TY - JOUR A1 - de Carvello, J. M. F. A1 - Carvalho Fontes, W. A1 - de Azevedo, C. F. A1 - Brigolini, G. J. A1 - Schmidt, Wolfram A1 - Fiorotti Peixoto, R. A. T1 - Enhancing the eco-efficiency of concrete using engineered recycled mineral admixtures and recycled aggregates N2 - Non-conventional densely packed concrete mixtures are proposed and evaluated in this paper using engineered recycled mineral admixtures and recycled aggregates obtained from steel slag, quartz mining tailings, and quartzite mining tailings. High fines content sand-concretes containing coarser- and finer-than-cement recycled powders were designed to obtain blends with broader particle-size ranges and improved packing density. As a result, compressive strength up to 99 MPa, cement intensity up to 2.33 kg/m³/MPa, and consumption of recycled material up to 95 vol% were obtained. Compressive strengths up to 66 MPa and cement intensity up to 2.34 kg/m³/MPa were also obtained with the addition of coarse aggregates to such sand-concrete mixtures, with consumption of recycled material up to 96.5%. The results launch new insights on the role of recycled admixtures and aggregates on the mixture design of cement-based composites regarding efficiency improvement and technological performance. KW - Low-cement concrete KW - Recycled mineral admixture KW - Basic oxygen furnace slag KW - Quartzite mining tailing KW - Packing density PY - 2020 U6 - https://doi.org/10.1016/j.jclepro.2020.120530 VL - 257 SP - 1 EP - 12 PB - Elsevier AN - OPUS4-58401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Carvello, J. M. F. A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Fiorotti Peixoto, R. A. T1 - Influence of high-charge and low-charge PCE-based superplasticizers on Portland cement pastes containing particle-size designed recycled mineral admixtures N2 - Design : and use of engineered recycled mineral admixtures obtained from industrial and mineral waste are promising strategies to increase the range of materials suitable for use in cement-based composites. In this work, Portland cement-blended pastes containing mineral admixtures designed for improving particle packing were evaluated in the presence of low- and high-charge polycarboxylate-based superplasticizers. The powders were obtained from basic oxygen furnace slag, iron ore tailings, quartz mining tailings, and quartzite mining tailings. The zeta-potentials of the particles were obtained via electrophoretic mobility. The flow properties were evaluated by rheological tests performed in a Couette type rheometer. The hydration kinetics was evaluated by isothermal calorimetry and an adapted method based on the Vicat needle test. The high-charge PCE and the finer mineral admixtures produced more stable blends. Coarser mineral admixtures led to increased flowability and delayed hydration compared to finer ones. Steel slag powders presented the most significant plasticizer effects, but also the largest setting delays and segregation tendency. Quartz-rich superfines reduced the setting delays caused by the superplasticizers. In summary, both superplasticizers were effective in improving flow properties, but the high-charge PCE was effective in preventing segregation in pastes containing mineral admixtures coarser and heavier than cement. KW - Engineered recycled mineral admixtures KW - Rheology KW - PCE-Based superplasticizer KW - Steel slag KW - Mining tailing PY - 2020 U6 - https://doi.org/10.1016/j.jobe.2020.101515 VL - 32 SP - 1 EP - 16 PB - Elsevier AN - OPUS4-58395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Franco de Carvalho, J. M. A1 - Defàveri, K- A1 - Castro Mendes, J. A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Fiorotti Peixoto, R. A. T1 - Influence of particle size-designed recycled mineral admixtures on the properties of cement-based composites N2 - In this work, engineered recycled mineral admixtures were obtained from four different industrial residues: basic oxygen furnace slag, iron ore tailings, quartz mining tailings and quartzite mining tailings. The grinding performance was evaluated in two different programs and the characterization included chemical and mineralogical composition, particle morphology, and physical properties. Performance evaluations were carried out in blended pastes and mortars, including flow properties, hydration kinetics, soundness, pozzolanic activity, and compressive strength. Coarser-than-cement admixtures allowed better flow performance, greater dimensional stability and more economical production, while finer-thancementn admixtures improved mechanical performance by both filler effect and cementing activity. KW - Engineered recycled mineral admixtures KW - Rheology KW - Hydration kinetics KW - Basic oxygen furnace slag KW - Iron ore tailings KW - Mining tailings PY - 2021 U6 - https://doi.org/10.1016/j.conbuildmat.2020.121640 SN - 0950-0618 VL - 272 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-58255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -