TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Peter, Frauke T1 - Computational methods for lifetime prediction of metallic components under high-temperature fatigue JF - Metals N2 - The issue of service life prediction of hot metallic components subjected to cyclic loadings is addressed. Two classes of lifetime models are considered, namely, the incremental lifetime rules and the parametric models governed by the fracture mechanics concept. Examples of application to an austenitic cast iron are presented. In addition, computational techniques to accelerate the time integration of the incremental models throughout the fatigue loading history are discussed. They efficiently solve problems where a stabilized response of a component is not observed, for example due to the plastic strain which is no longer completely reversed and accumulates throughout the fatigue history. The performance of such an accelerated Integration technique is demonstrated for a finite element simulation of a viscoplastic solid under repeating loading–unloading cycles. KW - Fatigue KW - Incremental lifetime models KW - Finite element analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481215 UR - https://www.mdpi.com/2075-4701/9/4/390 DO - https://doi.org/10.3390/met9040390 SN - 2075-4701 VL - 9 IS - 4 SP - 390, 1 EP - 24 PB - mdpi CY - Basel, Switzerland AN - OPUS4-48121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jürgens, Maria A1 - Olbricht, Jürgen A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Low Cycle Fatigue and Relaxation Performance of Ferritic–Martensitic Grade P92 Steel JF - Metals N2 - Due to their excellent creep resistance and good oxidation resistance, 9–12% Cr ferritic–martensitic stainless steels are widely used as high temperature construction materials in power plants. However, the mutual combination of different loadings (e.g., creep and fatigue), due to a “flexible” operation of power plants, may seriously reduce the lifetimes of the respective components. In the present study, low cycle fatigue (LCF) and relaxation fatigue (RF) tests performed on grade P92 helped to understand the behavior of ferritic–martensitic steels under a combined loading. The softening and lifetime behavior strongly depend on the temperature and total strain range. Especially at small strain amplitudes, the lifetime is seriously reduced when adding a hold time which indicates the importance of considering technically relevant small strains. KW - Ferritic–martensitic steel KW - P92 KW - Low cycle fatigue KW - Relaxation fatigue KW - Cyclic softening PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473905 DO - https://doi.org/10.3390/met9010099 VL - 9 IS - 1 SP - 99, 1 EP - 25 PB - MDPI AN - OPUS4-47390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Charmi, Amir A1 - Epishin, A. T1 - Simulation of pore shrinkage with crystal plasticity and dislocation transport N2 - Single crystal superalloys usually contain pores of sizes 5-10 micro-m after casting and heat treatment. These pores can be reduced under compression by combined creep and diffusion in a subsequent treatment called Hot Isostatic Pressing (HIP). The paper presents a methodology to simulate pore shrinkage under HIP conditions in two dimensions (2D). At the scale of the pores, which is also the scale of the sub-grains (<50 micro-m) the dislocation sources cannot be assumed to be homogeneously distributed. Thus, the applicability of classical crystal plasticity is questionable. In this case, the transport of dislocations under an applied stress from the location where they are nucleated must be explicitly modelled. This is done by solving the transport equations for the dislocation densities and the elasticity equations in 2D. The dislocations are assumed to be nucleated at Low Angle Boundaries. They glide or climb through the sub-grains with a stress dependent velocity. The transport equations are solved by the Flux-Corrected Transport method, which belongs to the predictor-corrector class of algorithms. In the first step, an artificial diffusion is introduced, which suppresses spurious oscillations of the solution. In a second step, the solution is corrected in such a way that no additional extremes appear and that the extremes do not grow. The algorithm is validated by simulating the transport of simple distributions with a constant velocity field. With the dislocation velocities and the computed dislocation densities, the inelastic shear rate at the slip system level is computed by integrating the Orowan equation. In the 2D-setting, three slip systems are considered. The contributions of these slip systems are summed up to obtain the total inelastic strain rate. Dislocation glide and climb and the coupling of climb with vacancies diffusion are considered. The resolution of the equilibrium equations from the inelastic strains turned out to be prone to numerical instabilities. As an alternative, the stresses are directly computed from the distribution of geometrically necessary dislocations following the method presented in. The resulting boundary value problem is solved by the Least-Square Finite Element method. Examples of simulations are presented for a representative region under creep tension and for a pore shrinking under external pressure. T2 - International Conference on Material Modelling, ICMM 6 CY - Lund, Sweden DA - 26.06.2019 KW - Superalloy KW - Pores KW - Creep KW - Dislocations PY - 2019 AN - OPUS4-48488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -