in additive manufacturing (AM), attempts at temperature calibration and emissivity determination are relatively rare. This study aims for the experimental temperature adjustment of an off-axis infrared (IR) thermography setup used for in situ thermal data acquisition in L-PBF processes. The temperature adjustment was conducted by means of the so-called contact method using thermocouples at two different surface conditions and two different materials: AISI 316L L-PBF bulk surface, AISI 316L powder surface, and IN718 powder surface. The apparent emissivity values for the particular setup were determined. For the first time, also corrected, closer to real emissivity values of the bulk or powder surface condition are published. In the temperature region from approximately 150 °C to 580 °C, the corrected emissivity was determined in a range from 0.2 to 0.25 for a 316L L-PBF bulk surface, in a range from 0.37 to 0.45 for 316L powder layer, and in a range from 0.37 to 0.4 for IN718 powder layer. KW - Emisssivity KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring KW - Infrared thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516148 DO - https://doi.org/10.3390/met10111546 VL - 10 IS - 11 SP - 1546 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Thermography in laser powder bed fusion of metals: time over threshold as feasible feature in thermographic data N2 - Thermography is one on the most promising techniques for in-situ monitoring for metal additive manufacturing processes. The high process dynamics and the strong focus of the laser beam cause a very complex thermal history within the produced specimens, such as multiple heating cycles within single layer expositions. This complicates data interpretation, e.g., in terms of cooling rates. A quantity that is easily calculated is the time a specific area of the specimen is at a temperature above a chosen threshold value (TOT). Here, we discuss variations occurring in time-over-threshold-maps during manufacturing of a defect free cuboid specimen. T2 - 15th Quantitative InfraRed Thermography conference CY - Online meeting DA - 21.09.2020 KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - L-PBF KW - Time over threshold PY - 2020 AN - OPUS4-51630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Hilgenberg, Kai T1 - In-situ defect detection in Laser Powder Bed Fusion (L-PBF) by using thermography and optical tomography N2 - Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing (AM) technologies for the production of complex metallic real part components. Due to the multitude of factors influencing process conditions and part quality and due to the layer-wise characteristic of the process, monitoring of process signatures seems to be mandatory in case of the production of safety critical components. Here, the iterative process nature enables unique access for in-situ monitoring during part manufacture. In this talk, the successful test of the synchronous use of a high-frequency infrared camera and a camera for long time exposure, working in the visible spectrum (VIS) and equipped with a near infrared filter (NIR), will be introduced as a machine manufacturer independent thermal detection monitoring set-up. Thereby, the synchronous use of an infrared camera and a VIS NIR camera combines the advantages of high framerate and high spatial resolution. The manufacture of a 316L stainless steel specimen, containing purposely seeded defects and volumes with forced changes of energy inputs, was monitored during the build. The measured thermal responses are analysed and compared with a defect mapping obtained by micro X-ray computed tomography (CT). The first results regarding methods for data analysis, derived correlations between measured signals and detected defects as well as sources of possible data misinterpretation are presented in this talk. T2 - 45. MPA Seminar - Fit for Future – Advanced Manufacturing Technologies, Materials and Lifetime CY - Stuttgart, Germany DA - 01.10.2019 KW - Data fusion KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Lack-of-fusion PY - 2019 AN - OPUS4-49386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - Towards the determination of real process temperatures in the LMD process by multispectral thermography T2 - Thermosense: Thermal Infrared Applications XLIII N2 - Due to the rapid thermal cycles involved in additive manufacturing of metals, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine their formation, in-process measurements of the temperature are needed. Since the part emissivity is strongly inhomogeneous and rapidly changing in the process, the applicability of thermography for the determination of thermodynamic temperatures is limited. Measuring the thermal radiation in different wavelengths simultaneously, temperature and emissivity can be separated. Here, we present results of a preliminary study using multispectral thermography to obtain real temperatures and emissivities in directed energy deposition (DED) processes. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 DO - https://doi.org/10.1117/12.2587881 VL - 2021 SP - 77 EP - 83 PB - SPIE AN - OPUS4-52516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Introduction to ProMoAM N2 - A brief introduction to the project ProMoAM is given. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - ProMoAM PY - 2021 AN - OPUS4-52513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in situ mittels Thermographiekamera überwacht, sodass Informationen über das Abkühlverhalten der Bauteile während des Prozesses gewonnen werden konnten. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - Workshop In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Infrared thermography KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring PY - 2021 AN - OPUS4-52699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Maierhofer, Christiane T1 - Unraveling thermal radiation by multispectral thermography: Real temperatures in LMD N2 - Additive manufacturing of metals offers the opportunity to build parts with a high degree of complexity without additional costs, opening a new space for design optimization. However, the processes are highly complex and due to the rapid thermal cycles involved, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine the formation of internal stresses and the microstructure, in-process spatially resolved measurements of the part temperature are needed. If the emissivity of the inspected part is known, its thermodynamic temperature can be reconstructed by a suited radiometric model. However, in additive manufacturing of metals, the emissivity of the part surface is strongly inhomogeneous and rapidly changing due to variations of, e.g., the degree of oxidation, the material state and temperature. Thus, here, the applicability of thermography in the determination of thermodynamic temperatures is limited. However, measuring the process thermal radiation at different wavelengths simultaneously enables one to separate temperature and emissivity spatially resolved to obtain further insight into the process. Here, we present results of an initial study using multispectral thermography to obtain real temperatures and emissivities in the powderfree LMD process. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 AN - OPUS4-52514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Improving additive manufacturing technologies by in-situ monitoring: Thermography N2 - Additive manufacturing of metals gains increasing relevance in the industrial field for part production. However, especially for safety relevant applications, a suitable quality assurance is needed. A time and cost efficient route to achieve this goal is in-situ monitoring of the build process. Here, the BAM project ProMoAM (Process monitoring in additive manufacturing) is briefly introduced and recent advances of BAM in the field of in-situ monitoring of the L-PBF and the LMD process using thermography are presented. T2 - Anwenderkonferenz Infratec GmbH CY - Online meeting DA - 04.11.2021 KW - Additive Manufacturing KW - Process monitoring KW - Thermography PY - 2021 AN - OPUS4-54026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Heinrich, Ph. A1 - Baum, D. A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography JF - Metals N2 - Among additive manufacturing (AM) technologies, the laser powder bed fusion (L-PBF) is one of the most important technologies to produce metallic components. The layer-wise build-up of components and the complex process conditions increase the probability of the occurrence of defects. However, due to the iterative nature of its manufacturing process and in contrast to conventional manufacturing technologies such as casting, L-PBF offers unique opportunities for in-situ monitoring. In this study, two cameras were successfully tested simultaneously as a machine manufacturer independent process monitoring setup: a high-frequency infrared camera and a camera for long time exposure, working in the visible and infrared spectrum and equipped with a near infrared filter. An AISI 316L stainless steel specimen with integrated artificial defects has been monitored during the build. The acquired camera data was compared to data obtained by computed tomography. A promising and easy to use examination method for data analysis was developed and correlations between measured signals and defects were identified. Moreover, sources of possible data misinterpretation were specified. Lastly, attempts for automatic data analysis by data Integration are presented. KW - Laser powder bed fusion (L-PBF) KW - Selective laser melting (SLM) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Data fusion KW - Lack-of-fusion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502417 DO - https://doi.org/10.3390/met10010103 VL - 10 IS - 1 SP - 103 PB - MDPI CY - Basel, Schweiz AN - OPUS4-50241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Pelkner, Matthias T1 - Process monitoring in metal AM @ BAM - The project ProMoAM N2 - Results of the project ProMoAM (Process monitoring in additive manufacturing) presented. Results from in-situ eddy current testing, optical emission spectroscopy, thermography, optical tomography as well as particle and gas emission spectroscopy are summarized and correlated to results from computed tomography for future in-situ defect detection. T2 - 3rd Meeting of WG6 (NDT in AM) of the EFNDT CY - Online meeting DA - 15.03.2022 KW - Additive Manufacturing KW - Process monitoring KW - ProMoAM PY - 2022 AN - OPUS4-54484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -