TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Laser Powder Bed Fusion (L-PBF) allow the fabrication of lightweight near net shape AlSi10Mg components attractive to the aerospace, automotive, biomedical and military industries. During the build-up process, high cooling rates occur. Thus, L-PBF AlSi10Mg alloys exhibit a Si-nanostructure in the as-built condition, which leads to superior mechanical properties compared to conventional cast materials. At the same time, such high thermal gradients generally involve a deleterious residual stress (RS) state that needs to be assessed during the design process, before placing a component in service. To this purpose post-process heat treatments are commonly performed to relieve detrimental RS. In this contribution two low-temperature stress-relief heat treatments (SRHT) are studied and compared with the as-built state: a SRHT at 265°C for 1 hour and a SRHT at 300°C for 2 hours. At these temperatures microstructural changes occur. In the as-built state, Si atoms are supersaturated in the α-aluminium matrix, which is enveloped by a eutectic Si-network. At 265°C the Si precipitation from the matrix to the pre-existing network is triggered. Thereafter, above 295°C the fragmentation and spheroidization of the Si branches takes place, presumably by Al–Si interdiffusion. After 2 hours the original eutectic network is completely replaced by uniformly distributed blocky particles. The effect of the heat and the microstructure modification on the RS state and the fatigue properties is investigated. Energy dispersive x-ray and neutron diffraction are combined to investigate the near-surface and bulk RS state of a L-PBF AlSi10Mg material. Differences in the endurance limit are evaluated experimentally by high cycle fatigue (HCF) tests and cyclic R-curve determination. T2 - 43rd Materials Mechanics Seminar CY - Sani, Chalkidiki, Greece DA - 05.06.2022 KW - AlSi10Mg KW - Fatigue KW - Neutron diffraction KW - X-ray diffraction PY - 2022 AN - OPUS4-55090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D imaging and residual stress analysis of AM materials at BAM N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). T2 - Seminar at Chalmers University and Centre for Additive Manufacture (CAM2) CY - Gothenburg, Sweden DA - 19.05.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Computed tomography KW - Synchrotron X-ray diffraction KW - X-ray refraction PY - 2022 AN - OPUS4-55019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Meinel, Dietmar A1 - Koptyug, A. A1 - Surmeneva, M. A1 - Khrapov, D. A1 - Paveleva, A. A1 - Surmenev, R. T1 - Röntgen-Computertomographie-Verfahren zur quantitativen Charakterisierung periodischer Minimalflächenstrukturen (TMPS) N2 - Additiv gefertigte (AM) dreifach periodische metallische minimale Oberflächenstrukturen (TPMSS, aus dem Englischen Triply Periodic Minimum Surface Structures) erfüllen mehrere Anforderungen sowohl im biomedizinischen als auch im technischen Bereich: Abstimmbare mechanische Eigenschaften, geringe Empfindlichkeit gegenüber Herstellungsfehlern, mechanische Stabilität und hohe Energieabsorption. Allerdings stellen sie auch einige Herausforderungen in Bezug auf die Qualitätskontrolle dar, die ihre erfolgreiche Anwendung verhindern können. Tatsächlich ist die Optimierung des AM-Prozesses ohne die Berücksichtigung struktureller Merkmale wie Fertigungsgenauigkeit, interne Defekte sowie Oberflächentopographie und -rauheit unmöglich. In dieser Studie wurde die quantitative zerstörungsfreie Analyse von Ti-6Al-4V-Legierung TPMSS mit Hilfe der Röntgen-Computertomographie (XCT) durchgeführt. Es werden mehrere neue Bildanalyse-Workflows vorgestellt, um die Auswirkungen der Aufbaurichtung auf die Wanddickenverteilung, die Wanddegradation und die Verringerung der Oberflächenrauheit aufgrund des chemischen Ätzens von TPMSS zu bewerten. Es wird gezeigt, dass die Herstellungsgenauigkeit für die Strukturelemente, die parallel und orthogonal zu den hergestellten Schichten gedruckt werden, unterschiedlich ist. Verschiedene Strategien für das chemische Ätzen zeigten unterschiedliche Pulverabtragsfähigkeiten und damit ein Gradient der Wanddicke. Dies wirkte sich auf die mechanische Leistung unter Druck durch die Verringerung der Streckspannung aus. Eine positive Auswirkung des chemischen Ätzens ist die Verringerung der Oberflächenrauhigkeit, die möglicherweise die Ermüdungseigenschaften der Bauteile verbessern kann. Schließlich wurde XCT eingesetzt, um die Menge des zurückgehaltenen Pulvers mit der Porengröße des TPMSS zu korrelieren, wodurch der Herstellungsprozess weiter verbessert werden kann. T2 - DGZfP-Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Additive Fertigung KW - Computertomographie KW - Wändedicke KW - Machine Learning PY - 2022 AN - OPUS4-55021 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar T1 - Multiscale residual stress analysis and synchrotron X-ray refraction of additively manufactured parts N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The challenges in the residual stress analysis of AM components are discussed on the basis on the show studies performed in BAM. Also, the synchrotron X-ray refraction technique, available in BAM, is presented, showing example of in-situ heating test of Al10SiMg AM material. T2 - Seminar at Grenoble INP, Science et Ingénierie des Matériaux et Procédés (SIMaP) CY - Grenoble, France DA - 01.07.2022 KW - Additive manufacturing KW - Residual stress KW - X-ray refraction KW - Computed tomography PY - 2022 AN - OPUS4-55232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Fernández, R. A1 - Saliwan Neumann, Romeo A1 - González-Doncel, G. A1 - Bruno, Giovanni T1 - Dislocation substructures in pure aluminium after creep deformation as studied by electron backscatter diffraction JF - Journal of applied crystallography N2 - In the present work, electron backscatter diffraction was used to determine the microscopic dislocation structures generated during creep (with tests interrupted at the steady state) in pure 99.8% aluminium. This material was investigated at two different stress levels, corresponding to the power-law and power-law breakdown regimes. The results show that the formation of subgrain cellular structures occurs independently of the crystallographic orientation. However, the density of these cellular structures strongly depends on the grain crystallographic orientation with respect to the tensile axis direction, with <111> grains exhibiting the highest densities at both stress levels. It is proposed that this behaviour is due to the influence of intergranular stresses, which is different in <111> and <001> grains. KW - Creep KW - Pure aluminium KW - Electron backscatter diffraction KW - Cellular structures KW - Power law and power-law breakdown PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552003 DO - https://doi.org/10.1107/S1600576722005209 SN - 0021-8898 SN - 1600-5767 VL - 55 SP - 860 EP - 869 PB - Wiley-Blackwell CY - Copenhagen AN - OPUS4-55200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Mehta, Bharat A1 - Nyborg, L. A1 - Virtanen, E. A1 - Markötter, Henning A1 - Hryda, E. A1 - Bruno, Giovanni T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing (AM) N2 - Most of the Al alloys used in additive manufacturing (AM), in particular Laser Powder Bed Fusion (LPBF), do not exceed a strength of 200 MPa, whereas conventionally high-performance alloys exhibit strengths exceeding 400 MPa. The availability of such Al alloys in AM is limited due to difficulties in printability, requiring synergetic material and AM process development to satisfy harsh processing conditions during LPBF [1]. One approach is the addition of reinforcement to the based powder, allowing tailoring composition and properties of a Metal Matrix Composite (MMC) by AM. Still, the effect of the reinforcement on the resulting mechanical properties must be studied to understand the performance and limits of the newly developed material. The goal of this work was to investigate the failure mechanism of LPBF Al-based MMC material using in-situ Synchrotron X-ray Computed Tomography (SXCT) during mechanical testing. T2 - International conference on tomography of material and structures CY - Grenoble, France DA - 27.06.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Al alloy KW - MMC PY - 2022 AN - OPUS4-55228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Evlevleev, Sergei A1 - Khrapov, D. A1 - Meinel, Dietmar A1 - Surmenev, R. A1 - Surmeneva, M. A1 - Koptyug, A. T1 - Procedures to Quantitatively Characterize Morphological Features of Triply Periodic Minimal Surface Structures N2 - Additively manufactured (AM) metallic sheet-based Triply Periodic Minimal Surface Structures (TPMSS) meet several requirements in both bio-medical and engineering fields: Tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some challenges related to quality control. In fact, the optimization of both the AM process and the properties of TPMSS is impossible without considering structural characteristics as manufacturing accuracy, internal defects, and as well as surface topography and roughness. In this study, the quantitative non-destructive analysis of TPMSS manufactured from Ti-6Al-4V alloy by electron beam melting was performed by means of laboratory X-ray computed tomography (XCT). T2 - International conference on tomography of material and structures 2022 CY - Grenoble, France DA - 27.06.2022 KW - Additive manufacturing KW - Scaffold KW - Lightweight structures KW - Computed tomography PY - 2022 AN - OPUS4-55229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pohl, P. A1 - Serrano Munoz, Itziar A1 - Markötter, Henning A1 - Göken, Mathias A1 - Höppel, H. W. T1 - Toughening mechanisms and enhanced damage tolerant fatigue behaviour in laminated metal composites N2 - In the present study, fatigue crack growth (FCG) in a laminated metal composite (LMC) consisting of Al-based constituents with dissimilar strength was studied. Additionally, the FCG in both monolithic constituent materials was determined and a linear elastic rule of mixture (ROM) concept was calculated as a reference for the FCG of the laminated composite. Crack networks in the laminates were analyzed post-mortem by means of light microscopy and synchrotron X-Ray tomography (SXCT). Significantly reduced FCG rates for the LMC were found at elevated stress intensity ranges compared to both the monolithic constituents as well as the ROM concept. This is the result of the formation of a complex 3D crack network in the laminated architecture caused by the appearance of the two different toughening mechanisms a) crack deflection and b) crack bifurcation at the vicinity of the interfaces. T2 - Ninth International Conference on Low Cycle Fatigue CY - Berlin, Germany DA - 21.06.2022 KW - Laminated metal composite KW - Damage tolerance KW - Fatigue crack growth KW - Toughening mechanism KW - Synchrotron X-ray computed tomography PY - 2022 DO - https://doi.org/10.48447/LCF9-2022-035 SP - 153 EP - 158 PB - DVM AN - OPUS4-55231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron x ray refraction detects microstructure and porosity evolution during in situ heat treatments in an LPBF ALSI10MG alloy N2 - The complexity of any microstructural characterization significantly increases when there is a need to evaluate the icrostructural evolution as a function of temperature. To date, this characterization is primarily performed by undertaking elaborative ex-situ experiments where the material’s heating procedure is interrupted at different temperatures or times. Moreover, these studies are often limited to a region smaller than the representative elementary volume, which can lead to partial or even biased interpretations of the collected data. This limitation can be greatly overcome by using in-situ synchrotron X-ray refraction (SXRR). T2 - ICTMS 2022 CY - Grenoble, France DA - 27.06.2022 KW - Synchrotron refraction KW - In situ heating KW - AlSi10Mg alloy KW - Additive manufacturing KW - Microstructural evolution PY - 2022 AN - OPUS4-55199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Low cycle fatigue behavior of DED-L Ti-6AL-4V N2 - Laser powder-based directed energy deposition (DED-L) is a technology that offers the possibility for 3D material deposition over hundreds of layers and has thus the potential for application in additive manufacturing (AM). However, to achieve broad industrial application as AM technology, more data and knowledge about the fabricated materials regarding the achieved properties and their relationship to the manufacturing process and the resulting microstructure is still needed. In this work, we present data regarding the low-cycle fatigue (LCF) behavior of Ti-6Al-4V. The material was fabricated using an optimized DED-L process. It features a low defect population and excellent tensile properties. To assess its LCF behavior two conventionally manufactured variants of the same alloy featuring different microstructures were additionally tested. The strain-controlled LCF tests were carried out in fully reversed mode with 0.3 % to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behavior and failure mechanisms are described. For characterization, optical microscopy (OM), scanning electron microscopy (SEM), and micro-computed tomography (µCT) were used. The low defect population allows for a better understanding of the intrinsic material’s properties and enables a fairer comparison against the conventional variants. The fatigue lifetimes of the DED-L material are nearly independent of the test temperature. At elevated test temperatures, they are similar or higher than the lifetimes of the conventional counterparts. At room temperature, they are only surpassed by the lifetimes of one of them. The principal failure mechanism involves multiple crack initiation sites. T2 - Ninth International Conference on Low Cycle Fatigue (LCF9) CY - Berlin, Germany DA - 21.06.2022 KW - AGIL KW - Additive Manufacturing KW - Ti-6Al-4V KW - Low-Cycle-Fatigue KW - Microstructure PY - 2022 AN - OPUS4-55123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Soares, A.P. A1 - Kupsch, Andreas A1 - Baum, D. A1 - Hesse, B. A1 - Zaslansky, P. T1 - Untersuchung der Integrität von glasfaserverstärkten Zahnstiften mittels Synchrotron-Röntgenrefraktion T2 - DGZfP Jahrestagung 2022 N2 - Die Integrität der Verstärkungsfasern in Komposit-Zahnstiften ist entscheidend für die Biegefestigkeit und die langfristige Haftung am Zement in den Wurzelkanälen. Es wurde vermutet, dass die Integrität von glasfaserverstärkten Zahnstiften durch das Beschleifen während der zahnmedizinischen Behandlung beeinträchtigt wird. Eine Beschädigung der Fasern führt zu einer erheblichen strukturellen Schwächung über den gesamten Stiftdurchmesser. Glasfragmente, die durch den Kontakt mit dem Zahnbohrer entstehen, können sich vom Stift lösen und die Haftfähigkeit erheblich verringern. Mit Hilfe hochauflösender Synchrotron-Röntgen-Refraktions-Radiographie (SXRR) konnte das Ausmaß der Schäden zuverlässig identifiziert und charakterisiert werden. Dazu wurden die Glasfaserstifte sowohl im Herstellungszustand als auch nach der Bearbeitung mit einem Diamantbohrer untersucht. Die Datensätze wurden zur Visualisierung und Quantifizierung der morphologischen Charakteristika intakter und durch das Beschleifen beschädigter Regionen analysiert. Sie zeigen Schäden im bearbeiteten Bereich (z. B. Brüche, Splitter und Risse) sowie herstellungsbedingte Inhomogenitäten der Fasern mit einer signifikanten Zunahme der inneren Oberflächen in Probenregionen, die durch das Beschleifen beschädigt wurden. T2 - DGZfP Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Röntgen-Refraktion KW - Verbundwerkstoffe KW - Zahnstifte PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549231 SP - 1 EP - 7 AN - OPUS4-54923 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Soares, A.P. A1 - Kupsch, Andreas A1 - Baum, D. A1 - Hesse, B. A1 - Zaslansky, P. T1 - Untersuchung der Integrität von glasfaserverstärkten Zahnstiften mittels Synchrotron-Röntgenrefraktion N2 - Die Integrität der Verstärkungsfasern in Komposit-Zahnstiften ist entscheidend für die Biegefestigkeit und die langfristige Haftung am Zement in den Wurzelkanälen. Es wurde vermutet, dass die Integrität von glasfaserverstärkten Zahnstiften durch das Beschleifen während der zahnmedizinischen Behandlung beeinträchtigt wird. Eine Beschädigung der Fasern führt zu einer erheblichen strukturellen Schwächung über den gesamten Stiftdurchmesser. Glasfragmente, die durch den Kontakt mit dem Zahnbohrer entstehen, können sich vom Stift lösen und die Haftfähigkeit erheblich verringern. Mit Hilfe hochauflösender Synchrotron-Röntgen-Refraktions-Radiographie (SXRR) konnte das Ausmaß der Schäden zuverlässig identifiziert und charakterisiert werden. Dazu wurden die Glasfaserstifte sowohl im Herstellungszustand als auch nach der Bearbeitung mit einem Diamantbohrer untersucht. Die Datensätze wurden zur Visualisierung und Quantifizierung der morphologischen Charakteristika intakter und durch das Beschleifen beschädigter Regionen analysiert. Sie zeigen Schäden im bearbeiteten Bereich (z. B. Brüche, Splitter und Risse) sowie herstellungsbedingte Inhomogenitäten der Fasern mit einer signifikanten Zunahme der inneren Oberflächen in Probenregionen, die durch das Beschleifen beschädigt wurden. T2 - DGZfP Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Röntgen-Refraktion KW - Verbundwerkstoffe KW - Zahnstifte PY - 2022 AN - OPUS4-54924 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Markötter, Henning A1 - Mehta, Bharat A1 - Hryha, Eduard A1 - Bruno, Giovanni T1 - In-situ imaging of additively manufactured alloys at the BAMline N2 - In this work, we present the recent in-situ imaging developments at the BAMline (of synchrotron BESSY II, HZB), focused on the in-situ characterization and understanding of microstructural evolution of additively manufactured materials subjected to different environments. Two show cases are presented. In the first, X-ray refraction radiography (SXRR) was combined with in-situ heat treatment to monitor the microstructural evolution as a function of temperature in a laser powder bed fusion (LPBF) manufactured AlSi10Mg alloy. We show that SXRR allows detecting the changes in the Si-phase morphology upon heating using statistically relevant volumes. SXRR also allows observing the growth of pores (i.e., thermally induced porosity), usually studied via X-ray computed tomography (XCT), but using much smaller fields-of-view. In the second case study, XCT was combined with in-situ tensile test to investigate the damage mechanism in a LPBF Aluminum Metal Matrix Composite (MMC). In-situ SXCT test disclosed the critical role of the defects in the failure mechanism along with pre-cracks in the reinforcement phase of MMC. We found that cracks were initiated from lack-of-fusion defects and propagated through coalescence with other defects. T2 - New Frontiers in Materials Design for Laser Additive Manufacturing CY - Montabaur, Germany DA - 22.05.22 KW - Additive manufacturing KW - Laser powder bed fusion KW - Synchrotron X-ray computed tomography KW - Synchrotron X-ray Refraction PY - 2022 AN - OPUS4-54900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Schröder, Jakob T1 - Residual stresses and micromechanical properties of additively manufactured metals: why do we need a paradigm shift? N2 - An overview of the challenges and successes in the methodology to characherise residual stresses and micromechnical properties in additively manufactured metals T2 - CAM2 Annual Seminar 2022 - 5-year journey CY - Gothenburg, Sweden DA - 24.10.2022 KW - Additive Manufacturing KW - Residual stress KW - AGIL KW - MANUFACT KW - Micromechnical properties PY - 2022 AN - OPUS4-56466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Magnier, V. A1 - Brunel, F. A1 - Dufrenoy, P. T1 - Influence of the Composition on the Compressive Behaviour of a Semi-Metallic Brake-Pad Material JF - Materials N2 - The contact interface between the rotation and static part of a friction brake is central to the optimal functioning of the brake system due to the occurrence of heat dissipation, mechanical interaction and thermal exchanges. Generally, braking performances are evaluated by the energetic efficiency and wear rates of the contact surface. However, the compressive behaviour of the contact materials has also a significant contribution to the overall performances. In this work, the meso- and microscopic compressive behaviour of a sintered semi-metallic brake-pad material is investigated mainly via compression testing coupled with Digital Image Correlation (DIC) technique, as well as optical and scanning electron microscopy (SEM) analysis. The composition of a reference material (RM) is simplified to a selection of nine components, as opposed to up to thirty components typically used in commercial brake-pad materials. The retained components are considered as the most crucial for safe-operating performances. At the studied stress levels, the RM material is flexible (E = 5330 MPa), deformable (Ezz−plastic = −0.21%), and exhibits hysteresis loops. Subsequently, the contribution to the mechanical response of each individual component is investigated by producing the so-called dissociated materials, where the number of components is, at a time, further reduced. It is observed that the macroscopic behaviour is mainly controlled by the content (i.e., size distribution, shape and nature) of graphite particles, and that the hysteresis is only related to one of the two types of graphite used (G2 particles). Moreover, RM containing 13 wt% of G2 particles embedded in a relatively soft matrix (10.86 GPa) is able to increase the hysteresis (by 35%) when compared to the dissociated material containing 20 wt% of G2 particles which is embedded in a stiffer matrix (E = 106 GPa). KW - Semi-metallic brake-pad material KW - Powder metallurgy KW - Components influence KW - Graphite induced hysteresis KW - Digital image correlation (DIC) KW - Compression testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562003 DO - https://doi.org/10.3390/ma15227911 VL - 15 IS - 22 SP - 7911 PB - MDPI AN - OPUS4-56200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Meinel, Dietmar A1 - Koptyug, A. A1 - Surmeneva, M. A1 - Khrapov, D. A1 - Paveleva, A. A1 - Surmenev, R. T1 - Procedures for quantitative characterization of periodic minimal surface structures (TMPSS) N2 - Additively manufactured (AM) triply periodic metallic minimum surface structures (TPMSS, from the English Triply Periodic Minimum Surface Structures) fulfill several requirements in both biomedical and engineering fields: tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some quality control challenges that may prevent their successful application. In fact, optimization of the AM process is impossible without considering structural features such as manufacturing accuracy, internal defects, and surface topography and roughness. In this study, quantitative nondestructive analysis of Ti-6Al-4V alloy TPMSS was performed using X-ray computed tomography (XCT). Several new image analysis workflows are presented to evaluate the effects of buildup direction on wall thickness distribution, wall degradation, and surface roughness reduction due to chemical etching of TPMSS. It is shown that the fabrication accuracy is different for the structural elements printed parallel and orthogonal to the fabricated layers. Different strategies for chemical etching showed different powder removal capabilities and thus a gradient in wall thickness. This affected the mechanical performance under compression by reducing the yield stress. A positive effect of chemical etching is the reduction of surface roughness, which can potentially improve the fatigue properties of the components. Finally, XCT was used to correlate the amount of powder retained with the pore size of the TPMSS, which can further improve the manufacturing process. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Surface roughness KW - Additive manufacturing KW - Computed tomography KW - Wall thickness KW - Machine learning KW - Manufacturing defects PY - 2022 AN - OPUS4-56162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Serrano Munoz, Itziar A1 - Fernandez, R. A1 - Gonzalez-Doncel, G. A1 - Garces, G. T1 - A paradigm shift in the description of creep in metals can only occur through multi-scale imaging N2 - The description of creep in metals has reached a high level of complexity; fine details are revealed by all sorts of characterization techniques and different theoretical models. However, to date virtually no fully microstructure-driven quantitative description of the phenomenon is available. This has brought to interesting inconsistencies; the classic description of (secondary) creep rests on the so-called power law, which however: a- has a pre-factor spanning over 10 orders of magnitude; b- has different reported exponents for the same material; c- has no explanation for the values of such exponents. Recently, a novel description (the so-called Solid State Transformation Creep (SSTC) Model) has been proposed to tackle the problem under a different light. The model has two remarkable features: 1- it describes creep as the accumulation of elementary strains due to dislocation motion; 2- it predicates that creep is proceeding by the evolution of a fractal arrangement of dislocations. Such description, however, needs a great deal of corroborating evidence, and indeed, is still incomplete. To date, we have been able to observe and somehow quantify the fractal arrangement of microstructures through Transmission Electron Microscopy (TEM), observe the accumulation of dislocations at grain boundaries by EBSD-KAM (Electron Back-Scattered Diffraction-Kernel Angular Misorientation) analysis, quantify the kinetic character (solid state transformation) of experimental creep curves, and estimate the sub-grain size of the fractal microstructure through X-ray refraction techniques. All pieces of the mosaic seem to yield a consistent picture: we seem being on the right path to reconstruct the whole elephant by probing single parts of it. What is still missing is the bond between the various scales of investigation. T2 - Korrelative Materialcharakterisierung 2022 CY - Dresden, Germany DA - 13.10.2022 KW - X-ray refraction KW - EBSD KW - Alloys KW - TEM KW - SEM PY - 2022 AN - OPUS4-56163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van Tran, K. A1 - Woracek, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Abou-Ras, D. A1 - Puplampu, S. A1 - Förster, C. A1 - Penumadu, D. A1 - Dahlberg, C. F. O. A1 - Banhart, J. A1 - Manke, I. T1 - Torsion of a rectangular bar: Complex phase distribution in 304L steel revealed by neutron tomography JF - Materials & Design N2 - Metastable austenitic stainless steel (304L) samples with a rectangular cross-section were plastically deformed in torsion during which they experienced multiaxial stresses that led to a complex martensitic phase distribution owing to the transformation induced plasticity effect. A three-dimensional characterization of the phase distributions in these cm-sized samples was carried out by wavelength-selective neutron tomography. It was found that quantitatively correct results are obtained as long as the samples do not exhibit any considerable preferential grain orientation. Optical microscopy, electron backscatter diffraction, and finite element modeling were used to verify and explain the results obtained by neutron tomography. Altogether, neutron tomography was shown to extend the range of microstructure characterization methods towards the meso- and macroscale. KW - Neutron tomography KW - Phase distribution KW - Rectangular cross-section KW - Torsion KW - Geometrical effect PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561649 DO - https://doi.org/10.1016/j.matdes.2022.111037 SN - 0264-1275 VL - 222 SP - 111037 PB - Elsevier Ltd. AN - OPUS4-56164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Microstructure characterization of materials using X-ray refraction techniques N2 - X-ray refraction is an excellent tool for the characterization of the microstructure of materials. However, there are only a few (synchrotron) laboratories in the world that use this technique for material characterisation. Therefore, the seminar will first explain the basic principles of X-ray refraction and the measurement techniques installed at the hard X-ray beamline BAMline at BESSY II (Berlin, Germany). This is followed by examples of investigations on fibre-reinforced plastic composites (CFRP) as well as ceramic (Cordierite, ZrO2-SiO2) and metallic materials (Ti-6Al-4V, Inconel). Some of the investigations were carried out both ex-situ and in-situ under mechanical and thermal load. The results are correlated with the mechanical properties of the materials. T2 - LNLS Users Group Seminar Series CY - Campinas, Brasil DA - 25.10.2022 KW - X-ray refraction KW - Analyzer-Based Imaging KW - BAMline PY - 2022 AN - OPUS4-56117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voloskov, B. A1 - Mishurova, Tatiana A1 - Evlashin, S. A1 - Akhatov, I. A1 - Bruno, Giovanni A1 - Sergeichev, I. T1 - Artificial Defects in 316L Stainless Steel Produced by Laser Powder Bed Fusion: Printability, Microstructure, and Effects on the Very-High-Cycle Fatigue Behavior JF - Advanced Engineering Materials N2 - The printability of artificial defects inside the additively manufactured laser powder bed fusion (LPBF) 316L stainless steel is investigated. The printing parameters of the LPBF process are optimized to produce artificial defects with reproducible sizes at desired positions while minimizing redundant porosity. The smallest obtained artificial defect is 90 μm in diameter. The accuracy of the geometry of the printed defect depends on both the height and the diameter in the input model. The effect of artificial defects on the very-high-cycle fatigue (VHCF) behavior of LPBF 316L stainless steel is also studied. The specimens printed with artificial defects in the center are tested under VHCF using an ultrasonic machine. Crack initiation is accompanied by the formation of a fine granular area (FGA), typical of VHCF. Despite the presence of relatively large artificial defects, FGA formation is observed around accidental natural printing defects closer to the surface, which can still be considered as internal. The causes for this occurrence are discussed. KW - Additive manufacturing KW - Laser powder bed fusion KW - X-ray computed tomography KW - VHCF PY - 2022 DO - https://doi.org/10.1002/adem.202200831 SP - 1 EP - 13 PB - Wiley VHC-Verlag AN - OPUS4-56109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -