TY - JOUR A1 - Mull, Birte A1 - Horn, Wolfgang A1 - Jann, Oliver T1 - Methode zur Bestimmung von flüchtigen Estern der Phthalsäure im Innenraum und in Emissionsmesskammern JF - Gefahrstoffe, Reinhaltung der Luft = Air quality control N2 - Die Analytik von Phthalaten (DMP bis DEHP) in der Luft ist mit thermischer Desorption unter Verwendung von Quarzwolle als Adsorbens erfolgreich realisierbar. Dies wurde durch eine Methodenvalidierung bestätigt. Es wurden sowohl Messungen im Innenraum als auch in Emissionskammern vorgenommen. In den Emissionskammermessungen wurden mögliche Senkeneffekte der Kammeroberfläche (Glas) untersucht. Unter Zuhilfenahme der idealen Abklingkurve wird bestätigt, dass diese Oberfläche eine Senke darstellt. PY - 2010 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-209870 UR - http://www.gefahrstoffe.de SN - 0949-8036 SN - 1436-4891 VL - 70 IS - 3 SP - 93 EP - 97 PB - VDI Fachmedien CY - Düsseldorf AN - OPUS4-20987 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reith, F. A1 - Fairbrother, L. A1 - Nolze, Gert A1 - Wilhelmi, O. A1 - Clode, P. L. A1 - Gregg, A. O. A1 - Parsons, J. E. A1 - Wakelin, S. A. A1 - Pring, A. A1 - Hough, R. A1 - Southam, G. A1 - Brugger, J. T1 - Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation JF - Geology N2 - Biofilms living on gold (Au) grains play a key role in the biogeochemical cycle of Au by promoting the dispersion of Au via the formation of Au nanoparticles as well as the formation of secondary biomorphic Au. Gold grains from Queensland, Australia, are covered by a polymorphic, organic-inorganic layer that is up to 40 μm thick. It consists of a bacterial biofilm containing Au nanoparticles associated with extracellular polymeric substances as well as bacterioform Au. Focused ion beam (FIB) sectioning through the biofilm revealed that aggregates of nanoparticulate Au line open spaces beneath the active biofilm layer. These aggregates (bacterioform Au type 1) resulted from the reprecipitation of dissolved Au, and their internal growth structures provide direct evidence for coarsening of the Au grains. At the contact between the polymorphic layer and the primary Au, bacterioform Au type 2 is present. It consists of solid rounded forms into which crystal boundaries of underlying primary Au extend, and is the result of dealloying and Ag dissolution from the primary Au. This study demonstrates that (1) microbially driven dissolution, precipitation, and aggregation lead to the formation of bacterioform Au and contribute to the growth of Au grains under supergene conditions, and (2) the microbially driven mobilization of coarse Au into nanoparticles plays a key role in mediating the mobility of Au in surface environments, because the release of nanoparticulate Au upon biofilm disintegration greatly enhances environmental mobility compared to Au complexes only. KW - Nanomaterial KW - Gold KW - Electron backscatter diffraction PY - 2010 DO - https://doi.org/10.1130/G31052.1 VL - 38 IS - 9 SP - 843 EP - 846 PB - Geological Society of America AN - OPUS4-37995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sitzman, S. D. A1 - Nolze, Gert A1 - Nowell, M. M. T1 - EBSD Pattern Quality and its Use in Evaluating Sample Surface Condition JF - Microscopy and Microanalysis N2 - Modern EBSD systems perform diffraction pattern “quality” (PQ) calculations, essentially measurements of the contrast of the brighter bands in the pattern above background, for every pattern analyzed. Since the calculations are independent of EBSD indexing, data are generated from all points on the analyzed sample surface, regardless of indexability or the state of the material beneath. EBSD maps generated from PQ data are like microstructurally sensitive SEM images, collected at EBSD speeds and grid resolutions, with contrast arising from phase density, crystal structure, crystallographic orientation, grain boundary location, near-surface plastic strain, coating density/thickness, and to some extent topography. Grain boundaries and other aspects of sample microstructure are readily revealed, so the PQ map is a very useful characterization tool in its own right, and serves as a reference for EBSD maps generated from indexing-derived data, such as orientation, grain boundary character, phase distribution and strain maps. KW - Electron backscatter diffraction KW - Sample preparation KW - Pattern quality PY - 2010 DO - https://doi.org/10.1017/S143192761005467X VL - 16 IS - Suppl. 2 SP - 698 EP - 699 PB - Microscopy Society of America AN - OPUS4-37997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, Aimo T1 - Progress in dynamic EBSD pattern simulation JF - Microscopy and Microanalysis N2 - EBSD is nowadays a common technique for the characterization of crystalline microstructures in scanning electron microscopy. The diffraction patterns are often interpreted by superimposing individual Kikuchi bands which are geometrically described by band edges derived from Braggs law. For the typically very simple crystal structures of technically applied materials, such a simplification of the Kikuchi pattern interpretation works sufficiently well, especially for orientation determinations as a main application of EBSD. The more complex crystal structures, however, are a challenge for EBSD indexing routines which in such cases often fail unpredictably. The use of only the intensities of single reflectors for a description of the Kikuchi band intensity and as a cut-off criterion for a pre-selection of the strongest bands are not satisfactory. Often the result will match too many phases, or there are certain deviations in the intensity prediction which must be adapted manually. This is already problematic if one is absolutely sure that the patterns are originating from the expected phase and it becomes a very questionable procedure for an unknown phase. KW - Electron backscatter diffraction KW - Dynamical simulation KW - Geometrical model KW - Kinematic approach KW - Intensity PY - 2010 DO - https://doi.org/10.1017/S1431927610063324 VL - 16 IS - Suppl. 2 SP - 62 EP - 63 PB - Microscopy Society of America AN - OPUS4-38000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pawlowski, Kristin A1 - Schartel, Bernhard A1 - Fichera, Mario Augusto A1 - Jäger, Christian T1 - Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in combination with zinc borate in bisphenol A polycarbonate/Acrylonitrile-butadiene-styrene blends JF - Thermochimica Acta N2 - Bisphenol A polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) with and without bisphenol A bis(diphenyl phosphate) (BDP) and 5 wt.% zinc borate (Znb) were investigated. The pyrolysis was studied by thermogravimetry (TG), TG-FTIR and NMR, the fire behaviour with a cone calorimeter applying different heat fluxes, LOI and UL 94. Fire residues were examined with NMR. BDP affects the decomposition of PC/ABS and acts as a flame retardant in the gas and condensed phases. The addition of Znb results in an additional hydrolysis of PC. The fire behaviour is similar to PC/ABS, aside from a slightly increased LOI and a reduced peak heat release rate, both caused by borates improving the barrier properties of the char. In PC/ABS + BDP + Znb, the addition of Znb yields a borate network and amorphous phosphates. Znb also reacts with BDP to form alpha-zinc phosphate and borophosphates that suppress the original flame retardancy mechanisms of BDP. The inorganic–organic residue formed provides more effective flame retardancy, in particular at low irradiation in the cone calorimeter, and a clear synergy in LOI, whereas for more developed fires BDP + Znb become less effective than BDP in PC/ABS with respect to the total heat evolved. KW - Flame retardancy KW - PC/ABS KW - Aryl phosphate KW - Zinc borate KW - Flammability PY - 2010 DO - https://doi.org/10.1016/j.tca.2009.10.007 SN - 0040-6031 SN - 1872-762X VL - 498 IS - 1-2 SP - 92 EP - 99 PB - Elsevier CY - Amsterdam AN - OPUS4-20746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karrasch, Andrea A1 - Wawrzyn, Eliza A1 - Schartel, Bernhard A1 - Jäger, Christian T1 - Solid-state NMR on thermal and fire residues of bisphenol A polycarbonate/silicone acrylate rubber/bisphenol A bis(diphenyl-phosphate)/(PC(SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB) - Part 1: PC charring and the impact of BDP and ZnB JF - Polymer degradation and stability N2 - Structural changes in the condensed phase of bisphenol A polycarbonate (containing 0.45 wt% poly (tetrafluoroethylene))/silicone acrylate rubber/bisphenol A bis(diphenyl-phosphate) (PC/SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB) during thermal treatment in nitrogen atmosphere and in fire residues were investigated by solid-state NMR. H-1, B-11, C-13 and P-31 NMR experiments using direct excitation with a single pulse and H-1-P-31 cross-polarization (CP) were carried out including 31P(1 H) and C-13{P-31}double-resonance techniques (REDOR: Rotational Echo Double Resonance) on a series of heat-treated samples (580 K-850 K). Because many amorphous phases occur in the solid residues, and solid-state NMR spectroscopy addresses the most important sites carbon, phosphorus and boron, this paper is the key analytical approach for understanding the pyrolysis and flame retarding phenomenon in the condensed phase of PC/SiR/BDP and PC/SiR/BDP/ZnB. For the system PC/SiR/BDP it is shown that (i) at temperatures around 750-770 K (main decomposition step) carbonaceous charring of PC occurs and arylphosphate structures are still present, reacted in part with the decomposing PC; (ii) for higher temperatures from 770 K the phosphorus remaining in the solid phase increasingly converts to amorphous phosphonates and inorganic orthophosphates with a minor amount of crystalline orthophosphates; and (iii) H-1-P-31{H-1} CP REDOR and H-1-C-13{P-31} CP REDOR NMR experiments suggest that the phosphates and phosphonates are bound via oxygen to aromatic carbons, indicating the interaction with the carbonaceous char. When ZnB is added to the system PC/SiR/BDP, (i) ZnB leads to a slightly enhanced PC decomposition for temperatures below 750 K; (ii) alpha-Zn-3(PO4)(2) and borophosphate (BPO4) are formed in small amounts at high temperatures suggesting a reaction between BDP and ZnB during thermal decomposition; and (iii) most of the borate remains in the solid residues, forming an amorphous pure borate network, with the BO3/BO4 ratio increasing with higher temperatures. The NMR data of thermal and fire residues are highly correlated, underlining the importance of this work for understanding the pyrolysis and flame retardancy mechanisms in the condensed phase during the burning of the PC/SiR blends. (C) 2010 Elsevier Ltd. All rights reserved. KW - Flame retardance KW - NMR KW - Polycarbonate (PC) blends KW - Bisphenol-A bis(diphenyl)phosphate (BDP) KW - Zinc borate PY - 2010 DO - https://doi.org/10.1016/j.polymdegradstab.2010.07.034 SN - 0141-3910 SN - 1873-2321 VL - 95 IS - 12 SP - 2525 EP - 2533 PB - Applied Science Publ. CY - London AN - OPUS4-22647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard T1 - Phosphorus-based flame retardancy mechanisms - Old hat or a starting point for future development? JF - Materials N2 - Different kinds of additive and reactive flame retardants containing phosphorus are increasingly successful as halogen-free alternatives for various polymeric materials and applications. Phosphorus can act in the condensed phase by enhancing charring, yielding intumescence, or through inorganic glass formation; and in the gas phase through flame inhibition. Occurrence and efficiency depend, not only on the flame retardant itself, but also on its interaction with pyrolysing polymeric material and additives. Flame retardancy is sensitive to modification of the flame retardant, the use of synergists/adjuvants, and changes to the polymeric material. A detailed understanding facilitates the launch of tailored and targeted development. KW - Fire retardancy KW - Red phosphorus KW - Phosphate KW - Phosphonate KW - Phosphinate KW - Phosphine oxide KW - Flame inhibition KW - Charring KW - Intumescence PY - 2010 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-220368 DO - https://doi.org/10.3390/ma3104710 SN - 1996-1944 VL - 3 IS - 10 SP - 4710 EP - 4745 PB - MDPI CY - Basel AN - OPUS4-22036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -