TY - JOUR A1 - Delgado Arroyo, Diego A1 - Richter, Tim A1 - Schroepfer, Dirk A1 - Boerner, Andreas A1 - Rhode, Michael A1 - Lindner, T. A1 - Preuß, B. A1 - Lampke, T. T1 - Influence of Milling Conditions on AlxCoCrFeNiMoy Multi-Principal-Element Alloys N2 - Multi-Principal-Element or High-Entropy Alloys (MPEAs/HEAs) have gained increasing interest in the past two decades largely due to their outstanding properties such as superior mechanical strength and corrosion resistance. However, research studies on their processability are still scarce. This work assesses the effect of different machining conditions on the machinability of these novel alloys, with the objective of advancing the introduction of MPEA systems into industrial applications. The present study focuses on the experimental analysis of finish-milling conditions and their effects on the milling process and resulting surface finish of CoCrFeNi, Al0.3CoCrFeNi and Al0.3CoCrFeNiMo0.2 alloys fabricated via Spark Plasma Sintering. Ball-nose-end milling experiments have been carried out various milling parameters such as cutting speed, feed per cutting edge, and ultrasonic assistance. In situ measurements of cutting forces and temperature on the tool edge were performed during the experiments, and surface finish and tool wear were analyzed afterwards. The results exhibited decreasing cutting forces by means of low feed per cutting edge and reduced process temperatures at low cutting speed, with the use of ultrasonic-assisted milling. It was shown that the machinability of these modern alloys through conventional, as well as modern machining methods such as ultrasonic-assisted milling, is viable, and common theories in machining can be transferred to these novel MPEAs. KW - Multi-principal element alloys KW - Finish milling KW - Spark plasma sintering KW - Ultrasonic-assisted milling KW - Microstructure characterization PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572990 VL - 13 IS - 3 SP - 1 EP - 18 PB - MDPI (Multidisciplinary Digital Publishing Institute) CY - Basel (CH) AN - OPUS4-57299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -