TY - JOUR A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schroepfer, Dirk A1 - Mente, Tobias A1 - Michael, Thomas T1 - Local mechanical properties of dissimilar metal TIG welded joints of CoCrFeMnNi high entropy alloy and AISI 304 austenitic steel N2 - Multiple principal element alloys encompass the well-known high entropy alloys (HEA). The alloy system represents a new class of materials consisting of at least three alloying elements, each containing 5 to 35 at.%. Thus, this alloying concept differs fundamentally from conventional materials such as steel or nickel alloys. For this purpose, the alloying elements are specifically selected, the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. In particular, conflicting goals, such as the trade-off between strength and ductility in conventional steels, are overcome. However, in the last 20 years, the focus has been on material synthesis. With the increase in available material quantities, the focus is now on processing issues such as joining and welding processes. The weldability of HEAs has received very little attention so far. The experience with dissimilar metal welds is completely lacking but is essential for the application of these materials in combination with conventional materials. The present study presents comprehensive experimental results on the weldability of an equimolar CoCrFeMnNi-HEA in cold-rolled and heat-treated condition, which was joined by tungsten inert gas welding to an austenitic steel AISI 304. The mechanical properties of the dissimilar metal welds were characterized by cross-weld tensile samples, whereas the local deformation in the weld of the different welding zones was measured by digital image correlation. In accordance with the respective initial HEA condition (cold-rolled vs. heat-treated), the local strain behavior was divergent and influenced the global mechanical properties of both DMW types. Nonetheless, the experiments provided proof in principle of the weldability for dissimilar joints of the CoCrFeMnNi-HEA welded to conventional materials like austenitic stainless steels ensuring a corresponding capability for mechanical loading. This allows further considerations on the application of these innovative materials. KW - TIG welding KW - High-entropy alloys KW - Mechanical properties KW - Dissimilar metal weld PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595775 DO - https://doi.org/10.1007/s40194-024-01718-4 SN - 0043-2288 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-59577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graebner, Maraike A1 - Giese, Marcel A1 - Treutler, Kai A1 - Lorenz, Swenja A1 - Schroepfer, Dirk A1 - Wesling, Volker A1 - Kannengiesser, Thomas T1 - Processing of crack-free Nickel- and Cobalt-based wear protection coatings and defined surfaces by subsequent milling processes N2 - In the area of plant engineering, steel components are provided with a wear protection coating for efficient use to protect them against corrosive, tribological, thermal and mechanical stresses. The use of innovative ultrasound-assisted milling processes and plasma-welded nickel- and cobalt-based wear protection coatings are being investigated to determine how more favourable machinability can be achieved while retaining the same wear protection potential. The focus is on the NiCrSiFeB alloy, which is intended to replace CoCr alloys in the area of screw machines. The utilization of ultrasonic-assisted milling for the machining of coating materials is a novel approach. The modification of hard facing layers in terms of microstructure and precipitation morphology as well as suitability for machining is investigated and compared with the CoCr alloy. The alloy modifications are generated by a PTA process by systematically adjusting the preheating and interpass temperatures, a crack-free wear-resistant layer can be generated, which is subsequently machined by a milling process. In addition to the crack-free properties, the microstructure, the bonding as well as the mixing between the NiCrSiFeB alloy and a 1.8550 as well as between the CoCr alloy and a 1.4828 are analysed and compared in the joining areas. In addition, heating and cooling rates are determined and a chemical analysis of the weld metals is performed. Furthermore, it was found that the build-up layers of NiCrSiFeB alloy are more difficult to machine using the milling process than the CoCr alloy, as higher milling forces are required. KW - PTA welding KW - Wear-resistant alloys KW - Ultrasonic assisted milling KW - Wear KW - Cadding KW - Milling KW - Ni-based alloy KW - Co-based alloy PY - 2024 DO - https://doi.org/10.1177/14644207241265778 SN - 1464-4207 SP - 1 EP - 17 PB - SAGE Publications AN - OPUS4-60799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -