TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Atomic force microscope study of friction at the submicron-scale during tribotests with self-mated steel N2 - Friction at the microscale during reciprocal sliding tribotests was studied for the first time with self-mated steel (100Cr6/AISI 52100) taking advantage of an atomic force microscope (AFM). To this aim, microsized steel particles were glued to the AFM-cantilever and employed as colloidal tips to perform tribotests on a steel disc. The torsion of the cantilever, which correlates with the friction force, was measured during the tests. Few tests with the same load did not yield any wear and show that the load and adhesion contributions to friction stay constant when the shape of the test particle does not change. Most of the presented tribotests engendered wear. For those tests, the increase of friction during the tribotests was attributed to the emerging plowing contribution. Furthermore, analysis of both torsion and local slope gives information on the creation of wear particles and their influence on friction. KW - Friction KW - Microtribology KW - Sliding KW - Wear PY - 2022 U6 - https://doi.org/10.1115/1.4054251 VL - 144 IS - 10 SP - 1 EP - 9 PB - ASME AN - OPUS4-54839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Reichelt, Manuel T1 - Origin of lognormal distribution of wear coefficient values N2 - Wear test results exhibit often large scattering. Hence, the study of spreading of experimental results requires big datasets. In various studies, wear coefficients were found to have lognormal distributions. Therefore, it was supposed that the wear coefficient is affected by two normally distributed variables, which combine through a product. In the present study, we demonstrate that a lognormal distribution may arise from a nonconstant wear coefficient, too, i.e., when a system does not follow Archard’s law. KW - Wear KW - Archard's law KW - Statistical distributions KW - Spreading PY - 2021 U6 - https://doi.org/10.1016/j.triboint.2021.107207 SN - 0301-679X VL - 164 PB - Elsevier Ltd. AN - OPUS4-53100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Large scale multi-parameter analysis of wear of self-mated 100Cr6 steel - A study of the validity of Archard's law N2 - Considerable scattering of experimental wear results affects seriously the evaluation of repeatability and reproducibility of tribological measurements and hampers detecting, studying, and verifying tribological laws. An accurate characterization of the statistics of results, the detection of the influence of operating parameters, and the verification of equations describing tribological phenomena can be achieved only through the analysis of large datasets with wide variation of parameters. Taking advantage of more than 400 experiments performed with the same material pairing under the same conditions on four different tribometers, the repeatability and reproducibility of volumetric wear measurements has been evaluated using Welch's test. By testing Archard's law over seven orders of magnitude of sFN, it was found that this law is not universally valid and that, under certain conditions, the wear coefficient depends on sFN itself. KW - Wear KW - Archard's law KW - 100Cr6 steel KW - Scattering PY - 2021 U6 - https://doi.org/10.1016/j.triboint.2021.106945 VL - 159 SP - 6945 PB - Elsevier Ltd. AN - OPUS4-52244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Benchmarking of polymer materials for tribological applications in hydrogen N2 - The focus of this study is to evaluate the influence of hydrogen on the friction and wear behavior of a wide range of polymer materials. Thereby, the tribological performance of filled und unfilled polymers from different suppliers were compared at room temperature in air and hydrogen gas (H2) as well as in liquid hydrogen at -235°C (LH2). T2 - 23rd International Conference on Wear of Materials CY - Online meeting DA - 26.04.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-52651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Investigation of the thermal and tribological performance of localized laser dispersed tool surfaces under hot stamping conditions N2 - In the automotive industry, hot stamping has been established as a key technology for manufacturing safety-relevant car body components with high strength-to-weight ratio. However, hot stamping tools are stressed by cyclic thermo-mechanical loads, which leads to severe wear and high friction during the forming operation. Consequently, the quality of the parts, the durability of the tools and the efficiency of the process are negatively affected. Within the scope of this work, a promising approach named laser implantation process has been investigated for improving the tribological behavior of hot stamping tools. This technique enables the fabrication of highly wear resistant, separated and elevated micro-features by embedding hard ceramic particles into the tool via pulsed laser radiation. Hence, highly stressed tool areas can be modified, which influences the thermal and tribological interactions at the blank-die interface. To clarify these cause-effect relations, numerical simulations, quenching tests as well as tribological investigations have been conducted. In this context, laser-implanted tools reveal a significantly improved tribological performance while offering the possibility to adjust the thermal properties within hot stamping. Based on these results, a tailored tool modification can be pursued in future research work, in order to enhance the effectiveness of hot stamping tooling systems. KW - Hot stamping KW - Laser Implantation KW - Surface structuring KW - Wear KW - Friction PY - 2021 U6 - https://doi.org/10.1016/j.wear.2021.203694 VL - 476 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-52988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Spaltmann, Dirk A1 - Gee, M. T1 - Editorial: Tribology and Atomic Force Microscopy - Towards Single Asperity Contact N2 - The concept behind this Research Topic (RT) was to collect works, in which Atomic Force Microscopy (AFM) techniques are employed to study tribological phenomena and to push the resolution of measurements towards single asperity contact. Thanks to the direct determination of sample height with sub-nanometer resolution and the possibility of measuring local friction, AFM can be employed after a tribotest to detect topography and friction changes at the nanometer scale. Recently, efforts are being expended to use AFM cantilevers as tribometers, i.e., as probes altering the volume of suitable samples, thereby measuring tip and/or sample wear and friction at the nano/microscale. Thus, single asperity contact, friction, and wear can be investigated. Since friction and wear at the macroscale are the result of asperities interactions, such experiments are of great importance for better understanding of tribological processes. KW - Nanotribology KW - Friction KW - Wear KW - Single asperity KW - AFM PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-571037 SN - 2297-3079 VL - 8 SP - 1 EP - 2 PB - Frontiers Media CY - Lausanne AN - OPUS4-57103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kanematsu, W. A1 - Mandler, W. A1 - Manier, Charles-Alix A1 - Woydt, Mathias T1 - Rolling contact fatigue tests of ceramics by various methods: comparison of suitability to the evaluation of silicon nitrides N2 - Results of rolling contact fatigue (RCF) tests by balls-on-rod (BOR) method and two-roller methods have been compared to those by the balls-on-flat (BOF) method by using three different silicon nitride grades. The results suggest that the two-roller method could differentiate the bearing grade materials in terms of wear behavior. KW - Rolling contact fatigue KW - Slip-rolling resistance KW - Spall KW - Wear KW - Balls-on-flat KW - Balls-on-rod KW - 2Disk KW - Silicon nitride PY - 2016 U6 - https://doi.org/10.1520/JTE20140258 SN - 0090-3973 SN - 1945-7553 VL - 44 IS - 3 SP - 1271 EP - 1283 PB - ASTM International CY - West Conshohocken/PA, USA AN - OPUS4-37928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A. I. A1 - Österle, Werner T1 - Sliding simulation of automotive brake primary contact with variable amounts of copper and graphite nanoparticles N2 - Copper is one of the most important components in brake pads and its amount can reach up to 14%. In spite of a number of positive features copper usage in brake pad formulations has recently become the subject of considerable discussions, primarily due to concerns about potential risks related to environmental impacts of copper particles. So, for developing new pad formulations with possible replacements of copper content, it is very important to understand the functionality of copper additions to brake friction materials. In the paper theoretical investigation of the role of copper as a pad ingredient was carried out on the basis of modelling by the method of movable cellular automata (MCA). In the study the concentration of copper particles in a Fe3O4-matrix was varied. The sliding simulations were performed while assuming material properties at 500 degrees C in order to assess the beneficial role of copper during severe braking conditions corresponding to fading cycles during dynamometer testing. T2 - International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures CY - Tomsk, Russia DA - 19.09.2016 KW - Polymer matrix composite KW - Silica nanoparticles KW - Friction KW - Wear PY - 2016 U6 - https://doi.org/10.1063/1.4966337 VL - 1783 SP - 020044-1 EP - 020044-4 AN - OPUS4-38933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Huang, S. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Cannizza, E. T1 - Potentials of niobium carbide (NbC) as cutting tools and for wear protection N2 - Research and development of WC grades is 90 years ahead of niobium carbide-based hard materials, which showed already as light-weight and unexplored material a very high potential for many technical applications, especially for wear protection and machining. NbC evoluted recently from lab scale to pilot scale, especially in areas where established WC-based materials are causing economic, environmental or technical concerns. Benchmark trials of NbC-based hard metals indicated already a favorable performance in machining of steel components. KW - Niobium carbide KW - Friction KW - Wear KW - NbC KW - Hard metals KW - Machining KW - Nickel PY - 2018 U6 - https://doi.org/10.1016/j.ijrmhm.2018.01.009 SN - 0263-4368 VL - 72 SP - 380 EP - 387 PB - Elsevier Ltd. AN - OPUS4-44166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Friction and wear behaviour of polymers in liquid hydrogen N2 - The tribological behaviour of polymer composites were investigated in liquid hydrogen at -253°C and compared with previous results obtained in gaseous hydrogen at ambient temperature. KW - Polymers KW - Friction KW - Wear KW - Hydrogen KW - Cryogenic temperature PY - 2018 U6 - https://doi.org/10.1016/j.cryogenics.2018.05.002 SN - 0011-2275 VL - 93 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-44886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Brandt, Guido A1 - Ehrke, Roman A1 - Nolze, Gert A1 - Schmid, Thomas A1 - Sasaki, S. A1 - Woydt, Mathias T1 - Wear behaviour of alpha-alumina in hot steam at high contact pressure N2 - The work examines the wear behaviour of α-aluminium oxide by combining thermodynamic modelling with advanced wear testing as well as analytical methods to get a better understanding of this structural ceramic material wear behavior and its possible use in high temperature steam environment. KW - Aluminium oxide KW - Temperature KW - Hot steam KW - Diaspore KW - Ceramic KW - Wear PY - 2018 U6 - https://doi.org/10.1016/j.wear.2018.02.012 SN - 0043-1648 SN - 1873-2577 VL - 404-405 SP - 22 EP - 30 PB - Elsevier B.V. AN - OPUS4-44449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Genga, R. M. A1 - Cornish, L. A. A1 - Woydt, Mathias A1 - Janse van Vuuren, A. A1 - Polese, C. T1 - Microstructure, mechanical and machining properties of LPS and SPS NbC cemented carbides for face-milling of grey cast iron N2 - The effects of spark plasma sintering (SPS), NbC as a major carbide phase and Ni as a Co binder substitute on the microstructure, mechanical properties and cutting insert wear during face-milling of grey cast iron (GCI) BS1452, grade 17, were investigated. KW - Niobium carbide KW - NbC KW - Hardness KW - Wear PY - 2018 U6 - https://doi.org/10.1016/j.ijrmhm.2017.12.036 SN - 0263-4368 VL - 73 SP - 111 EP - 120 PB - Elsevier Ltd. AN - OPUS4-44083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rawat, S. S. A1 - Harsha, A. P. A1 - Khatri, O. P. A1 - Wäsche, Rolf T1 - Pristine, reduced, and alkylated graphene oxide as additives to paraffin grease for enhancement of tribological properties N2 - Pristine, reduced, and alkylated graphene oxides are applied as lubricating additives in paraffin grease. It has revealed that their crystalline structure governs the tribological properties of grease for steel tribo-pair. The microstructural analyses of grease samples showed that a loose fiber network of soap in the presence of graphene-based additive allows their facile release for efficient lubrication. The surface analyses based on the microscopic and elemental mapping show the development of a graphene-derived protective film on the worn scars, which protected the tribo-surfaces and subsided the wear. The reduced graphene oxide (rGO) with the interlamellar distance of 0.35 nm in the (002) plane provided minimum resistance to shear and exhibited maximum reduction in coefficient of friction (COF) for the paraffin grease. The presence of oxygen functionalities in the basal of pristine and alkylated graphene oxide (GO) compromised the interlamellar shearing under tribo-stress; consequently, higher COF than that of rGO. KW - Coefficient of friction KW - Graphene oxide KW - Grease KW - Nanoadditive KW - Tribo-film KW - Wear KW - Boundary lubrication KW - Grease lubrication KW - Lubricant additives KW - Lubricants PY - 2021 U6 - https://doi.org/10.1115/1.4047952 VL - 143 IS - 2 SP - 021903-1 EP - 021903-11 PB - ASME AN - OPUS4-51170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Densification and tribological profile of niobium oxide N2 - The origin of the intrinsic wear resistance of NbC-based materials is investigated through an assessment of the tribological performance of fully dense, crack-free spark plasma sintered Nb2O5 (here as a reduced polymorph: monoclinic Nb12O29 or NbO2.416). The most likely wear mechanism on NbC is the tribo-oxidation to Nb2O5. The unlubricated (dry) friction and wear behavior of alumina (99.7%) mated against rotating disks of crack-free niobium(V)oxide (Nb2O5) under unidirectional sliding (0.03–10m/s; 22°C and 400°C) and oscillation (f=20 Hz, dx=200 mm, 2/50/98% rel. humidity, n=105/106 cycles) will be presented. The microstructure and mechanical properties of the crack-free Nb2O5 are assessed. The tribological data obtained are benchmarked with different NbC grades, ceramics, cermets and thermally sprayed coatings. KW - Friction KW - Wear KW - Nb2O5 KW - Nb12O29 KW - Niobium oxide KW - Strength KW - Modulus KW - High temperatures PY - 2016 U6 - https://doi.org/10.1016/j.wear.2016.02.003 SN - 0043-1648 VL - 352-353 SP - 65 EP - 71 PB - Elsevier B.V. AN - OPUS4-35805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium N2 - Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Friction KW - Wear KW - Nanostructures KW - Surface functionalization PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0169433215026987 U6 - https://doi.org/10.1016/j.apsusc.2015.11.019 SN - 0169-4332 SN - 1873-5584 VL - 374 SP - 190 EP - 196 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-35937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Influence of relative humidity on wear of self-mated 100 Cr6 steel N2 - The influence of relative humidity on friction and wear is subject of several studies in the last decades. A comprehensive understanding of physical and chemical phenomena affecting the tribology is hampered by the lack of reproducible experimental results, by the large number of variables, and by several difficulties in the detection of tribochemical processes and products. In the present work, we analyze the wear coefficient and the wear volumes of 686 unlubricated tests performed on different oscillating tribometers with 100Cr6 balls on 100Cr6 planes at different relative humidity. Aim of this work is to assess the repeatability and reproducibility of data, to determine the dependence of the wear coefficient on the relative humidity, to understand the underlying physicochemical phenomena and to build three dimensional maps of the wear coefficient as a function of both humidity and the product of normal force and sliding distance. KW - Wear KW - 100Cr6 KW - Relative humidity PY - 2020 U6 - https://doi.org/10.1016/j.wear.2020.203239 VL - 450-451 SP - 203239 AN - OPUS4-50583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Sebastian A1 - Cappella, Brunero T1 - Application of contact-resonance AFM methods to polymer samples N2 - Contact-resonance AFM (CR-AFM) has been used in recent years for the measurement of mechanical properties. Compared with other techniques, CR-AFM has a much shorter acquisition time, compensating the incomplete theoretical understanding of the underlying physical phenomena. In the present paper, we propose a procedure, which allows to determine the elastic modulus of the sample as a parameter of the fit of the CR frequency as a function of the load. It is concluded that CR measurements are not appropriate for polymer samples. Major drawbacks are the bad resolution for moduli lower than ca. 10 GPa and the lack of a comprehensive physical model. KW - Atomic force microscopy KW - Contact resonance KW - Mechanical properties KW - Polymers KW - Wear PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-515621 VL - 11 SP - 1714 EP - 1727 AN - OPUS4-51562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ayerdi, J. J. A1 - Aginagalde, A. A1 - Llavori, I. A1 - Bonse, Jörn A1 - Spaltmann, Dirk A1 - Zabala, A. T1 - Ball-on-flat linear reciprocating tests: Critical assessment of wear volume determination methods and suggested improvements for ASTM N2 - In the present work it was shown the importance of the correct selection, implementation, and reporting of wear volume computation method and quanitifies the potential errors. KW - Wear KW - Sliding KW - Surface KW - Analysis KW - ASTM KW - D7755-11 PY - 2021 U6 - https://doi.org/10.1016/j.wear.2021.203620 VL - 470-471 SP - 3620 AN - OPUS4-52080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias T1 - Sub-stoichiometric oxides for wear resistance N2 - In the present work it was shown that the tribologcal profiles of special model oxides under dry unidirectional sliding have shown, that sub-oxides have a contribution to the tribological behavior of carbides and cermets, when they are tribo-oxidatively formed, because their tribological profiles as monolithic materials are homologous in part or totally, or compete with hardmetals or cermets, depending from the operating conditions regarded. KW - Sub-oxide KW - Friction KW - Wear KW - Carbide KW - Hardmetal PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-498154 SN - 0043-1648 N1 - Eine identische Version zu diesem Artikel wurde publiziert unter: Wear 438-439 (2019) 102735, https://doi.org/10.1016/j.wear.2019.01.066 - An identical version to this article was published under: Wear 438-439 (2019) 102735, https://doi.org/10.1016/j.wear.2019.01.066 VL - 440-441 SP - 203104-1 EP - 203104-7 PB - Elsevier CY - Amsterdam AN - OPUS4-49815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Harsha, A. P. A1 - Wäsche, Rolf A1 - Joyce, T. J. T1 - Wear of biopolymers under reciprocating sliding conditions against different counterfaces N2 - In the present work it was shown the investigation of wear resistance of ultrahigh-molecular weight polyethylene (UHMWPE) and crosslinked polyethylene (XLPE) against different counterfaces. Friction and wear studies were evaluated under dry reciprocating sliding conditions at room temperature. KW - Biopolymers KW - Wear KW - Friction KW - UHMWPE PY - 2019 U6 - https://doi.org/10.1002/pen.25239 VL - 59 IS - 11 SP - 2356 EP - 2366 PB - Society of Plastics Engineers AN - OPUS4-49779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Microstructure and tribological performance of NbC-Ni cermets modified by VC and Mo2C N2 - The current study reports on the influence of the Addition of 5–15 vol% VC or/and Mo2C carbide on the microstructure and mechanical properties of nickel bonded NbC cermets, which are compared to cobalt bonded NbC cermets. The NbC, Ni and secondary carbides powder mixtures were liquid phase sintered for 1 h at 1420 °C in vacuum. The fully densified cermets are composed of a cubic NbC grains matrix and an evenly distributed fcc Ni binder. NbC grain growth was significantly inhibited and a homogeneous NbC grain size distribution was obtained in the cermets with VC/Mo2C additions. The mechanical properties of the NbC-Ni matrix cermets are strongly dependent on the carbide and Ni binder content and are directly compared to their NbC-Co equivalents. The liquid phase sintered NbC-12 vol% Ni cermet had a modest Vickers hardness (HV30) of 1077 ± 22 kg/mm2 and an indentation toughness of 9.1 ± 0.5 MPa·m1/2. With the addition of 10–15 vol% VC, the hardness increased to 1359 ± 15 kg/mm2, whereas the toughness increased to 11.3 ± 0.1 MPa·m1/2. Addition of 5 and 10 vol% Mo2C into a NbC-12 vol% Ni mixtures generated the same values in HV30 and KIC when compared to VC additions. A maximum flexural strength of 1899 ± 77 MPa was obtained in the cermet with 20 vol% Ni binder and 4 vol% VC+4 vol% Mo2C addition, exhibiting a high fracture toughness of 15.0 ± 0.5 MPa·m1/2, but associated with a loss in hardness due to the high Ni content. The dry sliding wear behaviour was established at room temperature and 400 °C from 0.1 to 10 m/s. KW - Cermet KW - Liquid phase sintering KW - Grain growth KW - Wear KW - Niobium carbide PY - 2017 U6 - https://doi.org/10.1016/j.ijrmhm.2017.03.012 SN - 0263-4368 VL - 66 SP - 188 EP - 197 AN - OPUS4-40505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Koter, Robert A1 - Pentzien, Simone A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications N2 - Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Titanium nitride films KW - Friction KW - Wear PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216322486 U6 - https://doi.org/10.1016/j.apsusc.2016.10.132 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 572 EP - 579 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Géraldine A1 - Harsha, A. P. A1 - Gradt, Thomas T1 - On the sliding wear behavior of PEAK composites in vacuum environment N2 - The tribological behavior of neat and filled PEEK and PEKK composites were compared in air and vacuum conditions. Very low friction and wear coefficient were obtained at low sliding speed while severe wear occurred at high speed. Experimental results are discussed by analysing the transfer film and wear debris. KW - PEAK KW - Composites KW - Wear KW - Friction KW - Vacuum PY - 2019 U6 - https://doi.org/10.1115/1.4042271 SN - 0022-2305 SN - 0742-4787 VL - 141 IS - 4 SP - 044502-1 EP - 044502-7 PB - ASME AN - OPUS4-47298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hausberger, A. A1 - Major, Z. A1 - Theiler, Geraldine A1 - Gradt, Thomas T1 - Observation of the adhesive - and deformation - contribution to the friction and wear behaviour of thermoplastic polyurethanes N2 - In this study unfilled and graphite filled thermoplastic polyurethanes (TPU) were investigated in tribological pin-on-disc tests. KW - TPU KW - Friction KW - Wear KW - Adhesion KW - Deformation KW - Vacuum PY - 2018 U6 - https://doi.org/10.1016/j.wear.2018.07.006 SN - 0043-1648 SN - 1873-2577 VL - 412-413 SP - 14 EP - 22 PB - Elsevier CY - Amsterdam AN - OPUS4-45897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Ehrke, Roman A1 - Woydt, Mathias T1 - Wear of alpha-alumina in hot steam up to 300°C N2 - Selfmated alpha-alumina sliding couples have been investigated under oscillating sliding at 100 N load in different humidity conditions in air as in hot steam up to temperatures of 300°C and ambient pressures up to 4 bar. T2 - 7th International Conference on Mechanics and Materials in Design CY - Albufeira, Portugal DA - 11.06.2017 KW - Apha-alumina KW - Wear KW - Steam KW - Temperature KW - Abrasion PY - 2017 SN - 978-989-98832-6-0 SP - 265 EP - 266 PB - LusoImpress S.A. CY - Avintes, Portugal AN - OPUS4-41128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Sato, K. A1 - Brandt, Guido A1 - Schmid, Thomas A1 - Sasaki, S. A1 - Woydt, Mathias T1 - Wear behaviour of MgO stabilized zirconia in hot steam environment up to 400°C N2 - Self-mated magnesia stabilized zirconia (Mg-PSZ) ceramic sliding couples have been investigated at 100 N load (P0max= 1324 MPa) in oscillating sliding conditions in different humidity conditions in air and in hot steam. Temperatures have been varied up to 400 °C and pressures up to 6 bars. The results show that the wear behavior of MgO-ZrO2 under high Hertzian contact pressures is strongly dependent on temperature and is similar for both dry oscillating and oscillating in hot steam. However, although the evolution in wear rates on temperature is similar and the wear rates of MgO-ZrO2 plunged above 300 °C in hot steam and air by nearly three orders of magnitude, SEM micrographs revealed in hot steam at 400 °C smooth wear tracks. In contrast, hot steam enhanced the tribochemistry of self-mated alumina couples and reduced wear rates. Hot steam decreased the coefficients of friction of MgO-ZrO2 with increasing temperature, but not the wear rates. KW - Hot steam KW - Zirconia KW - Friction KW - Wear KW - Tribofilm KW - Raman spectroscopy PY - 2019 U6 - https://doi.org/10.1016/j.wear.2019.01.047 VL - 426-427 SP - 428 EP - 432 PB - Elsevier B.V. AN - OPUS4-47873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -