TY - CONF A1 - Emmerling, Franziska T1 - New insights in cocrystal formations: in situ investigations of mechanochemical syntheses N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals. The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms. We introduced a setup enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy. The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structure and thus obtaining reliable data for mechanistic studies. We discuss our recent results investigating the formation of (polymorphic) cocrystals. First investigations of a mechanochemical synthesis under controlled temperature which allow determining the activation barrier are presented.6 Furthermore, X-ray diffraction and in situ Raman spectroscopy coupled with thermography revealed a low temperature increase during milling reactions due to the mechanical impact and clear temperature increases as a result of the reaction heat. Our results indicate that in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemically synthesized compounds. T2 - CSEC Seminar University of Edinburgh CY - Edinburgh, Scotland DA - 16.05.2019 KW - Mechanochemistry KW - Acoustic levitation KW - In situ PY - 2019 AN - OPUS4-48098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elert, Anna Maria A1 - Kanerva, M A1 - Puolakka, A A1 - Takala, T.M. A1 - Mylläri, V A1 - Jönkkäri, I A1 - Sarlin, E A1 - Seitsonen, J A1 - Ruokolainen, J A1 - Saris, P A1 - Vuorinen, J T1 - Antibacterial polymer fibres by rosin compounding and melt-spinning N2 - The antibacterial features of natural pine/spruce rosin are well established, yet the functionality in various thermoplastics has not been surveyed. This work focuses on the processing of industrial grade purified rosin mixed with polyethylene (PE), polypropylene (PP), polylactic acid (PLA), polyamide (PA) and corn starch based biopolymer (CS). Homopolymer masterbatches were extrusion-compounded and melt-spun to form fibres for a wide range of products, such as filters, reinforcements, clothing and medical textiles. Due to the versatile chemical structure of rosin, it was observed compatible with all the selected polymers. In general, the rosin-blended systems were shear-thinning in a molten condition. The doped fibres spun of PE and PP indicated adequate melt-spinning capability and proper mechanical properties in terms of ultimate strength and Young's modulus. The antibacterial response was found dependent on the selected polymer. Especially PE with a 10 wt% rosin content showed significant antibacterial effects against Escherichia coli DH5α and Staphylococcus aureus ATCC 12598 when analysed in the Ringer's solution for 24 h. KW - Rosin KW - Antibacterial KW - Thermoplastics PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481785 DO - https://doi.org/10.1016/j.mtcomm.2019.05.003 SN - 2352-4928 VL - 20 SP - 527 EP - 527 PB - Elsevier AN - OPUS4-48178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griepentrog, Michael T1 - Estimation of measurement uncertainty of instrumented indentation testing N2 - Some critical discussion of the state of the art of uncertainty evaluationin Instrumented Indentation Testing IIT Nowadays the Instrumented Indentation Testing (IIT), in the nano range often named as nano indention, is one of the most commonly used methods to determine the mechanical properties of materials in the micro and nano range. This method is already extensive standardized in ISO 14577 part 1-4. In the past, the application of this standard in testing praxis shows that the established values have an excellent precision.If an uncertainty is calculated, the range of values within which the true value is asserted to lie with some level of confidencewill be known. In part 1 of ISO 14577 [1] two methods for evaluation of the uncertainty in IIT are mentioned: Method 1 for determining uncertainty considers only those uncertainties associated with the overall measurement performance of the testing machine with respect to the reference blocks. Method 2calculates a combined uncertainty from individual contributions. These may be grouped into random and systematic uncertainties. Both methods will be described in detail using examples from the dailyexperimental praxis. The comparabilityof both methods will be critically discussed. Finally, it will be showedhow the calculated uncertaintiescan be used for performancetests and product specifications. Acknowledgement This work was performed under the support of the EMPIR project 17NRM05Advancing measurement uncertainty̶ comprehensiveexamples for key international standards References [1] ISO 14577 part 1 (2017) T2 - KLA Nanomechanical Testers User Workshop CY - Langen, Germany DA - 02.05.2019 KW - Instrumented Indentation Testing KW - IIT KW - nanoindentation KW - mechanical properties KW - uncertainty KW - performance test KW - product specification PY - 2019 AN - OPUS4-48141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böhning, Martin A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Characterization of high-performance membrane polymers for gas separation using broadband dielectric spectroscopy N2 - In recent years superglassy polymers exhibiting intrinsic microporosity established a new perspective for a number of applications, especially for gas separation membranes as These polymers Combine extremely high permeabilities with attractive selectivities. The essential factor governing the structure Formation in the solid film or layer is either a contorted rigid Backbone (polymers of intrinsic microporosity - PIMs) or extremely bulky side groups (polynorbornenes and polytricyclonenenes). For a deeper understanding of both types of such high-Performance polymers for gas separation membranes and their further development broadband dielectric spectroscopy (BDS) can provide a substantial contribution. BDS addresses molecular relaxations characterizing the dynamics of the solid polymer as a major factor determining the gas transport properties but also the physical aging behavior which is an essential issue for such polymers. BDS is applied on PIMs where fluctuations of molecular dipoles connected to the backbone can be directly monitored. Furthermore, also polynorbornenes were investigated which carry no dipole moment in their repeat unit - the high resolution of modern equipment allows for the detailed analysis also for very small dielectric losses originating from partially oxidized moieties or marginal catalyst residues. Additionally, from interfacial polarization phenomena, such as Maxwell-Wagner-Sillars (MWS) polarization due to blocking of charge carriers at internal interfacial boundaries on a mesoscopic length scale, valuable information on the intrinsic microporosity and its changes induced by physical aging can be obtained. Finally, also conductivity can be characterized in detail in such polymeric systems revealing contributions of interactions of aromatic moieties (π-π-stacking) or the drift motion of charge carriers. These features also determine the structure formation in the solid state. T2 - 257th ACS National Meeting - Symposium "Transport in Polymer Membranes" CY - Orlando, FL, USA DA - 31.03.2019 KW - polymers KW - gas separation membranes KW - polynorbornenes KW - polymers of intrinsic microporosity KW - dielectric spectroscopy KW - molecular mobility PY - 2019 AN - OPUS4-48142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Nano Powder - a Challenge for Granulometry N2 - If the particle size decreases, the ratio of surface area to volume increases considerably. This provides benefits for all surface-driven processes that run faster or at lower temperatures than larger particles. However, handling and characterization of the nanopowders are much more difficult. Particularly polydisperse powders with irregular shape, as grinding products, represent a challenge. Granulometry in the submicron and nanoscale often leads to incorrect results without knowledge of particle morphology. This presentation demonstrates potentials of using the volume-specific surface area (SV or VSSA) in the granulometric characterization of nanopowders, for instance, correlations between the volume-specific surface area and the median particle size are discussed considering the particle morphology and the model of the logarithmic normal distribution. Moreover, the presentation deals with the optimal dispersion of nanopowders during sample preparation. Indirect ultrasound device with defined cooling was developed to prevent both contamination by sonotrode abrasion and sample changes by heat. Successful granulometric characterization of nanopowders demands both improved dispersion technology and very often an effective combination of two or more measurement methods. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft CY - Leoben, Austria DA - 06.05.2019 KW - Nano screening KW - VSSA KW - Nano particle KW - Particle size PY - 2019 AN - OPUS4-47976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Celina, M. A1 - Braun, Ulrike T1 - Automated thermal extraction-desorption gas chromatography mass spectrometry: A multifunctional tool for comprehensive characterization of polymers and their degradation products N2 - The TED-GC-MS analysis is a two-step method. A sample is first decomposed in a thermogravimetric analyzer (TGA) and the gaseous decomposition products are then trapped on a solid-phase adsorber. Subsequently, the solid-phase adsorber is analyzed with thermal desorption gas chromatography mass spectrometry (TDU-GC-MS). This method is ideally suited for the analysis of polymers and their degradation processes. Here, a new entirely automated System is introduced which enables high sample throughput and reproducible automated fractioned collection of decomposition products. Strengths and limitations of the system configuration are elaborated via three examples focused on practical challenges in materials analysis and identification: i) separate analysis of the components of a wood-plastic-composite material, ii) quantitative determination of weight concentration of the constituents of a polymer blend and iii) quantitative analysis of model samples of microplastics in suspended particulate matter. KW - Thermal extraction-desorption gas chromatography mass spectrometry KW - Analysis KW - Polymers KW - Microplastics KW - Automation PY - 2019 DO - https://doi.org/10.1016/j.chroma.2019.01.033 VL - 1592 SP - 133 EP - 142 PB - Elsevier CY - Amsterdam AN - OPUS4-48287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative microstructural analysis - VAMAS/TWA 37 N2 - The 44th Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee has just taken place at NIST in Boulder (CO, USA). BAM participates with significant contributions in Technical Working Areas on nanoparticle and surface chemistry characterization, but also has positioned itself to new global material challenges and trends in the developement of advanced materials and their characterization, such as thermal properties, self-healing materials, and micro- and nanoplastic. T2 - Annual Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee CY - Boulder, CO, USA DA - 22.05.2019 KW - VAMAS KW - Nanoparticles KW - Microbeam analysis KW - Advanced materials PY - 2019 AN - OPUS4-48184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Paul, Andrea A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation N2 - The transformation of a base-catalyzed, mechano-assisted Knoevenagel condensation of mono-fluorinated benzaldehyde derivatives (p-, m-, o-benzaldehyde) with malonodinitrile was investigated in situ and in real time. Upon milling, the para-substituted product was found to crystallize initially into two different polymorphic forms, depending on the quantity of catalyst used. For low catalyst concentrations, a mechanically metastable phase (monoclinic) was initially formed, converting to the mechanically stable phase (triclinic) upon further grinding. Instead, higher catalyst concentrations crystallize directly as the triclinic product. Inclusion of catalyst in the final product, as evidenced by mass spectrometric analysis, suggests this complex polymorphic pathway may be due to seeding effects. Multivariate analysis for the in situ Raman spectra supports this complex formation pathway, and offers a new approach to monitoring multi-phase reactions during ball milling. KW - Ball milling KW - C-C coupling KW - In situ KW - Mechanochemistry KW - Multivariate data analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481872 DO - https://doi.org/10.3762/bjoc.15.110 SN - 1860-5397 VL - 15 SP - 1141 EP - 1148 PB - Beilstein Insitut CY - Frankfurt am Main AN - OPUS4-48187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - A survey of surface functionalization through laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the femtosecond to picosecond range. During the past few years significantly increasing research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical, biological, or chemical surface properties. In this contribution the mechanisms of formation and current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting properties, the mimicry of the natural texture of animal integuments, the tailoring of surface colonization by bacterial biofilms, the advancement of medical pacemakers, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - Seminar, ALPhANOV - Centre Technologique Optique et Lasers CY - Talence, France DA - 07.06.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Surface functionalization KW - Applications KW - Femtosecond laser PY - 2019 AN - OPUS4-48199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wahl, S. A1 - El-Refaei, S. M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Amsalem, P. A1 - Lee, K.-S. A1 - Koch, N. A1 - Doublet, M.-L. A1 - Pinna, N. T1 - Zn0.35Co0.65O – A Stable and highly active oxygen evolution catalyst formed by zinc leaching and tetrahedral coordinated cobalt in wurtzite structure N2 - To arrive to sustainable hydrogen-based energy solutions, the understanding of water-splitting catalysts plays the most crucial role. Herein, state-of-the-art hypotheses are combined on electrocatalytic active metal sites toward the oxygen evolution reaction (OER) to develop a highly efficient catalyst based on Earth-abundant cobalt and zinc oxides. The precursor catalyst Zn0.35Co0.65O is synthesized via a fast microwaveassisted approach at low temperatures. Subsequently, it transforms in situ from the wurtzite structure to the layered γ-Co(O)OH, while most of its zinc leaches out. This material shows outstanding catalytic Performance and stability toward the OER in 1 m KOH (overpotential at 10 mA cm−2 ηinitial = 306 mV, η98 h = 318 mV). By comparing the electrochemical results and ex situ analyses to today’s literature, clear structureactivity correlations are able to be identified. The findings suggest that coordinately unsaturated cobalt octahedra on the surface are indeed the active centers for the OER. KW - Oxygen Evolution Catalyst KW - XAFS KW - Oxygen evolution reaction (OER) KW - Cobalt and zinc oxides PY - 2019 DO - https://doi.org/10.1002/aenm.201900328 SN - 1614-6832 SN - 1614-6840 VL - 9 IS - 20 SP - 1900328,1 EP - 10 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schoenhals, Andreas T1 - Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller N2 - Nanocomposites based on MgAL layered double hydroxides (LDH) and an epoxy resin were prepared and investigated by a combination of complementary methods. As epoxy resin Bisphenol A diglycidyl ether (DGEBA) was used with Diethylenetriamine as curing agent. The LDH was modified with taurine, which acts as an additional crosslinking agent due to its amine groups. The epoxy resin was cured in a presence of the nanofiller, which was added to the system in various concentrations. X-ray scattering, by combination of SAXS and WAXS was used to characterize the morphology of the obtained nanocomposites. These investigations show that the filler is distributed in the matrix as small stacks of ca. 10 layers. The molecular dynamics of the system, as probe for structure, was investigated by broadband dielectric spectroscopy. In addition to the - and -relaxation (dynamic glass transition), characteristic for the unfilled materials, a further process was found which was assigned to localized fluctuations of segments physically adsorbed or chemically bonded to the nanoparticles. The dielectric -relaxation is shifted to higher temperatures for the nanocomposites in comparison to the pure material but depends weakly on the content of nanoparticles. Further, for the first time Flash DSC was employed to a thermosetting system to investigate the glass transition behavior of the nanocomposites. The heating rates were converted in to relaxation rates. For low concentrations of the nanofiller the thermal data overlap more or less with that of the pure epoxy. For higher concentrations the thermal data are shifted significantly to higher temperatures. This is discussed in terms the cooperativity approach to the glass transition. KW - Nanocomposites KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2019 DO - https://doi.org/10.1016/j.tca.2019.01.010 SN - 0040-6031 VL - 677 SP - 151 EP - 161 PB - Elsevier AN - OPUS4-48218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Characterization of co (polyamide)s N2 - Characterization problems of technically relevant copolyamides applying size exclusion chromatography, interaction chromatography and their combination with MALDI-TOF-MS will be discussed. T2 - 23. Kolloquium Massenspektrometrie und synthetische Polymere CY - Berlin, Germany DA - 14.05.2019 KW - LCCC KW - Mass spectrometry of polymers KW - SEC KW - LC / MALDI-TOF-MS coupling PY - 2019 AN - OPUS4-48221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisentraut, Paul A1 - Hassanein, Yosri A1 - Elert, Anna Maria A1 - Braun, Ulrike T1 - Understanding degradation mechanisms of microplastics in environmental samples N2 - Im Vortrag wird die Problematik Mikroplastik eingeführt und ein Probenset aus dem Mittelmeer mit ersten Ergebnissen besprochen. Die Alterung von Polymeren im Umweltkontext sowie Möglichkeiten der Analyse von Polymeralterungsfortschritten werden diskutiert. Die thermoanalytische Methode mit Zersetzungsgasanalytik (TED-GC-MS) wird eingeführt und deren Einsatzmöglichkeiten in der Thematik umrissen. T2 - EuroMech Colloquium 607 Marine Aging of Polymers CY - Brest, France DA - 28.08.2019 KW - Microplastics KW - Tara Mediterranee KW - Polymer aging KW - TED-GC-MS PY - 2019 AN - OPUS4-49110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures: from light localization to applications N2 - This presentation reviews the current state in the field of Laser-induced Periodic Surface Structures (LIPSS). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized laser radiation. LIPSS are formed in a “self-ordered” way and are often accompanying material processing applications. They can be produced following a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their structural sizes typically range from several micrometers down to less than 100 nanometers exhibiting a clear correlation with the polarization direction of the laser radiation. Various types of surface structures are classified, relevant control parameters are identified, and their material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. T2 - International Conference on Advanced Laser Technologies (ALT'19) CY - Prague, Czech Republic DA - 15.09.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond laser KW - Surface functionalization KW - Electromagnetic scattering PY - 2019 AN - OPUS4-49098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duwe, M. A1 - Quast, J.-H. A1 - Schneider, S. A1 - Fischer, Daniel A1 - Beck, Uwe T1 - Thin-film metrology of tilted and curved surfaces by imaging Mueller-matrix ellipsometry N2 - For the vast majority of ellipsometric measurements, the application of planar substrates is mandatory and requires a proper sample alignment prior to the measurement. Here, the authors present a generalized approach of how to extract the isotropic ellipsometric sample parameters from an imaging Mueller-matrix measurement even if the sample is significantly misaligned. They validate the method by layer-thickness calculations based on imaging Mueller-matrix measurements of flat crystalline silicon samples that were misaligned on purpose. Furthermore, they also exploit this method’s capabilities to perform spatially resolved layer-thickness measurements of a single-layer indium-tin-oxide coating on a fused-silica microlens without the need of realignment or repositioning of the sample during the measurement. T2 - 8th International conference on spectroscopic ellipsometry (ICSE-8) CY - Barcelona, Spain DA - 26.05.2019 KW - Metrology KW - Thin films KW - Polarization spectroscopy KW - Spectroskopic Imaging KW - Mueller-Matrix imaging ellipsometry PY - 2019 DO - https://doi.org/10.1116/1.5122757 SN - 2166-2746 SN - 2327-9877 VL - 37 IS - 6 SP - 062908 PB - AIP CY - New York, NY AN - OPUS4-50209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NP) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - 31. Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles for catalysis N2 - We present the synthesis of monodisperse monometallic Ni nanoparticles (NPs) and bimetallic NiCu respectively NiCo NPs. The NPs were investigated using SAXS, STEM, EDX, and XANES, showing that the NPs are size tunable and stable while the surface is not entirely covered. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4. T2 - 11th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 04.12.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NPs) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - Adlershofer Forschungsforum 2019 CY - Berlin, Germany DA - 11.11.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. T1 - Insights into the mechanochemical Knoevenagel condensation N2 - Mechanochemistry paves the way to simple, fast, and green syntheses, but there is a lack in understanding of the underlying mechanisms. Here, we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. T2 - Bessy User Meeting 2019 CY - Berlin, Germany DA - 05.12.2019 KW - Mechanochemistry PY - 2019 AN - OPUS4-50122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rietz, U. A1 - Küchler, S. A1 - Lerche, D. A1 - Lange, Thorid A1 - Hielscher, Stefan A1 - Beck, Uwe T1 - Zentrifugalkraftbasierte Mehrprobenprüfung in einer analytischen Zentrifuge zur Bestimmung von Kleb- und Haftfestigkeiten: Metallische Referenzverbunde, Plasmaaktivierung von Polymeren, Schichthaftung auf GFK, Wirkung von Primern N2 - Das Fügeverfahren Kleben bietet viele Vorteile wie z.B. das Verbinden schwieriger Materialklassen, geringe thermische Belastung (Strukturveränderung/-schwächung) der Fügepartner und eine Lastverteilung über den gesamten Fügebereich. Die Auswahl an verfügbaren Klebstoffen und Vorbehandlungsoptionen ist dabei ebenfalls vielfältig. Einige Polymere weisen darüber hinaus Eigenschaften auf, die eine Herstellung von festen und dauerhaft beanspruchbaren Klebverbindungen erschweren. Mittels Oberflächenbehandlung, z.B. durch Plasmafeinreinigung bzw. –aktivierung, können die Grenzflächern solcher Polymere - bezogen auf die Eignung als Fügeteilpartner – optimiert werden. Schnelle Prüfverfahren zur Ermittlung von Verbundeigenschaften sind somit erforderlich. Das Messprinzip Centrifugal Adhesion Testing Technologie verwendet die radial gerichtete Zentrifugalkraft als Belastungsgröße des zu testenden Verbunds, die durch Variation der Drehzahl gesteuert wird. Bei Erreichen der kritischen Beanspruchung trennt sich ein aufgeklebter Prüfstempel vom Substrat. Zeitgleich wird ein positionsbezogenes IR-Signal aus dem drehenden Rotor an das Basisgerät gesendet und zusammen mit der Drehzahl an die PC-Software übertragen. Für jede Probe wird die Bruchkraft berechnet und in Echtzeit angezeigt. Der Adhesion Analyser LUMiFrac® untersucht bis zu acht Prüfkörper unter identischen Bedingungen. Das neue Messprinzip erfüllt die Anforderungen von DIN EN 15870, DIN EN 14869-2, ISO 4624 sowie DIN EN 13144. Die Multiprobentestung ermöglicht schnelle Charakterisierungen von Klebverbindungen. So kann der Effekt einer Plasmabehandlung von Bauteilen auf die Verbundfestigkeit zeitsparend bestimmt werden. Die gezielte Veränderung unterschiedlicher Plasma-Parameter, wie beispielsweise, die Plasmazusammensetzung, der Abstand vom Plasmabrenner zur Oberfläche oder die Verweildauer unter dem Brenner, beeinflußt die Festigkeit des Klebsystems und ist dem LUMiFrac direkt quantifizierbar. Neben der Festigkeitsbestimmung von Klebverbindungen ist die Haftung von Schichtsystemen ein wichtiger Anwendungsbereich. Ergebnisse für Zug- und Scherbeanspruchung, realisiert mit unterschiedlichen Prüfkörper-Geometrien, werden vorgestellt. Ferner werden verschiedene festigkeitsbeeinflussende Faktoren, wie Prüfgeschwindigkeit oder Substratverformung bei Beanspruchung untersucht T2 - 35. Workshop des ak-adp CY - Nuremberg, Germany DA - 20.11.2019 KW - Adhäsion KW - Mehrprobenprüfung KW - Analytische Zentrifuge KW - Kleb- und Haftfestigkeit PY - 2019 SN - 978-3-00-063646-2 SP - 100 EP - 109 AN - OPUS4-50149 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe A1 - Grunwald, Marcel A1 - Moosavi, Robabeh A1 - Redmer, Bernhard A1 - Nazarzadehmoafi, Maryam T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - TU Chemnitz Vortrag CY - Chemnitz, Germany DA - 04.11.2019 KW - X-Ray Imaging KW - Additive Manufacturing KW - Materials Science KW - Non-destructiv testing PY - 2019 AN - OPUS4-50150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Moosavi, Robabeh A1 - Redmer, Bernhard A1 - Nazarzadehmoafi, Maryam A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - Dcms CY - Stockholm, Sweden DA - 28.08.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Magnetocoloric KW - Material Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Shaken or levitated? A time resolved perspective on unconventional crystallization N2 - This Outlook provides a brief overview of the recent achievements and opportunities created by acoustic levitation and mechanochemistry, including access to materials, molecular targets, and synthetic strategies that are difficult to access by conventional means. T2 - Vortragsreihe Analytik Merck CY - Darmstadt, Germany DA - 18.11.19 KW - Levitation KW - Acoustic levitation KW - X-ray and electron diffraction PY - 2019 AN - OPUS4-50135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - May the force be with you - in situ investigation of mechanochemical reactions N2 - The past decade has seen a reawakening of solid-state to chemical synthesis, driven by the search for new, cleaner synthetic methodologies. Mechanochemistry has advanced to a widely applicable technique. T2 - SALSA's "Make and Measure 2019 CY - Berlin, Germany DA - 25.10.2019 KW - Mechanochemistry KW - Metal–organic frameworks PY - 2019 AN - OPUS4-50138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartzcak, D. T1 - New reference material candidates for traceable size measurement of nonspherical nanoparticles N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Nanoparticles KW - Size distribution KW - Electron microscopy KW - Certified reference materials KW - Traceability PY - 2019 AN - OPUS4-49227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Menzel, F. A1 - Epperlein, N. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Bacterial adhesion on femtosecond laser-modified polyethylene N2 - In this study, femtosecond laser-induced sub-micrometer structures are generated to modify polyethylene (PE) surface topographies. These surfaces were subjected to bacterial colonization studies with Escherichia coli and Staphylococcus aureus as test strains. The results reveal that the nanostructures do not influence S. aureus coverage, while the adhesion of E. coli is reduced. KW - Bacterial adhesion KW - Laser-modified surface KW - Polyethylene KW - Laser-induced nanostructures KW - Biofilm PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492280 DO - https://doi.org/10.3390/ma12193107 VL - 12 IS - 19 SP - 3107 PB - MDPI CY - Basel, Schweiz AN - OPUS4-49228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen T1 - SnOct 2-Catalyzed Syntheses of Cyclic Poly (l-lactide) s with Catechol as Low-Toxic Co-catalyst N2 - Polymerizations of l-lactide in bulk at 160 or 180 °C were performed with 1/1 mixtures of catechol (CA) or 4-tert-butylcatechol (BuCA) and tin(II)-2-ethylhexanoate (SnOct2) as catalysts and a variation of the Lac/Cat ratio. Weight average molar masses (Mw) up to 170,000 g mol−1 were obtained with CA and up to 120,000 g mol−1 with BuCA. The cyclic structure of the resulting poly(l-lactide)s was proven by MALDI-TOF mass spectrometry and by comparison of their hydrodynamic volumes with those of commercial linear poly(l-lactide)s. The predominance of even-numbered cycles increased with lower temperatures and shorter polymerization times. This fnding indicates that the cyclic architecture is the results of a ring-expansion polymerization mechanism. Addition of silylated BuCA as co-catalyst was less favorable than addition of free BuCA. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Catechol KW - Toxicity PY - 2019 DO - https://doi.org/10.1007/s10924-019-01545-5 SP - 10924 PB - Springer AN - OPUS4-49210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans A1 - Weidner, Steffen T1 - About the influence of salicylic acid on tin(II)octanoate-catalyzed ring opening polymerizationof L-lactide N2 - L-Lactide was polymerized in bulk with tin(II)2-ethylhexanoate SnOct2) as catalyst and salicylic acid as cocatalyst. The Lac/Cat ratio, Cocat/Cat ratio, temperature and time were varied. Increasing Cocat/Cat ratios reduced both,polymerization rate and molecular weight. However,under optimized conditions high molar mass (Mw up to 178,000), colorless, cyclic polylactides were formed in a short time. A few polymerizations performed at 160 and 180°C with the combination of SnOct2 and silylated salicylic acid gave similar results. Neat tin II) salicylate was prepared from SnOct2 and used for REPs of L-lactide in bulk, but the results were not better than those obtained from combinations of SnOct2 and salicylic acid. Furthermore, dibutyltin salicylate was synthesized and used as catalyst for polymerizations of L-lactide in bulk at temperatures varying from 102 to 160°C. Cyclic polylactides with Mw’s up to 40,000 were the main reaction products. At 100–102°C a predominance of odd-numbered cycles was found proving a REP mechanism. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Ring-opening polymerization PY - 2019 DO - https://doi.org/10.1016/j.eurpolymj.2019.07.003 VL - 119 SP - 37 EP - 44 PB - Elsevier Ltd. AN - OPUS4-49211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid A1 - Franc, Antoine Michel Claude A1 - Bertin, Annabelle T1 - 2,6-Diaminopyridine and Acrylamide-Based Copolymers with Upper Critical Solution Temperature-type Behavior in Aqueous Solution N2 - A novel cop olyme r based on supramolecular motif2,6-diaminopyridin e and water-soluble acrylamide, poly[N-(6-ace tamidopyridin-2-yl) acrylamide-co-acrylamide], was synthe-size d via rev ersible addi tion–fragmentation chain transfer (RAFT)polymerization with various monomer compositions. The thermo-respon sive behavior of the copolymers was studied by turbidime-try and dynamic light scattering (DLS). The obtained copolymersshowed an upper critical solution temperature (UCST)-typ e phasetransition behavior in water and electrolyte solution. The phasetransition temperature was found to increase with decreasingam ount of acrylamide in the copolymer and increasing concentra-tion of the solution. Furth ermore, the phase transition temperatureva ried in aqueous solutions of electrolytes according to the naturean d concentration of the electrolyte in accordance with theHoffmeister series. A dramatic solvent isotope effect on thetransition temperature was o bserved in this study, as the transitiontemperature was almost 10–12C higher in D2OthaninH2Oatthesame concentration and acrylamide co mposition. The size of theaggregates below the transition temperature was larger in D2Ocompared to that in H2O that can be explained by deuterium iso-tope effect. The thermoresponsive behavior of the copolymers wasalso investigated in different cell medium and found to be exhibitedUCST-type phase transition behavior in different cell medium.Such behavior of the copo lyme rs can be useful in many a pplica-tions including biomedical, microfluidics, optical materials, and indrug delivery. KW - 2,6-diaminopyridine KW - Acrylamide KW - Stimuli-responsive polymers KW - Thermo-responsive polymers KW - UCST polymers PY - 2019 DO - https://doi.org/10.1002/pola.29474 SN - 0887-624X VL - 57 IS - 19 SP - 2064 EP - 2073 PB - Wiley AN - OPUS4-49297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Hielscher-Hofinger, Stefan A1 - Weise, Matthias T1 - Mechanische, topometrische und optische Charakterisierung von Schichten mit Stand der Normung N2 - Der Vortrag „MECHANISCHE, TOPOMETRISCHE UND OPTISCHE CHARAKTERISIERUNG VON SCHICHTEN MIT STAND DER NORMUNG“ widmet sich unterschiedlichen Beschichtungssystemen und deren mechanischer, topometrischer und optischer Charakterisierung. Über die entsprechenden aktuellen Normen wird informiert. Es betrifft Verfahren wie die Instrumentierte Eindringprüfung (IIT), Centrifugal Adhesion Testing, Weißlichtinterferenzmikroskopie, Tastschnittverfahren und Ellipsometrie (SE). T2 - EFDS, V2019, Vakuum und Plasma CY - Dresden, Germany DA - 08.10.2019 KW - Normung KW - Spektrale Ellipsometrie (SE) KW - Instrumentierte Eindringprüfung (IIT) KW - Centrifugal Adhesion Testing (CAT) KW - Weißlichtinterferenzmikroskopie (WLIM, 3D) PY - 2019 AN - OPUS4-49320 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Beck, Uwe T1 - Scanning White Light Interference Microscopy - Measurement of Topometry and Layer Thickness N2 - 3D coherence scanning interferometry (CSI) is anoptical, non-contact and rapide measurement technique using a defined bandwidth of white light at normal incidence. White light interference microscopy (WLIM) providest here-dimensional surface topometry data up to a resolution of 0.4 µm lateral and 0.1 nm vertical. Three operating modi, surface, films and advanced films, enable measurements of step heights, roughness, wear volume, cone angle, surface pattern and layer thickness. Traceability to SI system is ensured by certified standards (PTB/NIST) within a DAkkS DIN EN ISO/IEC 17025:2018 accredited lab. T2 - EFDS, V2019, Vakuum und Plasma, WS 4, Beschichtungen für Werkzeuge & Bauteile CY - Dresden, Germany DA - 08.10.2019 KW - DIN EN ISO/IEC 17025:2018 KW - Certified standards KW - White light interference microscopy(WLIM) KW - 3D coherence scanning interferometry (CSI) KW - Topometry PY - 2019 AN - OPUS4-49323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Villajos Collado, José Antonio A1 - Jagorel, Noëmie A1 - Reinsch, Stefan T1 - Increasing Exposed Metal Site Accessibility in a Co-MOF-74 Material With Induced Structure-Defects N2 - Metal-organic frameworks (MOFs) are promising nanoporous materials with many practical applications. This owes largely to their remarkable porosity and the presence of specific chemical functionalities, such as exposed metal sites (EMS). The MOF-74 structure is known for exhibiting one of the highest EMS densities among porous materials. Moreover, the inclusion of structural defects has been proposed to enhance activity further. This was previously achieved by mixing the original linker together with a second one, having lower topology. The presence of structural defects was evidenced by the resulting crystalline properties and thermal stability. In this work, different mixtures of tetratopic 2,5-dihydroxyterephthalic acid with up to 60% of the tritopic hydroxyterephtalic acid were used to synthesize crystalline Co-MOF-74-like materials. Materials synthesized from higher proportions than 30% of hydroxyterephtalic acid in the synthesis media collapse upon partial removal of the solvent molecules. This indicates the presence of structural defects and the importance of the solvent molecules in stabilizing the crystalline structures. Electron microscope images show that crystal size reduces with inclusion of hydroxyterephtalic acid as the second linker. The presence of coordinated solvent molecules at the EMS was evaluated by Fourier-transform infrared spectra (FTIR) spectroscopy, so that a higher degree of solvent-exchange was observed during washing for defective structures. Furthermore, TG analysis suggests defective structures exhibit lower desolvation temperatures than the defect-free structures. Finally, N2 adsorption-desorption analyses at −196°C showed an enhanced accessibility of the gas to the inner porosity of the defective structures and therefore, the EMS of the material. All these finding make this pathway interesting to enhance the potential interest of these materials for an industrial application because of both a facilitated activation and a better access to the active sites. KW - MOF-74 KW - Structural defects KW - Mixed-linkers KW - Exposed metal sites KW - Facilitated activation PY - 2019 DO - https://doi.org/10.3389/fmats.2019.00230 VL - 6 SP - 230 PB - Frontiers Media CY - Lausanne AN - OPUS4-49256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Borghetti, P. A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Garcia, S. A1 - Gómez, E. A1 - Blanco, M. A1 - Alberto, G. A1 - Martra, G. T1 - Organic Surface Modification and Analysis of Titania Nanoparticles for Self-Assembly in Multiple Layers N2 - The characteristics of TiO2 coatings can greatly influence their final performance in large-scale applications. In the present study self-assembly of TiO2 nanoparticles (NPs) in multiple layers was selected as a deposition procedure on various substrates. For this, the main prerequisite constitutes the surface modification of both NPs and substrate with e.g. silane coupling agents. A set of functionalized TiO2 NPs has been produced by reaction with either (3- aminopropyl)triethoxysilane (APTES) or (3-aminopropyl)phosphonic acid (APPA) to functionalize the NP surface with free amino-groups. Then, the complementary functionalized NP set can be obtained from an aliquot of the first one, through the conversion of free surface amino-groups to aldehydes by reaction with glutaraldehyde (GA). Several types of TiO2 NPs differing in size, shape and specific surface area have been functionalized. FTIR, TGA, SEM/EDS, XPS, Auger electron spectroscopy (AES) and ToF-SIMS analyses have been carried out to evaluate the degree of functionalization, all the analytical methods employed demonstrating successful functionalization of TiO2 NP surface with APTES or APPA and GA. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - TiO2 KW - Layer-by-layer deposition KW - Surface functionalization KW - P25 KW - Surface characterization PY - 2019 AN - OPUS4-49279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. T1 - New reference material candidates for traceable size measurement of non-spherical nanoparticles N2 - New model nanoparticles with well-controlled shape were synthesized within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. Their systematic characterization takes place by the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following reference nanoparticle candidates are under investigation with respect to their homogeneity and stability: titania nanoplatelets (10-15 nm x 50-100 nm), titania bipyramides (~60 nm x 40 nm), titania acicular particles (100 nm x 15-20 nm; aspect ratio 5.5/6), gold nanorods (~10 nm x 30 nm), and gold nanocubes (~55 nm x 55 nm x 55 nm). T2 - HyMET Workshop on optical surface analysis methods for nanostructured layers CY - Berlin, Germany DA - 10.10.2019 KW - Nanoparticles KW - Reference materials KW - Traceability KW - Particle size distribution PY - 2019 AN - OPUS4-49285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Szymoniak, Paulina A1 - Kang, N.-J. A1 - Wang, D-Y A1 - Wurm, A. A1 - Schick, C. A1 - Schönhals, Andreas T1 - Influence of interfaces on the crystallization behavior and the rigid amorphous phase of poly(l-lactide)-based nanocomposites with different layered doubled hydroxides as nanofiller N2 - Based on the three-phase model of semi-crystalline polymers, we determined all phase fractions of the NiAl-LDH/PLLA nanocomposites in dependence on the concentration of the nanofiller. Moreover, the rigid amorphous fraction (RAF) was separated into the RAFcrystal and the RAFfiller unbiasedly. A detailed comparison to the related nanocomposite system MgAl-LDH/PLLA was made considering that Mg and Ni have different atomic weights. As a first result is was found that NiAl-LDH/PLLA displays a higher crystallization rate compared to MgAl-LDH/PLLA, which is related to the different morphologies of the two nanocomposite systems. For both systems RAFcrystal increases with increasing concentration of the nanofiller. This means in the case of the nanocomposite not each crystal produces the same amount of RAF, as often assumed. Also, RAFfiller increases with the concentration for both systems but in a different way. This is discussed considering again the different morphologies of both nanocomposites. KW - Polymer-based nanocomposites KW - Temperature modulated differential scanning calorimetry PY - 2019 DO - https://doi.org/10.1016/j.polymer.2019.121929 VL - 184 SP - 121929 PB - Elesevier Ltd. AN - OPUS4-49557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface functionalization by laser-induced periodic surface structures N2 - In recent years, the improved understanding of the formation of laser-induced periodic surface structures (LIPSS) has led to an emerging variety of applications that modify the optical, mechanical and chemical properties of many materials. Such structures strongly depend on the laser beam polarization and are formed usually after irradiation with ultrashort linearly polarized laser pulses. The most accepted explanation for the origin of the structures is based on the interference of the incident laser radiation with electromagnetic surface waves that propagate or scatter at the surface of the irradiated materials. This leads to an intensity modulation that is finally responsible for the selective ablation in the form of parallel structures with periods ranging from hundreds of nanometers up to some micrometers. The versatility when forming such structures is based on the high reproducibility with different wavelength, pulse duration and repetition rate laser sources, customized micro- and nanometric spatial resolutions, and the compatibility with industrially relevant processing speeds when combined with fast scanning devices. In this contribution, we review the latest applications in the rapidly emerging field of surface functionalization through LIPSS, including biomimetic functionalities on fluid transport, control of the wetting properties, specific optical responses in technical materials, improvement of tribological performance on metallic surfaces and bacterial and cell growth for medical devices, among many others. T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Surface functionalization KW - Applications PY - 2019 SN - 978-1-940168-1-42 SP - Paper Nano 404 AN - OPUS4-50070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. A1 - Goenaga-Infante, H. T1 - Challenges in Traceable Size Measurement of Non-Spherical, Non-Monodisperse Nanoparticles - nPSize N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs.zeige mehr T2 - Nanoparticle Reference Materials - Production and Cerification Training Course CY - London, UK DA - 10.12.2019 KW - Nanoparticles KW - Traceability KW - Particle size distribution KW - Electron microscopy KW - Reference materials KW - Non-spherical shape PY - 2019 AN - OPUS4-50040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küchler, S. A1 - Rietz, U. A1 - Lerche, D. A1 - Lange, Thorid A1 - Hielscher, S. A1 - Beck, Uwe T1 - Zentrifugalkraftbasierte Mehrprobenprüfung in einer analytischen Zentrifuge zur Bestimmung von Kleb- und Haftfestigkeiten; Optimierung der Plasmaaktivierung von Polymeren N2 - Das Fügeverfahren Kleben bietet viele Vorteile, wie z.B. das Verbinden unterschiedlicher Materialklassen, geringe thermische Belastung (und damit ggf. verbundene Strukturveränderung/-schwächung) der Fügeteile und eine Lastverteilung über den gesamten Fügebereich. Die Auswahl an verfügbaren Klebstoffen und Vorbehandlungsoptionen sind dabei - wie die Applikationen auch - vielfältig. Es werden vier Applikationsbeispiele zu Referenzklebverbunden aus Edelstahl, zur Plasmaaktivierung von Niedrigenergie-Polymeren, zur Bestimmung der Haftfestigkeit von Lackierungen auf GFK und zur Wirkung von Primern vorgestellt. Einige Polymere weisen z.B. Eigenschaften auf, die eine Herstellung von festen und dauerhaft beanspruchbaren Kleb-verbindungen erschweren. Im Allgemeinen geht dies mit geringen Oberflächenenergien einher. Mittels Oberflächenvorbehandlung, z.B. durch Plasmafeinreinigung bzw. Plasmaaktivierung, können die Grenzflächen solcher Polymere - bezogen auf die Eignung als Fügeteile (Klebfestigkeit) oder als Substrat (Haftfestigkeit) – optimiert bzw. die Oberflächenenergie erhöht werden. Schnelle, zuverlässige und statistisch abgesicherte Prüfverfahren zur Ermittlung von Verbund-eigenschaften sind dabei unverzichtbar. T2 - 35. ak-adp Workshop: Haftung nach Maß – atmosphärische Plasmen für optimierte Adhäsion CY - Nuremberg, Germany DA - 20.11.2019 KW - Adhäsion KW - Mehrprobenprüfung KW - Analytische Zentrifuge KW - Kleb- und Haftfestigkeit PY - 2019 AN - OPUS4-50042 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Nazarzadehmoafie, Maryam T1 - X-ray non-destructive testing of materials and composites N2 - Functional materials for energy conversion are important technology drivers needed for the implementation of low carbon energy. Therefore, researchers commonly focus on improving the intrinsic properties of a functional material. However, for applications, the extrinsic properties are at least as important as the intrinsic ones. Consequently, it is important to investigate and understand the external and internal structure of semi-finished products and especially defect dependent properties. The extrinsic properties may change during application and the life cycle of the material as well as through processing and molding steps. Our studies show how X-ray tomographic (XCT) investigations can contribute to structure investigations in composites and massive samples using the example of magnetic materials for energy conversion. The components are tested non-destructively in 3D in order to localize and characterize cracks, pores, inclusions as well as other defects and their influence on the functional properties and also “in-time” during the life cycle of the material. Exsitu and in-situ experiments performed with non-destructive XCT are predestinated to follow damaging mechanisms of materials under certain load conditions, atmospheres or liquids, e.g. went through several working cycles of a functional material. By combining microtomography with other methods of magnetic and classical material characterization, unique statements about the structure and the functional properties can be made. From the applications point of view, sometimes complex, three-dimensional geometries are needed to fully exploit the functional properties of the materials, e.g. to ensure a high surface area for heat exchange. Since many functional materials are brittle and difficult to form, shaping is often a big challenge. In principle, additive manufacturing processes offer the possibility to produce complex, porous components from poorly formable alloys. If all stages of additive manufacturing are accompanied by X-ray tomographic imaging, the process of finding the optimal parameters for material processing can be significantly accelerated. Based on the quality control of the initial powder material used and also investigations of the shape and arrangement of defects within the molten structure and their relationship with the melting path scanning strategy, Xray tomography has proven to be an ideal tool for additive manufacturing, even for functional materials. Overall, tomographic methods are important tools for the development of functional materials to application maturity. T2 - Physikalisches Kolloquium TU Chemnitz CY - Chemnitz, Germany DA - 04.12.2019 KW - Non-destructuve testing KW - X-ray imaging KW - Additive manufacturing KW - Materials science PY - 2019 AN - OPUS4-50100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemistrry - a time resolved perspective on unconventional crystallization N2 - Green chemsistry apporoach for the synthesis of metal organic frameworks. T2 - IFW BAM Workshop CY - Berlin, Germany DA - 25.11.2019 KW - Mechanochemistry KW - XRD KW - Metal-organic-frameworks PY - 2019 AN - OPUS4-50110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Flash DSC investigations on nanocomposites and electrospun fibers containing nanoparticles N2 - It was found for inorganic/polymer nanocomposites that a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate into the entire system, affecting the overall nanocomposite properties. Here, the structure and molecular mobility of epoxy-based PNCs with different nanofillers (layered double hydroxide and boehmite) was studied by a combination of calorimetric and X-Ray scattering techniques. Temperature modulated DSC (TMDSC) showed that depending on the nanofiller, RAF can reach up to 40 wt % of the system or, on the contrary, the overall mobility of the matrix might increase due to the presence of particles. Such contrasting results, including the high amount of RAF, which was never shown before for epoxy-based PNCs, emphasize the importance of interfaces. Additionally, glass transition and glassy dynamics were investigated by a novel technique, Flash DSC (heating rates up to 10 kK/s) employed for the first time to a thermosetting system and electrospun fibers, which did not result in their degradation. It was used to study both the vitrification kinetics and glassy dynamics of the PNCs, for instance further confirming the presence of RAF and its impact on the overall material properties. T2 - 4th Mettler Toledo Flash DSC conference CY - Zurich, Switzerland DA - 25.11.2019 KW - Flash DSC KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - BDS KW - Boehmite KW - Electrospun fibers PY - 2019 AN - OPUS4-50067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burek, K. A1 - Dengler, J. A1 - Emmerling, Franziska A1 - Feldmann, Ines A1 - Kumke, M. U. A1 - Stroh, Julia T1 - Lanthanide Luminescence Revealing the Phase Composition in Hydrating Cementitious Systems N2 - The hydration process of Portland cement in a cementitious system is crucial for development of the high-quality cementbased construction material. Complementary experiments of Xray diffraction analysis (XRD), scanning electron microscopy (SEM) and time-resolved laser fluorescence spectroscopy (TRLFS) using europium (Eu(III)) as an optical probe are used to analyse the hydration process of two cement systems in the absence and presence of different organic admixtures. We Show that different analysed admixtures and the used sulphate carriers in each cement system have a significant influence on the hydration process, namely on the time-dependence in the formation of different hydrate phases of cement. Moreover, the effect of a particular admixture is related to the type of sulphate carrier used. The quantitative information on the amounts of the crystalline cement paste components is accessible via XRD analysis. Distinctly different morphologies of ettringite and calcium-silicate-hydrates (C-S-H) determined by SEM allow visual conclusions about formation of these phases at particular ageing times. The TRLFS data provides information about the admixture influence on the course of the silicate reaction. The dip in the dependence of the luminescence decay times on the hydration time indicates the change in the structure of C-S-H in the early hydration period. Complementary information from XRD, SEM and TRLFS provides detailed information on distinct periods of the cement hydration process. KW - Cement admixtures KW - Cement hydration KW - Europium KW - Luminescence KW - SEM KW - X-ray diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504842 DO - https://doi.org/10.1002/open.201900249 VL - 8 IS - 12 SP - 1441 EP - 1452 PB - Wiley-VCH AN - OPUS4-50484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Wurzler, Nina A1 - Hampel, Marco A1 - Witt, Julia A1 - Schenderlein, Matthias T1 - In situ imaging of corrosion processes N2 - The presentation summarizes our recent results on the coupled electrochemical methods for high resolution corrosion studies. The combination of Scanning Electrochemical Microscopy (SECM) and multielectrode (MMA) based real-time corrosion monitoring was presented as a new method for achieving high time resolution in local electrochemical analysis. Correlative imaging by means of Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) was demonstrated as a tool for the investigation of local corrosion processes initiated by the intermetallic particles (IMPs) on AA2024-T3 aluminium alloy. T2 - BAM-IfW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - MIC KW - Atomic Force Microscopy (AFM) KW - Corrosion monitoring KW - Corrosion PY - 2019 AN - OPUS4-50291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulka, M. W. A1 - Donskyi, Ievgen A1 - Wurzler, Nina A1 - Salz, D. A1 - Özcan Sandikcioglu, Özlem A1 - Unger, Wolfgang A1 - Haag, R. T1 - Mussel-Inspired Multivalent Linear Polyglycerol Coatings Outperform Monovalent Polyethylene Glycol Coatings in Antifouling Surface Properties N2 - Biofouling constitutes a major challenge in the application of biosensors and biomedical implants, as well as for (food) packaging and marine equipment. In this work, an antifouling surface coating based on the combination of mussel-inspired dendritic polyglycerol (MI-dPG) and an amine-functionalized block copolymer of linear polyglycerol (lPG−b−OA11, OA = oligo-amine) was developed. The coating was compared to a MI-dPG surface which was postfunctionalized with commercially available amine-terminated Polyethylene glycol (HO−PEG−NH2) of similar molecular weight. In the current work, These coatings were compared in their chemical stability, protein fouling characteristics, and cell fouling characteristics. The lPG−b−OA11-functionalized coating showed high chemical stability in both phosphate buffered saline (PBS) and sodium dodecyl sulfate (SDS) solutions and reduced the adhesion of fibrinogen from human plasma with 99% and the adhesion of human serum albumin with 96%, in comparison to the bare titanium dioxide substrate. Furthermore, the Proliferation of human umbilical vein endothelial cells (HUVECs) was reduced with 85% when the lPG−b−OA11 system was compared to bare titanium dioxide. Additionally, a reduction of 94% was observed when the lPG−b−OA11 system was compared to tissue culture polystyrene. KW - Antifouling surface coatings KW - Human umbilical cell adhesion KW - Linear polyglycerol KW - Polyethylene glycol KW - Mussel-inspired adhesives PY - 2019 DO - https://doi.org/10.1021/acsabm.9b00786 VL - 2 IS - 12 SP - 5749 EP - 5759 PB - ACS AN - OPUS4-50342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer embedded MOF N2 - Absorption edge tomography, also known as differential tomography at absorption edges, is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. Synchrotron radiation is the best source for absorption edge tomography, because of its small bandwidth, high intensity and easily adjustable photon energy. The synchrotron beamline BAMline at the synchrotron radiation facility BESSY II in Berlin, which is operated by the Bundesanstalt für Materialforschung und -prüfung (BAM), provides a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%, when the double multilayer monochromator is used. Together with the microtomography setup, this enables differential tomography with submicron resolution at the K edge of the elements from chromium up to the lanthanides, and up to uranium, when the L edges are used as well. In this work, metal organic frameworks (MOFs) embedded in polymer are characterized using differential tomography. MOFs are microporous structures of metal ions, coordinated by organic linker molecules, that can be used in a broad field of applications, especially in gas storage and catalysis. In this work, polymer embedded MOFs were extruded into filaments, which were subsequently used for 3d-printing to profit from the specific properties of the MOFs in polymeric materials combined with the arbitrary shapes provided by 3d-printing. For the extrusion, different polymer classes like ABS, polyester- and polyetherurethanes, as well as different MOFs (ZIF-8, ZIF-67, HKUST-1) were used to create MOF containing filaments with a nominal diameter of 3.0 mm. Differential tomography at the edges of the Zn, Co, and Cu was then used to find the distribution of the corresponding MOF in the filament and to analyze the shape of the inclusions. T2 - Beamline Jockey Workshop CY - Abingdon, Oxfordshire, UK DA - 19.02.2020 KW - Additive manufacturing KW - Absorption edge tomography KW - Metal organic framework KW - Synchrotron CT PY - 2019 AN - OPUS4-50350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, M. A1 - Roth, C. A1 - Emmerling, Franziska T1 - Metal phosphonates as proton conductors and ORR catalysts N2 - Metal phosphonates are promising materials for applications in fuel cells, due to their high proton conductivity and higher chemical and thermal stability compared to the industry standard (e.g. Nafion®). Additionally, metal phosphonates are precursors to porous carbon materials with evenly distributed centers for ORR catalysis. As a fast and sustainable synthesis, mechanochemistry is the synthesis method of choice. Thorough characterization is carried out by XRD, MAS-NMR, XAS, BET, and DVS. T2 - 2nd European Workshop on Metal Phosphonates CY - Berlin, Germany DA - 24.09.2019 KW - Phosphonates KW - Proton cunductor KW - Oxygen reduction reaction KW - Catalysis KW - Mechanochemistry PY - 2019 AN - OPUS4-50257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Beck, Uwe A1 - Hielscher, Stefan A1 - Lerche, D. T1 - Abschlussbericht zum BMWi - MNPQ – Verbundprojekt QUO VADIS PLUS (Mehr-Proben-Festigkeitsprüfung zur Qualitätssicherung in der Materialtechnik und Validierung der Zentrifugentechnologie bei Druck- bzw. Zugbeanspruchung) N2 - Im Fokus des Vorhabens steht das mit dem Innovationspreis Berlin-Brandenburg 2012 ausgezeichnete Mehr-Proben-Prüfverfahren zur Festigkeitsprüfung unter Verwendung einer analytischen Zentrifuge mit dem Ziel des Einsatzes in der Qualitätssicherung. Nachdem im MNPQ-Projekt QUO VADIS die grundsätzliche Anwendbarkeit der Zentrifugentechnologie auf Beanspruchungen auf Zug (Kleb-, Haft- und Verbundfestigkeit) nachgewiesen worden war, wurden im Vorhaben QUO VADIS PLUS folgende erweiterte Prüfszenarien und technische Weiterentwicklungen etabliert: 1. Beanspruchung auf Druck (Härte von Materialien, Kompressibilität von Schäumen, Kompaktierbarkeit von Pulvern), 2. Erweiterung der Beanspruchung auf Zug (Kombination von Normal- und Lateralkräften), 3. Erweiterung auf die Bewertung plasto-elastischenn Materialverhaltens, 4. Vermeidung von Schockwellen im Hochlastbereich KW - Analytische Zentrifuge KW - Mehr-Proben-Prüfverfahren KW - Härte KW - Kompressibilität KW - Kompaktierbarkeit KW - Haftfestigkeit KW - Klebfestigkeit KW - Verbundfestigkeit PY - 2019 N1 - Das Dokument unterliegt der Vertraulichkeit und kann nicht zugänglich gemacht werden Projektlaufzeit: 01.05.2015 bis 28.02.2019 The document is subject to confidentiality restrictions and cannot be made accessible Project runtime: 01.05.2015 to 28.02.2019 SP - 1 EP - 20 AN - OPUS4-50406 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Wurzler, Nina A1 - Hampel, Marco A1 - Sobol, Oded A1 - Schütter, Jan David T1 - Effekt der Vorkonditionierung und Umweltparameter auf die Anheftung und Biofilmbildung N2 - Aktuelle Ergebnisse des Fachbereiches auf dem Gebiet MIC. T2 - Treffen der GfKORR/DECHEMA Fachgruppe MikroMatz CY - Berlin, Germany DA - 09.04.2019 KW - MIC KW - Korrosion KW - Korrosionsüberwachung KW - Biofilmbildung PY - 2019 AN - OPUS4-50292 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Almalla, Ahed T1 - Application of atomic force microscopy (AFM) for in situ corrosion studies of thin film covered AA2024 T3 aluminium alloy surface N2 - The performance of functional coatings and adhesively joined hybrid components relies strongly on the stability of the polymer-metal interface. With the increasing utilization of multi-material structures in the automotive and aerospace industry, it is of great scientific and technical interest to understand the processes leading to interface degradation and to develop novel strategies to increase corrosion and delamination resistance. The aim of this project is to develop thin epoxy-based films and their carbon nanofiller loaded composites on aluminium alloy AA2024-T3 as a model system and to investigate their interfacial stability under corrosive and coupled corrosive-mechanical load. Spin coating was used for the layer-by-layer deposition of poly[(o-cresyl glycidyl ether)-co-formaldehyde] and poly-(ethylenimine) bi-layers. Atomic force microscopy (AFM) results indicate a very homogeneous and dense film with low surface roughness. Carbon nanofillers were introduced either by mixing into the coating components or in between individual layers to control the separation between the carbon nanofillers and alloy surface. The film chemistry and barrier properties were characterized by means of spectroscopic and electrochemical methods, respectively. The degradation and delamination behavior of the epoxy-based films was characterized by means of in situ AFM corrosion experiments. The quantitative imaging (QI) mode allowed the observation of hydrogen-generation induced blister formation during exposure to corrosive electrolyte and how the local corrosion processes evolved with exposure time. Complementary energy dispersive X-ray spectroscopy (EDX) analysis was performed to correlate the corrosion behavior with the different intermetallic particle chemistries and distributions. The presentation will summarize our results on the effect of interface chemistry and carbon nanofiller – alloy separation on the initiation of local corrosion processes on thin film covered AA2024-T3 aluminium alloys. T2 - EuroCorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Corrosion KW - Atomic Force Microscopy (AFM) PY - 2019 AN - OPUS4-50293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Fernandes Jamar, Marina A1 - Stepien, Daniel T1 - In situ atomic force microscopy (AFM) analysis of materials under combined corrosive and mechanical load N2 - In service, most materials are operated under simultaneous corrosive and mechanical load and there are very few methods capable for testing material degradation under these conditions, especially when it comes to high resolution analysis. For this purpose, in this work, a tensile module capable of uniaxial stretching and compression with up to 5 kN force was integrated into an AFM stage. The elimination of the need for sample unmounting and remounting and the resulting possibility of keeping the sample under constant mechanical load during AFM measurements not only enables a precise positioning of the area of interest but also allows for the analysis of processes in the elastic deformation regime. This methodology was demonstrated for two case studies. Scanning Kelvin Probe Force Microscopy (SKPFM) was used as the main tool to characterize the deformation behavior. Moreover, a flexible electrochemical measurement cell was used to enable electrochemical analysis by means of electrochemical impedance spectroscopy (EIS) and Linear Sweep Voltammetry (LSV) during AFM measurements at different levels of strain. The in situ AFM results are complemented by microstructure analysis by means of electron backscatter diffraction (EBSD). In the first case study, the deformation induced delamination of a thin organic coating on AA2024 T3 aluminium alloy was investigated as a function of alloy surface treatment. The formation of cracks in the insulating passive film enabled an early detection of deformation processes by means of SKPFM. The second case study focused on the comparison of corrosion and deformation behavior of conventional and additively manufactured 316 stainless steels. In comparison to the conventional 316 stainless steel, the effect of processing was clearly detectable on the additively manufactured material as zones of inhomogeneous potential, which also affected the initiation of local corrosion processes. The contribution will provide detailed information on the new AFM setup and summarize our results from both case studies. T2 - EuroCorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Corrosion KW - Coupled corrosive and mechanial load KW - Atomic Force Microscopy (AFM) PY - 2019 AN - OPUS4-50294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Schenderlein, Matthias A1 - Hampel, Marco A1 - Almalla, Ahed T1 - Coupled electrochemical, microscopic and spectroscopic techniques for the analysis of local corrosion and mic processes N2 - Summary of the research topics of the division 6.2 and recent results T2 - HZDR-IRE Institutscolloquium CY - Dresden, Germany DA - 24.09.2019 KW - MIC KW - Localised corrosion KW - Corrosion monitoring KW - Biofilmbildung KW - Atomic Force Microscopy (AFM) PY - 2019 AN - OPUS4-50295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Almalla, Ahed A1 - Fernandes Jamar, Marina A1 - Stepien, Daniel T1 - Untersuchung lokaler Korrosionsprozesse mittels kombinierter elektrochemischer und mikroskopischer Methoden N2 - Aktuelle Forschungsergebnisse - Korrosionseigenschaften von AA 2024-T3 und AM-316 unter gekoppelter korrosiv/mechanischer Beanspruchung. T2 - MPIE Düsseldorf, Sitzung der GfKORR Arbeitskreise Grundlagen und Simulation und Korrosionsuntersuchung und überwachung CY - Dusseldorf, Germany DA - 20.11.2019 KW - Corrosion KW - Atomic Force Microscopy (AFM) KW - Coupled corrosive/mechanical load PY - 2019 AN - OPUS4-50296 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gao, S. A1 - Hou, J. A1 - Deng, Z. A1 - Wang, T. A1 - Beyer, Sebastian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Richardson, J. J. A1 - Rawal, A. A1 - Seidel, R. A1 - Zulkifli, M. Y. A1 - Li, W. A1 - Bennett, T. D. A1 - Cheetham, A. K. A1 - Liang, K. T1 - Improving the Acidic Stability of Zeolitic Imidazolate Frameworks by Biofunctional Molecules N2 - Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for their use in separation, gas adsorption, catalysis, and biotechnology. Their practical applications, however, can be hampered by their structural instability in humid acidic conditions. Here, guided by density functional theory calculations, we demonstrate that the acidic stability of two polymorphic ZIFs (i.e., ZIF-8 and ZIF-L) can be enhanced by the incorporation of functional groups on polypeptides or DNA. A range of complementary synchrotron investigations into the local chemical structure and bonding environment suggest that the enhanced acidic stability arises from the newly established coordinative interactions between the Zn centers and the inserted carboxylate (for polypeptides) or phosphate (for DNA) groups, both of which have lower pKas than the imidazolate ligand. With functional biomolecular homologs (i.e., enzymes), we demonstrate a symbiotic stability reinforcement effect, i.e., the encapsulated biomolecules stabilize the ZIF matrix while the ZIF exoskeleton protects the enzyme from denaturation. KW - Zeolitic Imidazolate Frameworks KW - Biofunctional Molecules KW - X-ray Absorption Spectroscopy PY - 2019 DO - https://doi.org/10.1016/j.chempr.2019.03.025 VL - 5 IS - 6 SP - 1597 EP - 1608 PB - Elsevier Inc. AN - OPUS4-48702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Boehm, S. A1 - Kim, K. J. T1 - Analysis of elemental composition of Fe1-xNix and Si1-xGex alloy thin films by EPMA and µ-XRF N2 - The present study reports on measurements on thin Fe-Ni films on silicon and first-time results of analysis on Si-Ge thin films deposited on a non-conductive aluminium oxide Substrate by electron probe microanalysis (EPMA). Standard-based and standardless EPMA (with EDS) results were used in combination with the thin film analysis software Stratagem for the quantification. Further, X-ray fluorescence analysis (XRF) can be used for the determination of elemental composition and thickness of such films as well. In this case, XRF with a μ-focus X-ray source (μ-XRF) attached to a SEM was applied. For quantification, a fundamental parameter (FP) approach has been used to calculate standard-based and standardless results. Both thin film systems have been chosen as samples of an international round robin test (RRT) organised in the frame of standardisation technical committee ISO/TC 201 ‘Surface chemical analysis’, under the lead of KRISS. The main objective of the RRT is to compare the results of atomic fractions of Fe1-xNix and Si1-xGex alloy films obtained by different surface Analysis techniques, such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) applied in the depth-profiling operation mode. Five samples of different atomic fractions of each thin film system, i.e., Fe1-xNix and Si1-xGex, have been grown by ion beam sputter deposition on silicon and Al2O3 wafers, respectively. Reference FeNi and SiGe films with well-known elemental composition and thickness have been also supplied for standard-based analysis. An excellent agreement has been obtained between the atomic fractions determined by EPMA and µ-XRF with the KRISS certified values. T2 - Microscopy & Microanalysis 2019 CY - Portland, OR, USA DA - 03.08.2019 KW - Thin films KW - EPMA KW - µ-XRF KW - Elemental composition KW - Atomic fraction KW - Fe-Ni KW - Si-Ge PY - 2019 AN - OPUS4-48709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donskyi, Ievgen A1 - Azab, W. A1 - Cuellar-Camach, J.L. A1 - Guday, G. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Osterrieder, K. A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic and hydrophobic interactions N2 - As resistance to traditional drugs emerges for treatment of Virus infections, the need for new methods for virus inhibition increases. Graphene derivatives with large surface areas have shown strong activity against different viruses. However, the inability of current synthetic protocols to accurately manipulate the structure of graphene sheets in order to control their antiviral activity remains a major challenge. In this work, a series of graphene derivatives with defined polyglycerol sulfate and fatty amine functionalities have been synthesized and their interactions with herpes simplex Virus type 1 (HSV-1) are investigated. While electrostatic interactions between polyglycerol sulfate and virus particles trigger the binding of graphene to virus, alkyl chains induce a high antiviral activity by secondary hydrophobic interactions. Among graphene sheets with a broad range of alkyl chains, (C3–C18), the C12-functionalized sheets showed the highest antiviral activity, indicating the optimum synergistic effect between electrostatic and hydrophobic interactions, but this derivative was toxic against the Vero cell line. In contrast, sheets functionalized with C6- and C9-alkyl chains showed low toxicity against Vero cells and a synergistic Inhibition of HSV-1. This study shows that antiviral agents against HSV-1 can be obtained by controlled and stepwise functionalization of graphene sheets and may be developed into antiviral agents for future biomedical applications. KW - Functionalized nanographene KW - X-ray Photoelectron Spectroscopy (XPS) KW - NEXAFS KW - Antiviral activity PY - 2019 DO - https://doi.org/10.1039/c9nr05273a SN - 2040-3364 VL - 11 IS - 34 SP - 15804 EP - 15809 PB - The Royal Society of Chemistry AN - OPUS4-48807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rades, Steffi A1 - Natte, Kishore A1 - Unger, Wolfgang T1 - NanoValid D.5.47 Annex 1, Inter-laboratory comparison on measurand particle size/particle size distribution - Report of the results N2 - An inter-laboratory comparison on the particle size, expressed as mean diameter d, of nanoscaled SiO2 (#14 BAM Silica (see NanoValid DoW, D.5.41/5.42)) has been performed. The majority of participants used Dynamic Light Scattering (DLS). A few used Electron Microscopy as method. Following methods had been applied by only one partner, respectively: Small Angle X-ray Scattering, Analytical Ultracentrifugation, Atomic Force Microscopy and Atomizer with electric mobility spectrometer. KW - Nanoparticle size measurement KW - Silica nanoparticles KW - Inter-laboratory comparison KW - EU FP7 project NanoValid PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488117 DO - https://doi.org/10.5281/zenodo.3380570 SP - 1 EP - 23 PB - Zenodo CY - Geneva AN - OPUS4-48811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Ali, Naveed Zafar A1 - Etter, M. A1 - Michalchuk, Adam A1 - Rademann, K. A1 - Emmerling, Franziska T1 - A Comparative Study of the Ionic Cocrystals NaX (α-d-Glucose)2 (X = Cl, Br, I) N2 - The mechanochemical formation of the ionic cocrystals of glucose (Glc) and sodium salts Glc2NaCl·H2O (1) and Glc2NaX (X = Br (2), I (3)) is presented. Products are formed by co-milling Glc with three sodium salts (NaCl, NaBr, NaI). The ionic cocrystals were obtained under both neat grinding and liquid-assisted grinding conditions, the later found to accelerate the reaction kinetics. The crystal structures of the ionic cocrystals (2) and (3) were solved from powder X-ray diffraction data. The structure solution contrasts with the structure of Glc2NaCl·H2O (1) where the electron density at three halide crystallographic sites is modeled as of being the intermediate between water molecule and a chloride ion. The reaction pathways of the three ionic cocrystals were investigated in real time using our tandem approach comprising a combination of in situ synchrotron powder X-ray diffraction and Raman spectroscopy. The results indicate the rapid formation of each cocrystal directly from their respective starting materials without any intermediate moiety formation. The products were further characterized by DTA-TG and elemental analysis. KW - In situ KW - Co-crystal KW - Mechanochemistry KW - Glucose PY - 2019 DO - https://doi.org/10.1021/acs.cgd.8b01929 VL - 19 IS - 8 SP - 4293 EP - 4299 PB - ACS Publications AN - OPUS4-48781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ali, Naveed Zafar A1 - Campbell, B. J. A1 - Jansen, M. T1 - Topotactic, pressure-driven, diffusion-less phasetransition of layered CsCoO2to a stuffedcristobalite-type configuration N2 - CsCoO2, featuring a two-dimensional layered architecture of edge- and vertex-linked CoO4tetrahedra, is subjected to a temperature-driven reversible second-order phase transformation at 100 K, which corresponds to a structuralrelaxation with concurrent tilting and breathing modes of edge-sharing CoO4tetrahedra. In the present investigation, it was found that pressure induces a phase transition, which encompasses a dramatic change in the connectivity ofthe tetrahedra. At 923 K and 2 GPa, beta-CsCoO2 undergoes a first-order phasetransition to a new quenchable high-pressure polymorph,alpha-CsCoO2. It is built up of a three-dimensional cristobalite-type network of vertex-sharing CoO4 tetrahedra. According to a Rietveld refinement of high-resolution powderdiffraction data, the new high-pressure polymorph gamma-CsCoO2 crystallizes in the tetragonal space groupI41/amd:2 (Z= 4) with the lattice constants a= 5.8711 (1) and c= 8.3214 (2) A, corresponding to a shrinkage in volume by 5.7% compared with the ambient-temperature and atmospheric pressure-CsCoO2polymorph.The pressure-induced transition (beta>gamma) is reversible;-CsCoO2 stays metastable under ambient conditions, but transforms back to the-CsCoO2structure upon heating to 573 K. The transformation pathway revealed isremarkable in that it is topotactic, as is demonstrated through a clean displacive transformation track between the two phases that employs the symmetry oftheir common subgroupPb21a(alternative setting of space group No. 29 that matches the conventional-phase cell). KW - Structures under extreme conditions KW - Topotactic phase transitions KW - Transformation pathways KW - Oxocobaltates KW - Cristobalite frameworks PY - 2019 DO - https://doi.org/10.1107/S2052520619008436 SN - 2052-5206 VL - 75 IS - 4 SP - 704 EP - 710 PB - International Union of Crystallography AN - OPUS4-48782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Bühlmeyer, A. A1 - Hayash, S A1 - Haenle, J. C. A1 - Sentker, K. A1 - Krause, Christina A1 - Huber, Patrick A1 - Laschat, Sabine A1 - Schönhals, Andreas T1 - Multiple glassy dynamics in dipole functionalized triphenylene-based discotic liquid crystals revealed by broadband dielectric spectroscopy and advanced calorimetry – assessment of the molecular origin N2 - A selected series of dipole functionalized triphenylene-based discotic liquid crystals (DLCs) was synthesized and investigated in a systematic way to reveal the phase behavior and molecular dynamics. The later point is of particular importance to understand the charge transport in such systems which is the key property for their applications such as organic field-effect transistors, solar cells or as nanowires in molecular electronics, and also to tune the properties of DLCs. The mesomorphic properties were studied by polarizing optical microscopy, X-ray diffraction, and differential scanning calorimetry, which were compared to the corresponding unfunctionalized DLC. The molecular dynamics were investigated by a combination of state-of-the-art broadband dielectric spectroscopy (BDS) and advanced calorimetry such as fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). Besides localized fluctuations, surprisingly multiple glassy dynamics were detected for all materials for the first time. Glassy dynamics were proven for both processes unambiguously due to the extraordinary broad frequency range covered. The a1-process is attributed to fluctuations of the alky chains in the intercolumnar space because a polyethylene-like glassy dynamics is observed. This corresponds to a glass transition in a confined three-dimensional space. The a2-process found at temperatures lower than a1-process, is assigned to small scale rotational and/or translational in plane fluctuations of the triphenylene core inside distorted columns. This can be considered as a glass transition in a one-dimensional fluid. Therefore, obtained results are of general importance to understand the glass transition, which is an unsolved problem of condensed matter science. KW - Discotic Liquid Crystals KW - Broadband dielectric spectroscopy KW - Flash DSC KW - Specific heat spectroscopy PY - 2019 DO - https://doi.org/10.1039/c9cp03499d SN - 1463-9076 VL - 21 IS - 33 SP - 18265 EP - 18277 PB - RSC AN - OPUS4-48739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas A1 - Matjacic, L. A1 - McMahon, G. A1 - Kotil, L. A1 - Bernsmeier, D. A1 - Kraehnert, R. T1 - Analysis of elemental composition and porosity of mesoporous iridium titanium mixed oxide thin films for energy application by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. T2 - Microscopy & Microanalysis 2019 Meeting CY - Portland, OR, USA DA - 04.08.2019 KW - Mesoporous mixed metal oxide films KW - SEM/EDS/STRATAGem KW - EPMA KW - Ellipsometry KW - NanoSIMS PY - 2019 AN - OPUS4-48767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas A1 - Kotil, L. A1 - Kraehnert, R. T1 - Analysis of elemental composition and porosity of mesoporous iridium titanium mixed oxide thin films for energy application by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. KW - Electron probe microanalysis (EPMA) KW - Iridium-titanium mixed oxides KW - Spectroscopic ellipsometry KW - Mesoporous thin films KW - NanoSIMS PY - 2019 DO - https://doi.org/10.1017/S1431927619009589 SN - 1431-9276 (Print) SN - 1435-8115 (Online) VL - 25 IS - S2 (August) SP - 1770 EP - 1771 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-48768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Hertwig, Andreas A1 - Kraehnert, R. A1 - Hodoroaba, Vasile-Dan T1 - Analysis of elemental composition and porosity of mesoporous IrOx-TiOx thin films by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. T2 - EMAS 2019 - 16th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS CY - Trondheim, Norway DA - 19.05.2019 KW - Electron probe microanalysis (EPMA) KW - Iridium-titanium mixed oxides KW - Spectroscopic ellipsometry KW - Mesoporous thin films PY - 2019 AN - OPUS4-48769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griepentrog, Michael T1 - Bestimmung der Messunsicherheit bei der instrumentierten Eindringprüfung N2 - In der DIN EN ISO 14577 Metallische Werkstoffe – Instrumentierte Eindringprüfung zur Bestimmung der Härte und anderer Werkstoffparameter sind die Durchführung und Auswertung des Verfahrens, sowie die Kalibrierung der zu verwendenden Prüfmaschine genormt. In dieser Norm werden auch grundsätzliche Aussagen zur Bestimmung der Messunsicherheit gemacht. An Beispielen aus der täglichen Prüfpraxis werden verschiedene Möglichkeiten, aber auch die Grenzen der Bestimmung der Messunsicherheitbei der Instrumentierten Eindringprüfung beschrieben und kritisch diskutiert. T2 - 3. Zwick Roell Symposium –Nanoindentation CY - Ulm, Germany DA - 04.07.2019 KW - ISO 14577 KW - Instrumentierte Eindringprüfung KW - Bestimmung der Messunsicherheit PY - 2019 AN - OPUS4-48431 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Stock, Norbert A1 - Tadei, Marco A1 - Demel, Jan A1 - Cabeza, Aurelio A1 - Viviani, Riccardo A1 - Demadis, Konstantinos A1 - Vassaki, Maria T1 - New directions in metal phosphonate and phosphinate chemistry N2 - In September 2018, the First European Workshop on Metal Phosphonates Chemistry brought together some prominent researchers in the field of metal phosphonates and phosphinates with the aim of discussing past and current research efforts and identifying future directions. The scope of this perspective article is to provide a critical overview of the topics discussed during the workshop, which are divided into two main areas: synthesis and characterisation, and applications. In terms of synthetic methods, there has been a push towards cleaner and more efficient approaches. This has led to the introduction of high-throughput synthesis and mechanochemical synthesis. The recent success of metal–organic frameworks has also promoted renewed interest in the synthesis of porous metal phosphonates and phosphinates. Regarding characterisation, the main advances are the development of electron diffraction as a tool for crystal structure determination and the deployment of in situ characterisation techniques, which have allowed for a better understanding of reaction pathways. In terms of applications, metal phosphonates have been found to be suitable materials for several purposes: they have been employed as heterogeneous catalysts for the synthesis of fine chemicals, as solid sorbents for gas separation, notably CO2 capture, as materials for electrochemical devices, such as fuel cells and rechargeable batteries, and as matrices for drug delivery. KW - Metal phosphonates KW - Metal–organic frameworks KW - X-ray and electron diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484346 DO - https://doi.org/10.3390/cryst9050270 SN - 2073-4352 VL - 9 IS - 5 SP - 270, 1 EP - 36 PB - MDPI AN - OPUS4-48434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bykov, M. A1 - Yusenko, Kirill A1 - Bykova, E. A1 - Pakhomova, A. A1 - Kraus, Werner A1 - Dubrovinskaia, N. A1 - Dubrovinsky, L. T1 - Synthesis of arsenopyrite-type rhodium pernitride RhN2 from a single-source azide precursor N2 - Nitrogen-rich noble metal nitrides possess unique mechanical and catalytic properties, therefore their synthesis and characterization is of interest for fundamental solid state chemistry and materials science. In this study we have synthesized a singlesource precursor [Rh(NH3)6]3(N3)5Cl4 (Rh:N ratio 1:11). Its controlled decomposition in a laser-heated diamond anvil cell at 39 GPa resulted in a formation of rhodium pernitride, RhN2. According to the results of single-crystal X-ray diffraction RhN2 has arsenopyrite structure type crystal structure previously unknown for this compound (P21/c (no. 14). KW - EOS KW - High-pressure KW - Nitrides PY - 2019 DO - https://doi.org/10.1002/ejic.201900488 IS - 32 SP - 3667 EP - 3671 PB - Wiley AN - OPUS4-48924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures: from nanoscaled light localization to applications N2 - In this contribution the current state in the field of Laser-Induced Periodic Surface Structures (LIPSS) is reviewed. This includes the mechanisms of formation and current applications, particularly the colorization of technical surfaces, the control of surface wetting properties, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - PHOTONICA 2019 - The Seventh International School and Conference on Photonics CY - Belgrade, Serbia DA - 26.08.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Surface functionalization PY - 2019 UR - http://www.photonica.ac.rs/docs/PHOTONICA2019-Book_of_abstracts.pdf AN - OPUS4-48836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joseba Ayerdi, J. A1 - Slachciak, Nadine A1 - Llavori, I. A1 - Zabala, A. A1 - Aginagalde, A. A1 - Bonse, Jörn A1 - Spaltmann, Dirk T1 - On the role of a ZDDP in the tribological performance of femtosecond laser-induced periodic surface structures on titanium alloy against different counterbody materials N2 - Laser-induced periodic surface structures (LIPSS, ripples) with ~500–700 nm period were produced on titanium alloy (Ti6Al4V) surfaces upon scan processing in air by a Ti:sapphire femtosecond laser. The tribological performance of the surfaces were qualified in linear reciprocating sliding tribological tests against balls made of different materials using different oilbased lubricants. Extending our previous work, we studied the admixture of the additive 2-ethylhexyl-zinc-dithiophosphate to a base oil containing only anti-oxidants and temperature stabilizers. The presence of this additive along with the variation of the chemical composition of the counterbodies allows us to explore the synergy of the additive with the laseroxidized nanostructures. KW - Additives KW - Surface structures KW - Wear KW - Friction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488458 DO - https://doi.org/10.3390/lubricants7090079 SN - 2075-4442 VL - 7 SP - 79, 1 EP - 13 PB - MDPI AN - OPUS4-48845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Krüger, Jörg T1 - Plasma Germany, Fachausschuss Normung, Berichtszeitraum Herbst 2018 – Frühjahr 2019 N2 - Der Vortrag gibt den aktuellen Stand der Normung im Bereich der Oberflächentechnik insbesondere der Oberflächenanalytik und der Oberflächenmess- und -prüftechnik wider. Vorgestellt wird der Status technischer Berichte, Normenentwürfe und Normen u.a. zur Bewertung von Auflösung und Schärfe mit strahlbasierten Methoden im Nanometer- und Mikrometerbereich, zur Messung von Schichtdicken und Nanopartikeln in kritischen Dimensionen einschließlich Größen- und Formverteilungen mittels REM, zur Messung der Schichtdicke von Nanomaterialien und zur Klassifizierung von Kohlenstoffschichten mittels Ellipsometrie, zur Standardisierung der Ellipsometrie, zur Kalibrierung von Konfokalmikros-kopen für die Formmessung, zur linear elastisch dynamischen instrumentierten Eindringprüfung, zur Messung der flächenbezogenen Masse mittels AAS und ICP, zur Schichtpotentialmessung von Mehrfach-Nickelschichten, zur Schichtdicken und Flächen-widerstandsbestimmung sowie zur Bestimmung der Schichthaftung mittels Zentrifugentechnologie. T2 - Plasma Germany, Fachausschuss Normung, CY - Karlsruhe, Germany DA - 09.04.2019 KW - Stand der Normung KW - Oberflächenanalytik KW - Oberflächenmesstechnik KW - Qualitätssicherung PY - 2019 AN - OPUS4-48874 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Synthesis of cyclic poly(l-lactide) catalyzed by Bismuth salicylates-A combination of two drugs N2 - l‐lactide was polymerized in bulk at 160 or 180°C with mixtures of bismuth subsalicylate (BiSub) and salicylic (SA) as catalysts. The SA/Bi ratio and the monomer/Bi ratio were varied. The highest molecular weights (weight average, Mw) were achieved at a SA/Bi ratio of 1/1 (Mw up to 92 000 g mol−1). l‐Lactide was also polymerized with combinations of BiSub and silylated SA, and Mw values up to 120 000 g mol−1 were achieved at 180°C. MALDI‐TOF mass spectrometry and Mark‐Houwink‐Sakurada measurements proved that under optimized reaction conditions the resulting polylactides consist of cycles. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Salicylate PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488622 DO - https://doi.org/10.1002/pola.29473 SN - 0887-624X SN - 1099-0518 SP - 29473 PB - Wiley AN - OPUS4-48862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rades, Steffi A1 - Natte, Kishore A1 - Unger, Wolfgang T1 - NanoValid D.5.47 Annex 2 Inter-laboratory comparison on measurand surface charge (Zeta Potential) of silica particles: Report of the results N2 - An inter-laboratory comparison on the surface charge, expressed as zeta potential ζ, of nanoscaled SiO2 has been performed using #14 BAM Silica (see D.5.41/5.42) nanoparticles. The comparability of results delivered by participants has been tested. The Task 5.4 of NanoValid is designed to test, compare and validate current methods to measure and characterize physicochemical properties of selected engineered nanoparticles. The measurand is Surface charge expressed as zeta-Potential. The measurements are to be accompanied by estimates of the uncertainties at a confidence level of 95%, deduced from the standard uncertainties. Therefore an uncertainty budget comprising statistical (Type A) and systematic (Type B) errors has to be established and delivered for the measurand. The protocol comprises two Annexes addressing the establishment of uncertainty budgets following GUM. The final goal of the comparison is to identify those methods of measurement which have potential as reference methods in pc characterization of nanoparticles for the determination of a given measurand. KW - Inter-laborator comparison KW - Surface charge KW - Zeta potential KW - Uncertainty budget KW - Silica nanoparticles KW - NanoValid PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488483 DO - https://doi.org/10.5281/zenodo.3379815 SP - 1 EP - 10 PB - Zenodo CY - Geneva AN - OPUS4-48848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rades, Steffi A1 - Unger, Wolfgang T1 - NanoValid D.5.47 Annex 3 Inter-laboratory comparison on measurand specific surface area (BET) of nanoparticular Titania (#15 BAM Titania): Report of the results N2 - This Report describes an inter-laboratory comparison aiming on the establishment of the used method (BET) as a reference method. Another purpose was the certification of the porous reference material #15 BAM Titania as CRM BAM-P110 (cf. D 5.41/42). The certified values determined by nitrogen ad-sorption at 77.3 K according to the international standards ISO 15901-2 and ISO 9277 are summarized in the Table below. KW - Inter-laboratory comparison KW - Specific Surface Area (BET) KW - Nanoparticular TiO2 (Anatase) KW - EU FP7 project NanoValid PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488491 DO - https://doi.org/10.5281/zenodo.3379612 SP - 1 EP - 22 PB - Zenodo CY - Geneva AN - OPUS4-48849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Persson, K. A1 - Johansson Salazar-Sandoval, E. A1 - Ernstsson, M. A1 - Sundin, M. A1 - Wachtendorf, Volker A1 - Kunz, Valentin A1 - Unger, Wolfgang T1 - The EC4SafeNano Project - and the case study of Surface Chemical Transformations of Nano-TiO2 Samples upon Weathering N2 - A central challenge to ensure the sustainable production and use of nanotechnologies is to understand and effectively control the risks along the industrial innovation value chain. Knowledge about nanotechnology processes and nanosafety issues (hazards, fate, risk...) is growing rapidly but the effective use of this knowledge for risk management by market actors is lagging behind. EC4SafeNano (European Centre for Risk Management and Safe Innovation in Nanomaterials and Nanotechnologies) promotes a harmonized vision of expertise in risk assessment and management for the public and private sectors to enable the safe development and commercialization of nanotechnology. EC4SafeNano is operated together by major European risk institutes with the support of numerous associated partners, gathering all stakeholders involved in Nanomaterials and Nanotechnologies (regulators, industry, society, research, service providers...). In a case study the surface chemical transformations upon 2 different ageing procedures (long-term UV irradiation or swimming pool water) of a representative set of titanium dioxide nanoparticles has been investigated. The materials have been analyzed by various analytical techniques. Each method addresses different aspects of the complex endpoint surface chemistry. The multi technique approach allows evaluation of the capabilities and limitations of the applied methods regarding their suitability to address the endpoint surface chemistry and their sensitivity to identify even small surface chemical transformations. Results: - To obtain a comprehensive picture, it is insufficient to concentrate on a single analysis technique. - By using time-of-flight secondary ion mass spectrometry (ToF-SIMS) in combination with principal component analysis (PCA) it was possible to identify even subtle changes in the surface chemistry of the investigated materials. - A general trend that was observed for the UV-aged samples is the decrease of organic material on the nanomaterial surface. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 723623. T2 - FormulaX/NanoFormulation 2019 CY - Manchester, England, United Kingdom DA - 24.06.2019 KW - TiO2 nanoparticle KW - Surface Chemical Transformation KW - UV Weathering KW - SIMS KW - XPS KW - IR spectroscopy KW - EC4SafeNano PY - 2019 UR - https://www.formulation.org.uk/images/stories/FormulaX/Posters/P-14.pdf AN - OPUS4-48912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pechenyuk, S A1 - Vikulova, E A1 - Semushina, Y A1 - Baidina, I A1 - Filatov, E A1 - Yusenko, Kirill T1 - Isostructurality and Thermal Properties in the Series of Double Complex Salts [M-1(NH3)(6)][M-2(C2O4)(3)]center dot 3H(2)O (M-1 = Co, Ir, M-2 = Fe, Cr) T1 - ИЗОСТРУКТУРНОСТЬ И ТЕРМИЧЕСКИЕ СВОЙСТВА В РЯДУ ДВОЙНЫХ КОМПЛЕКСНЫХ СОЛЕЙ СОСТАВА N2 - Preparation of new bimetallic compounds, including double complex salts (DCSs), containing both a platinumgroup metal and a transition metal of the fourth period is of great interest since these compounds can act as precursors of bimetallic materials. One example of using such compounds is the preparation of ultrafine particles of solid solutions of metals or intermetallic compounds on various supports to fabricate highly efficient catalysts with a low content of noble metals. Compounds containing coordinated oxalate anions are important objects of synthetic chemistry and interesting precursors. For example, a lot of attention is given to salts with [M(C2O4)2]2– anions, where M = Co, Ni, Cu, Pt, Pd. On the one hand, the uniqueness of oxalate coordinated anions is due to the fact that they are easily obtained and are stable both in aqueous solutions and in the solid phase; on the other hand, they are thermally decomposed at relatively low temperatures, which makes them promising precursors for the fabrication of metallic and oxide materials. N2 - Синтезирован ряд из четырех изоструктурных двойных комплексных солей, построенных на основе катионов [М1(NH3)6]3+ и анионов [M2(C2O4)3]3-, где M1 = Co, Ir, M2 = Fe, Cr. Соли кристаллизуются в гексагональной пространственной группе симметрии P`3c1. Согласно данным термического анализа в атмосфере аргона, термическая устойчивость (температуры начала разложения обезвоженных продуктов) изучаемых соединений зависит от природы комплексного трисоксалатного аниона и увеличивается в рядах [Ir(NH3)6][Co(C2O4)3] < [Ir(NH3)6][Fe(C2O4)3] < [Ir(NH3)6][Cr(C2O4)3] < [Ir(NH3)6][Ir(C2O4)3] и [Co(NH3)6][Co(C2O4)3] < [Co(NH3)6][Fe(C2O4)3] < [Co(NH3)6][Cr(C2O4)3] < [Co(NH3)6][Ir(C2O4)]. При этом при одинаковом анионе соли гексаммина иридия(III) более устойчивы по сравнению с солями кобальта(III)). При термическом разложении солей [Co(NH3)6][Fe(C2O4)3]·3H2O и [Ir(NH3)6][Fe(C2O4)3] 3H2O в атмосфере водорода образуются твердые растворы Co0,5Fe0,5 и Ir0,5Fe0,5 соответственно. KW - Single-source precursors KW - Double complex salts KW - Catalysts PY - 2019 UR - https://doi.org/10.1134/S0022476619070060 DO - https://doi.org/10.26902/JSC_id42958 VL - 60 IS - 7 SP - 1110 EP - 1119 PB - Springer AN - OPUS4-48925 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam A1 - Trestman, M. A1 - Rudic, S. A1 - Portius, P. A1 - Fincham, P. A1 - Pulham, C. A1 - Morrison, C. T1 - Predicting the reactivity of energetic materials: an ab initio multi-phonon approach N2 - The ease with which an energetic material (explosives, propellants, and pyrotechnics) can be initiated is a critical parameter to assess their safety and application. Impact sensitivity parameters are traditionally derived experimentally, at great cost and risk to safety. In this work we explore a fully ab initio Approach based on concepts of vibrational energy transfer to predict impact sensitivities for a series of chemically, structurally and energetically diverse molecular materials. The quality of DFT calculations is assessed for a subset of the materials by comparison with experimental inelastic neutron scattering spectra (INS). A variety of models are considered, including both qualitative and quantitative analysis of the vibrational spectra. Excellent agreement against experimental impact sensitivity is achieved by consideration of a multi-phonon ladder-type up-pumping mechanism that includes both overtone and combination pathways, and is improved further by the added consideration of temperature. This fully ab initio approach not only permits ranking of energetic materials in terms of their impact sensitivity but also provides a tool to guide the targeted design of advanced energetic compounds with tailored properties. KW - Energetic Materials KW - Prediction KW - Density Functional Theory PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489328 DO - https://doi.org/10.1039/c9ta06209b VL - 7 IS - 33 SP - 19539 EP - 19553 PB - RSC AN - OPUS4-48932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breßler, Ingo T1 - SASfit and McSAS - Analyzing Small-Angle Scattering of Polymers N2 - Small-angle scattering (SAS) offers a reliable route to characterize the nanostructure of large amounts of material with a minimum of tedium, for example, easily extracting size distributions and volume fractions. There are a variety of analysis programs available while the evaluation of SAS measurements has been dominated by the classical curve fitting approach. SASfit represents such a classical curve fitting toolbox: it is one of the mature programs for SAS data analysis and has been available and used for many years. The latest developments will be presented and a scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. Alternatively to classical curve fitting, part two presents the latest developments of the user-friendly open-source Monte Carlo regression package McSAS. The form-free Monte Carlo nature of McSAS means, it is not necessary to provide further restrictions on the mathematical form of the parameter distribution: without prior knowledge, McSAS is able to extract complex multimodal or odd- shaped parameter distributions from SAS data. The headless mode is presented by an example of operation within interactive programming environments such as a Jupyter notebook. T2 - PolyDays 2019 CY - Berlin, Germany DA - 11.09.2019 KW - Small-angle scattering KW - SAXS KW - Software PY - 2019 AN - OPUS4-48958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hennersdorf, Felix A1 - Weltschev, Margit A1 - Hertwig, Andreas T1 - ATR Investigations into the effect of ageing on HD-PE heating oil storage tanks after a service life of more than 30 years N2 - Heating oil storage tanks made of polyethylene grades have been on the market in Germany since the early 1970s. To ensure safety, their replacement is recommended by tank manufacturers after a period of 30 years. Polyethylene is subject to ageing by alteration of the properties during its life cycle. The degree of degradation and the nature of the process mainly depend on the chemical alteration of the polyethylene, the wall thickness of the tank and the environmental conditions. There are no data available on the long-term behaviour of the polyethylene grades, especially after a service life of more than 30 years. The aim of this investigation was to find a suitable test method to determine the factual degree of damage in comparison to the uncontaminated polyethylene grades. Material data of the used polyethylene grades are available because the BAM was the competent authority for the tests and expert reports for the approval of these tanks until the middle of the 1990s. Therefore, tank sections from the bottom, the shell and the roof of 22 individual storage tanks produced of polyethylene grades A and B have been examined by Melt Flow Rate (MFR) and Attenuated Total Reflectance (ATR). Their service life was in the range between 20 and 41 years. The MFR measurements of the tank sections showed differences in the values depending on the weight which was used (5 kg or 21.6 kg). An increase of the MFR was determined for the samples of polyethylene grade A, whereas a reduction of the MFR values was measured for most samples of polyethylene grade B. This grade is mainly subject to the internal ageing by cross-linkages, increased degree of branched molecules and loss of the plasticizer. ATR analysis exhibits an absorption band at 909 cm‒1 predominantly in samples of polyethylene grade A indicating chain scission and concomitantly formed terminal vinyl groups. This absorption band can be used for the characterization of the ageing of the polyethylene grades. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Heating oil tanks KW - Polyethylene KW - Ageing KW - Service life PY - 2019 AN - OPUS4-49000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daneshnia, S. A1 - Adeli, M. A1 - Yari, A. A1 - Shams, A. A1 - Donskyi, Ievgen A1 - Unger, Wolfgang T1 - Low temperature functionalization of two-dimensional boron nitride for electrochemical sensing N2 - Two-dimensional hexagonal boron nitride(h-BN)as an emerging nanomaterial exhibits uniquephysicochemical properties, making it suitable candidate for a wide spectrum of applications.However, due to its poor functionality, the processability of this nanomaterial is low. In this work, wereport on a straightforward and scalable approach for the functionalization of h-BN by nitrene[2+1]cycloaddition at room temperature. The triazine-functionalized h-BN(Trz-BNs)showed ahigh reactivity toward nucleophiles, through which post-modifications are performable. The post-modification of Trz-BNs by L-cysteine was studied using cyclic voltammetry and differential pulsevoltammetry. Taking advantage of the scalable and straightforward functionalization as well as abilityof triazine functional groups for the controlled post-modifications, Trz-BNs is a promisingnanoplatform for a wide range of future applications. KW - Two-dimensional hexagonal boron nitride(h-BN) KW - Nitrene[2+1]cycloaddition KW - Post-modification by L-cysteine KW - Electrochemical sensing KW - XPS PY - 2019 DO - https://doi.org/10.1088/2053-1591/ab317b SN - 2053-1591 VL - 6 IS - 9 SP - 095076, 1 EP - 11 PB - IOP Publishing Ltd AN - OPUS4-48635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - The influence of processing parameters on X‑ray emission during ultra‑short pulse laser machining N2 - During ultra-short laser material processing at high laser pulse repetition rates unwanted X-ray radiation can be generated in a quantity that may constitute a potential risk for health. An adequate X-ray radiation protection requires a thoroughly understanding of the influence of the laser processing parameters on the generation of X-ray radiation. In the present work, the generated X-ray dose during laser machining was investigated in air for varying beam scanning conditions at a pulse duration of 925 fs, a center wavelength of 1030 nm and a laser peak intensity of 2.6 × 10^14 W/cm^2. The X-ray radiation dose and the corresponding spectral X-ray emission were investigated in dependence on the laser’s pulse repetition rate and on the beam scanning speed. The results show a strong dependence of the X-ray emission on these laser processing parameters. KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486441 DO - https://doi.org/10.1007/s00339-019-2827-y SN - 0947-8396 SN - 1432-0630 VL - 125 IS - 8 SP - 570, 1 EP - 8 PB - Springer AN - OPUS4-48644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Gawek, Marcel A1 - Madkour, S. A1 - Schönhals, Andreas T1 - Confinement and localization effects revealed for thin films of the miscible blend Poly(vinyl methyl ether) / Polystyrene with a composition of 25/75 wt% N2 - Thin films (200-7nm) of the asymmetric polymer blend poly(vinyl methyl ether) (PVME)/polystyrene (PS) (25/75wt%) were investigated by broadband dielectric spectroscopy (BDS). Thicker samples ([Formula: see text]37 nm) were measured by crossed electrode capacitors (CEC), where the film is capped between Al-electrodes. For thinner films ([Formula: see text]37 nm) nanostructured capacitors (NSC) were employed, allowing one free surface in the film. The dielectric spectra of the thick films showed three relaxation processes ( [Formula: see text] -, [Formula: see text] - and [Formula: see text] -relaxation), like the bulk, related to PVME fluctuations in local spatial regions with different PS concentrations. The thickness dependence of the [Formula: see text] -process for films measured by CECs proved a spatially heterogeneous structure across the film with a PS-adsorption at the Al-electrodes. On the contrary, for the films measured by NSCs a PVME segregation at the free surface was found, resulting in faster dynamics, compared to the CECs. Moreover, for the thinnest films ([Formula: see text]26 nm) an additional relaxation process was detected. It was assigned to restricted fluctuations of PVME segments within the loosely bounded part of the adsorbed layer, proving that for NSCs a PVME enrichment takes place also at the polymer/substrate interface. KW - Thin polymer films KW - Broadband dielectric spectroscopy PY - 2019 DO - https://doi.org/10.1140/epje/i2019-11870-3 SN - 1292-895X VL - 42 IS - 8 SP - 101, 1 EP - 11 PB - Springer AN - OPUS4-48651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Manipulating the dynamics of mechanochemical ternary cocrystal formation N2 - The mechanism of ternary cocrystal formation, and the potential role of intermediate binary phases, has been debated for some time. We report here the first in situ real-time monitoring of two prototypic ternary cocrystals. Our results suggest that the question is more complicated than previously considered. The mechanism of mechanochemical ternary cocrystal formation depends on the milling conditions, here the milling frequency and addition of liquid. Binary phases can form under certain conditions, but do not act as intermediates in the formation of the ternary cocrystals. Rather, binary phases are competitive with the ternary phase, and their formation appears to compete with that of the ternary components. The presence of binary phases leads to an increase in the overall reaction time. The results reported here offer the first insights into the true complexities of mechanochemical multi-component synthesis of higher order multi-component crystals and demonstrate a new understanding of the influence of milling condition for the study of mechanisms and kinetics. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2019 UR - https://pubs.rsc.org/en/content/articlepdf/2019/cc/c9cc03034d DO - https://doi.org/10.1039/c9cc03034d SN - 1364-548X VL - 55 IS - 66 SP - 9793 EP - 9796 PB - RSC AN - OPUS4-48613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - B, Yang A1 - Chua, Y. Z. A1 - Szymoniak, Paulina A1 - Carta, M A1 - Malpass-Evans, R A1 - McKeown, N A1 - Harrison, W A1 - Budd, P A1 - Schick, C A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Effect of backbone rigidity on the glass transition of polymers of in-trinsic microporosity probed by fast scanning calorimetry N2 - Polymers of Intrinsic Microporosity (PIMs) of high performance have developed as materials with a wide application range in gas separation and other energy-related fields. Further optimization and long-term behavior of devices with PIMs require an understanding of the structure-property relationships including physical aging. In this context the glass transi-tion plays a central role, but with conventional thermal analysis a glass transition is usually not detectable for PIMs be-fore their thermal decomposition. Fast scanning calorimetry provides evidence of the glass transition for a series of PIMs, as the time scales responsible for thermal degradation and for the glass transition are decoupled by employing ultrafast heating rates of tens of thousands K s-1. The investigated PIMs were chosen considering the chain rigidity. The estimated glass transition temperatures follow the order of the rigidity of the backbone of the PIMs. KW - Polymers of intrinsic microporosity KW - Fast scanning calormetry PY - 2019 DO - https://doi.org/10.1021/acsmacrolett.9b00482 SN - 2161-1653 VL - 8 IS - 8 SP - 1022 EP - 1028 PB - ACS Publications AN - OPUS4-48617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - High-Quality Experimental Data in Electron Microscopy and Microanalysis – What can, and should we jointly do? N2 - There are different ways how to prove the quality of the results obtained by electron microscopy and related microanalysis techniques, e.g. use of validated standard operation procedures, participation in proficiency testing exercises, use of certified reference materials, etc. International standards are able to provide requirements, specifications, guidelines or characteristics of methods, instruments or samples with the final goal that these can be used consistently in accredited laboratories. In the field of electron microscopy and microbeam analysis standardization and metrology are terms which are encountered rather seldom at major conferences and scientific publications. Nevertheless, spectra formats like EMSA/MSA for spectral-data exchange or tagged image file format (TIFF) for SEM, guidelines for performing quality assurance procedures or for the specification of X-ray spectrometers as well as of certified reference materials (CRMs) in EPMA, or measurement of average grain size by electron backscatter diffraction (EBSD), or guidelines for calibrating image magnification in SEM or TEM are ISO standards already published and used successfully by a large part of the electron microscopy and microbeam analysis community. A main and continuous task of ISO/TC 202 and its subcommittees is to identify and evaluate feasible projects/proposals needed to be developed into new international standards, particularly in respect to recent but established technology, such the silicon drift detector (SDD) EDS one. Another international platform in the frame of which pre-standardization work can be organized is VAMAS (Versailles Project on Advanced Materials and Standards). International collaborative projects involving aim at providing the technical basis for harmonized measurements, testing, specifications, and standards to be further developed at ISO level. One key point of VAMAS activities is constituted by inter-laboratory comparisons for high-quality data. In the field of microbeam analysis, the technical working area (TWA) 37 Quantitative Microstructural Analysis deals with corresponding projects. Good ideas, e.g. on analysis of low-Z materials/elements and at low energies are particularly encouraged by directly contacting the author. Support and already available guidance will be supplied. T2 - Microscopy & Microanalysis 2019 CY - Portland, OR, USA DA - 03.08.2019 KW - Pre-standardisation KW - Inter-laboratory comparison KW - VAMAS KW - ISO KW - Electron microscopy KW - Microanalysis PY - 2019 AN - OPUS4-48672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duwe, M. A1 - Fischer, Daniel A1 - Quast, J.-H. A1 - Schneider, S. A1 - Beck, Uwe T1 - Curved-surface metrology by imaging Mueller-matrix ellipsometry N2 - Outline - maging ellipsometry: oncept and setup - Basic theory: ellipsometry on tilted/curved surfaces - Geometric considerations - Tilt-induced cross-polarization - Application: coating analysis on microlensarray - Mueller-Matrix Imaging - Conversion to Delta-Psi Image - Layer-thickness of ITO coating T2 - 8th International conference on spectroscopic CY - Barcelona, Spain DA - 26.05.2019 KW - Spectroscopic Imaging KW - Mueller-Matrix Ellipsometry KW - Curved surfaces PY - 2019 AN - OPUS4-48366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Prinz, Carsten A1 - Scholz, Gudrun A1 - Kemnitz, Erhard A1 - Emmerling, Franziska T1 - Ca-, Sr-, and Ba-Coordination polymers based on anthranilic acid via mechanochemistry N2 - Ca-, Sr-, and Ba-Based coordination polymers (CPs) were prepared mechanochemically by milling metal-hydroxide samples with anthranilic acid (oABAH). {[Ca(oABA)2(H2O)3]}n consists of one-dimensional polymeric chains that are further connected by a hydrogen-bonding network. {[Sr(oABA)2(H2O)2]·H2O}n is a one-dimensional CP in which water molecules bridge Sr2+ ions and increase the dimensionality by building an extended network. {[Ba(oABA)2(H2O)]}n crystallizes as a two-dimensional CP comprising one bridging water molecule. The cation radii influence the inorganic connectivity and dimensionality of the resulting crystal structures. The crystal structures were refined from powder X-ray diffraction data using the Rietveld method. The local coordination environments were studied via extended X-ray absorption fine structure (EXAFS) measurements. The compounds were further characterized using comprehensive analytical methods such as elemental analysis, thermal analysis, MAS NMR, imaging, and dynamic vapor sorption (DVS) measurements. Compounds 1, 2, and 3 exhibit small surface areas which decrease further after thermal annealing experiments. All compounds exhibit a phase transformation upon heating, which is only reversible in 3. KW - Mechanochemistry KW - XRD PY - 2019 DO - https://doi.org/10.1039/c9dt00991d SN - 1477-9226 SN - 1477-9234 VL - 48 IS - 19 SP - 6513 EP - 6521 PB - Royal Society of Chemistry AN - OPUS4-48014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guday, G. A1 - Donskyi, Ievgen A1 - Gholami, M. F. A1 - Algara-Siller, G. A1 - Witte, F. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Paulus, B. A1 - Rabe, J. A1 - Adeli, M. A1 - Haag, R. T1 - Scalable Production of Nanographene and Doping via Nondestructive Covalent Functionalization N2 - A new method for top‐down, one‐pot, gram‐scale production of high quality nanographene by incubating graphite in a dilute sodium hypochlorite solution at only 40 °C is reported here. The produced sheets have only 4 at% oxygen content, comparable with nanographene grown by chemical vapor deposition. The nanographene sheets are covalently functionalized using a nondestructive nitrene [2+1] cycloaddition reaction that preserves their π‐conjugated system. Statistical analyses of Raman spectroscopy and X‐ray photoelectron spectroscopy indicate a low number of sp3 carbon atoms on the order of 2% before and 4% after covalent functionalization. The nanographene sheets are significantly more conductive than conventionally prepared nanographene oxide, and conductivity further increases after covalent functionalization. The observed doping effects and theoretical studies suggest sp2 hybridization for the carbon atoms involved in the [2+1] cycloaddition reaction leading to preservation of the π‐conjugated system and enhancing conductivity via n‐type doping through the bridging N‐atom. These methods are easily scalable, which opens the door to a mild and efficient process to produce high quality nanographenes and covalently functionalize them while retaining or improving their physicochemical properties. KW - Graphene KW - XPS KW - NEXAFS PY - 2019 DO - https://doi.org/10.1002/smll.201805430 VL - 15 IS - 12 SP - 1805430 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Potthoff, A. A1 - Unger, Wolfgang T1 - Report on SOP for dispersing nanomaterials in water and report on round robin test. N2 - This report describes a standard operation procedure for dispersion of nanomaterials in liquids prior to toxicological or ecotoxicological testing. Main factors, who determine the state of agglomeration and aggregation of ENMs after dispersion are specific energy input, particle concentration and fluid composition. The method was validated in two round robin tests, where two typical nanomaterials (a nanopowder and a nanodispersion) were investigated. One main result arising out of the data comparison was that only those participants, who were able to follow the instructions in the SOPs completely, received similar results regarding particle size and zeta potential. The SOP is easy to adapt for other types of nanomaterials. The results provide the standardization process and were presented at DIN working group. KW - Dispersion of nano materials KW - AEROSIL® OX50 KW - LEVASIL 50/50 PY - 2019 UR - http://publica.fraunhofer.de/documents/N-541033.html DO - https://doi.org/10.24406/ikts-n-541033 SP - 1 EP - 24 AN - OPUS4-48022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Essmann, M. A1 - Becker, S. F. A1 - Witt, Julia A1 - Zhan, J. A1 - Chimeh, A. A1 - Korte, A. A1 - Zhong, J. A1 - Vogelgesang, R. A1 - Wittstock, G. A1 - Lienau, C. T1 - Vectorial near-field coupling N2 - The coherent exchange of optical near fields between two neighbouring dipoles plays an essential role in the optical properties, quantum dynamics and thus the function of many naturally occurring and artificial nanosystems. These interactions are challenging to quantify experimentally. They extend over only a few nanometres and depend sensitively on the detuning, dephasing and relative orientation (that is, the vectorial properties) of the coupled dipoles. Here, we introduce plasmonic nanofocusing spectroscopy to record coherent light scattering spectra with 5 nm spatial resolution from the apex of a conical gold nanotaper. The apex is excited solely by evanescent fields and coupled to plasmon resonances in a single gold nanorod. We resolve resonance energy shifts and line broadenings as a function of dipole distance and relative orientation. We demonstrate how These phenomena arise from mode couplings between different vectorial components of the interacting optical near fields, specifically from the coupling of the nanorod to both transverse and longitudinal polarizabilities of the taper apex. KW - Plasmon resonance KW - Coherent exchange KW - Optical near field KW - Plasmonic nanofocusing spectroscopy PY - 2019 DO - https://doi.org/10.1038/s41565-019-0441-y SN - 1748-3387 VL - 14 IS - 7 SP - 698 EP - 704 PB - Nature AN - OPUS4-48028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Lange, Thorid A1 - Stockmann, Jörg M. A1 - Weise, Matthias A1 - Rietz, U. A1 - Lerche, D. T1 - Centrifugal force meets materials testing – analytical centrifuge as multipurpose tool for tensile and compressive stress testing N2 - Up until several years ago, tensile and compressive tests have been exclusively carried out as single-sample tests within a tensile, hardness or universal testing machine. The availability of centrifuge technology changed this situation in 2013 in several ways because centrifugal force is used as testing force within a rotational reference frame. Firstly, multiple-sample strength testing became feasible for both tensile load condi-tions, e.g. determination of composite, bonding or adhesive strength, and compressive load conditions, e.g. hardness, compressibility and compactibility. Secondly, there is no need for a two-sided sample clamping and double-cardanic suspensions as samples are simply inserted using a one-sided sample support. Thirdly, shear forces can be avoided by means of guiding sleeves which steer test stamps acting as mass bodies for either tensile or compressive testing. Fourthly, up to eight samples can be tested under identical conditions within a very short period of time, typically within 15 minutes including sample loading and unloading. Hence, either a reliable statistics (of identical samples) or a ranking (of different samples) can be derived from one test run. The bench-top test system is described in detail and demonstrated that centrifugal force acts as testing force in an appropriate way because Euler and Coriolis force do not affect the testing results. Examples for both tensile strength testing, i.e. bonding strength of adhesives-bonded joints and adhesive strength of coatings, and compres-sive strength testing, i.e. Vickers-, Brinell- and ball indentation hardness and deter-mination of spring constants, are presented, discussed and compared with conven-tional tests within tensile, hardness or universal testing machines. At present, a maximum testing force of 6.5 kN can be realized which results at test stamp diameters of 5 mm, 7 mm, and 10 mm in tensile or compressive stress values of 80 MPa, 160 MPa, and 320 MPa. For tensile strength, this is already beyond bonding strength of cold- and warm-curing adhesives. Moreover, centrifuge technology is compliant to standards such as EN 15870, EN ISO 4624, EN ISO 6506/6507 and VDI/VDE 2616. Programmable test cycles allow both short-term stress and log-term fatigue tests. Based on a variety of examples of surface and bonding technology, applications in both fields R&D and QC are presented. Meanwhile, centrifuge technology is also accredited according to DIN EN ISO/IEC 17025. T2 - Intermationa Conference Dispersion Analysis & Materials Testing CY - Berlin, Germany DA - 22.05.2019 KW - Centrifugal Force KW - Compressive Stress KW - Tensile Stress PY - 2019 AN - OPUS4-48310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Höhm, S. A1 - Derrien, Thibault J.-Y. A1 - Krüger, Jörg T1 - Laser-induced periodic surface nanostructures N2 - This presentation reviews the current state in the field of Laser-induced Periodic Surface Structures (LIPSS). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized radiation. LIPSS are formed in a “self-ordered” way and are often accompanying material processing applications. They can be produced in a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their structural sizes typically range from several micrometers down to less than 100 nanometers and show a clear correlation with the polarization direction of the laser radiation. Various types of surface structures are classified, relevant control parameters are identified, and their material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. T2 - International Symposium “Fundamentals of Laser Assisted Micro- and Nanotechnologies” (FLAMN-19) CY - St. Petersburg, Russia DA - 30.06.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond laser KW - Surface functionalization KW - Ultrafast scattering PY - 2019 AN - OPUS4-48420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Kotil, L. A1 - Hodoroaba, Vasile-Dan A1 - Bernsmeier, Denis A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Spectroscopic ellipsometric analysis of elemental composition and porosity of mesoporous iridium-titanium mixed oxide thin films for electrocatalytic splitting of water N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge for modern analytical techniques and requires approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by spectroscopic ellipsometry (SE). Mesoporous iridium oxide - titanium oxide (IrOx-TiOx) films were prepared via dip-coating of a solution containing a triblock-copolymer as structure-directing agent, an iridium precursor as well as a titanium precursor in ethanol. Deposited films with different amounts of iridium (0 wt%Ir to 100 wt%Ir) were synthesized and calcined in air. The thin films were analyzed with SE using the Bruggeman effective medium approximation (BEMA) for modelling. The results were compared with electron probe microanalysis (EPMA) as part of a combined SEM/EDS/STRATAGem Analysis. T2 - 8th International conference on spectroscopic ellipsometry (ICSE-8) CY - Barcelona, Spain DA - 26.05.2019 KW - Mesoporous iridium-titanium mixed oxides KW - Thin films KW - Spectroscopic ellipsometry KW - Oxygen evolution reaction KW - EPMA KW - Ellipsometric porosimetry PY - 2019 AN - OPUS4-48387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fischer, Daniel A1 - Beck, Uwe A1 - Duwe, M. A1 - Schneider, S. T1 - Mueller-matrix imaging ellipsometry of structural anomalies and inhomogenities N2 - In the last years, the implementation of imaging ellipsometry in the variety of optical characterization techniques has shown tremendous potential to analyze the topology of surfaces in the lateral dimension. In the later studies, this contrast-rich surface images were affiliated with changes of the refraction indices, Absorption bands or layer thicknesses. However, it was realized that additional factors like curvature or scattering can have a great Impact on the ellipsometric readout of the analyzed system. In this study, we focus on the systematic evaluation of structural anomalies and inhomogenities of several Basic systems. This includes spherical particles as a model for microscopic curved surfaces in a range of 0.25 to 25 μm in diameter. In the macroscopic regime several conventional convex lenses were analyzed. Additional affords were made to generate microscopic concave model systems by applying nanoindentation with a spherical indentation unit. With this method calottes with a depth of 0.04 to 2 μm and radius of 2.5 μm were made. The macroscopic counterpart is delivered by conventional concave lens systems. For all systems, a variety of different bulk materials was investigated. This includes metal oxides, metals and polymers as well as combinations of each by applying coatings on the bulk materials with different layer thicknesses. To analyze these structural anomalies and inhomogenities properly, Mueller-Matrix imaging ellipsometry is the method of choice to address cross- and depolarization effects that occur due to the curved surfaces. Supplementary methods were used for an independent characterization of the topological properties of all structural anomalies and inhomogenities. This includes AFM and SEM for the microscopic samples (microparticles and nanoindented holes) and white light interferometry for the macroscopic lenses. This study results in a systematic screening of different coated and uncoated material systems with a topology that does not fit into conventional ellipsometry and thus is analyzed by Muller-Matrix imaging ellipsometry. This will help in quality control and is a contribution to the understanding of the polarizing effects of non-ideal Systems analyzed by ellipsometry. T2 - 8th International conference on spectroscopic ellipsometry (ICSE-8) CY - Barcelona, Spain DA - 26.05.2019 KW - Spectroskopic Imaging KW - Mueller-Matrix imaging ellipsometry KW - Structural anomalies KW - Structural inhomogenities PY - 2019 AN - OPUS4-48347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Schneider, S. A1 - Peters, S. T1 - Standardization of spectroscopic ellipsometry as GUM-compliant accredited measurement method N2 - Ellipsometry has become a powerful measurement tool in semiconductor industry since the sixties of the last century. Early standardization activities focused exclusively on SiO2/Si (ASTM F 576-01, SEMI 3624). The first generic standard dealing with ellipsometry is DIN 50989-1:2018 Ellipsometry – Part 1: Principles. Standardization is a prerequisite for accreditation according to DIN EN ISO/IEC 17025 and the evaluation of uncertainty budgets. T2 - 8th International conference on spectroscopic CY - Barcelona, Spain DA - 26.05.2019 KW - Standardization of Ellipsometry KW - GUM-compliance KW - Uncertainty budgets KW - Bulk material PY - 2019 AN - OPUS4-48348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Michalchuk, Adam A1 - Lampronti, G A1 - Sanders, J T1 - Understanding the unexpected effect of frequency on the kinetics of a covalent reaction under ball-milling conditions N2 - We here explore how ball-mill-grinding frequency affects the kinetics of a disulfide exchange reaction. Our kinetic data show that the reaction progress is similar at all the frequencies studied (15–30 Hz), including a significant induction time before the nucleation and growth process starts. This indicates that to start the reaction an initial energy accumulation is necessary. Other than mixing, the energy supplied by the mechanical treatment has two effects: (i) reducing the crystal size and (ii) creating defects in the structure. The crystal-breaking process is likely to be dominant at first becoming less important later in the process when the energy supplied is stored at the molecular level as local crystal defects. This accumulation is taken here to be the rate-determining step. We suggest that the local defects accumulate preferentially at or near the crystal surface. Since the total area increases exponentially when the crystal size is reduced by the crystal-breaking process, this can further explain the exponential dependence of the onset time on the milling frequency. KW - Mechanochemistry KW - Kinetics KW - Diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483361 DO - https://doi.org/10.3762/bjoc.15.120 SN - 2195-951X VL - 15 SP - 1226 EP - 1235 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-48336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bärmann, F A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Jonas, U. A1 - Fuchs, S. T1 - Degradation analysis of polypropylene in the presence of phosphorus and sulfur containing additives - TGA-FTIR N2 - Polyolefins as polypropylene are widely used in packaging, automotive, consumer goods, construction, infrastructure, agricultural film and other film and sheet applications. Due to their molecular structure, polyolefins inherently burn well. The wide and growing usage implements that fire retardancy of polyolefin products is necessary and gains more attention. Sulfurous additives with synergistic flame retarding effects were shown in polymers like polystyrene and polyolefins by Bellin et al. and Fuchs et al. earlier. For polystyrene compounds, Braun et al. revealed that thermal degradation in the presence of phosphorus and sulfurous additives changes massively. The total release, the composition, and the onset temperature of evolved decomposition products changes. For polypropylene, mixtures containing triphenyl phosphate (TPP), sulfur (S8) and poly(tertbutylphenol) disulphide (PBDS) (Table 1) were prepared and investigated via thermogravimetric analysis coupled to Fourier transformed infrared spectroscopy (TGA-FTIR). T2 - FRPM 2019 CY - Turku, Finland DA - 26.06.2019 KW - TGA-FTIR KW - Polypropylene KW - Phosphorus KW - Sulfur PY - 2019 AN - OPUS4-49391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Y. A1 - Gollwitzer, Christian A1 - Weidner, Steffen T1 - Microstructure of polymer-imprinted metal–organic frameworks determined by absorption edge tomography N2 - Mechanochemically synthesized metal–organic Framework material HKUST-1 in combination with acrylonitrile butadiene styrene polymer was used to form a polymer metal–organic framework composite material by a simple extruder. This composite filament was used for 3D printing. Xray diffraction measurements were used to prove the homogeneous distribution of the metal–organic framework in the polymer on a centimeter scale, whereas X-ray Absorption Edge Tomography using a synchrotron radiation source was able to evaluate the 3D distribution of the metal–organic framework material both in the filament and the resultant printed sample with a resolution of a few lm. Our very first data indicate that, apart from a few clusters having significantly higher Cu concentration, HKUST-1 is distributed homogeneously down to the 100 lm length scale in both polymer bulk materials in the form of clusters with a size of a few lm. Absorption Edge Tomography in combination with data fusion also allows for the calculation of the metal–organic framework amount located on the external polymer surface. KW - MOF KW - Polymer KW - AET PY - 2019 DO - https://doi.org/10.3139/146.111817 SN - 1862-5282 SP - 1 EP - 10 PB - Carl Hanser Verlag AN - OPUS4-49483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Harris, J. A1 - Mey, I. P. A1 - Böhm, C. F. A1 - Trinh, T. T. H. A1 - Fink, A. A1 - Bayer, F. A1 - Leupold, S. A1 - Prinz, Carsten A1 - Tripal, P. A1 - Palmisano, R. A1 - Wolf, S. E. T1 - Ultra-smooth and space-filling mineral films generated via particle accretion processes N2 - Nonclassical crystallization typically occurs via the attachment of individual nanoparticles. Intuitively, materials synthesized via this route should exhibit pronounced surface roughness and porosity as a hallmark of the formation process via particle accretion. Here, we demonstrate that nonclassical mineralization of calcium carbonate allows synthesis of ultra-smooth and dense surfaces with unprece-dented root-mean-square roughness of 0.285 nm, simply by con-trolling the hydration state of the nanosized building blocks using Mg doping. High fidelity coating of corrugated substrates can even be achieved. Nonclassical crystallization can thus lead to space-filling inorganic solid-state materials transgressing the implicit porosity commonly expected for particle-driven self-organization processes. KW - Nonclassical crystallization KW - Hydration KW - Particle accretion PY - 2019 DO - https://doi.org/10.1039/c9nh00175a VL - 4 IS - 6 SP - 1388 EP - 1393 PB - Royal Society of Chemistry AN - OPUS4-49488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Analytical opportunities & Challenges in (ocean) microplastics N2 - An overview about the analytical opportunities and challenges in microplastic detection is given. T2 - ISO TC61/ Annual bioplastics & ocean microplastics symposium CY - Chengdu, People's Republic of China DA - 29.09.2019 KW - Harmonisation KW - Microplastics KW - TED-GC-MS PY - 2019 AN - OPUS4-50000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Mikroplastik als analytische Herausforderung N2 - Der Wissenstand zum Thema Mikroplastik und Harmonisierung wird dargestellt. T2 - Laborleitertreffen Futtermittelmonitoring CY - Bonn, Germany DA - 21.11.2019 KW - Hamonisierung KW - Mikroplastik KW - TED-GC-MS PY - 2019 AN - OPUS4-50001 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Analytic of microplastics in environmental samples N2 - An overview about the existing possibilities for mircoplastic analysis is given. T2 - 2nd International Symposium on Microplastics CY - Seoul, Korea DA - 02.12.2019 KW - Harmonisation KW - Microplastics KW - TED-GC-MS PY - 2019 AN - OPUS4-50003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Bannick, C.G. T1 - Analytik von Mikroplastik in komplexen Umweltproben N2 - Der Sachstand zur Analytik von Mikroplastik in Umweltproben wird dargestellt. T2 - Fachausstellung Kunststoffanalytik CY - Lüdenscheid, Germany DA - 04.12.2019 KW - TED-GC-MS KW - Mikroplastik KW - Analytik PY - 2019 AN - OPUS4-50005 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -