TY - CONF A1 - Falkenhagen, Jana A1 - Epping, Ruben T1 - View into the depths of copolymer microstructure by a special approach of LC-MS data evaluation N2 - It is a well-known story that copolymers beside their molar mass distribution (MMD) can exhibit a functionality type distribution (FTD), a copolymer composition distribution (CCD), a monomer sequence distribution (MSD) and additionally different topologies within one sample. This is and will remain a challenge for analysts. First a very short overview will be given concerning the common liquid separation techniques for polymers (SEC, LAC, LCCC, GELC) coupled to soft ionization mass spectrometric methods like MALDI and ESI-MS with focus on their limitations. For very broadly distributed samples or chemical very similar species the superposition of different separation mechanisms in chromatography is unavoidable or the separation efficiency cannot be optimized. Different ionization probabilities and species of the same nominal mass with completely different structures are just two problems of mass spec of complex polymer mixtures. Subsequently, different examples will be shown how these limitations in some cases could be outsmarted. First example will be the separation of statistical EO-PO copolymers of different chemical compositions by end group functionality and the quantification of end group fractions over the whole CCD. Here an UP-LCCC / ESI-TOF-MS coupling is applied. Further for different kinds of polymers it will be shown how it could be realized to obtain information on small isobaric/isomeric topological heterogeneities by coupling UP-SEC / ESI-TOF-MS. All results are based on the data processing of reconstructed ion chromatograms of single mass traces of complex ESI-MS spectra. T2 - SCM-9 CY - Amsterdam, The Netherlands DA - 29.01.2019 KW - Reconstructed ion chromatograms KW - Copolymer KW - Microstructure KW - LC x ESI-TOF-MS PY - 2019 AN - OPUS4-47836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana A1 - Epping, Ruben T1 - View into the Depths of Copolymer Microstructure N2 - For different kinds of polymers it will be shown how it could be realized to obtain information on small, sometimes isomeric topological heterogeneities by coupling UPLC / ESI-TOF-MS and LC /MALDI-TOF-MS. T2 - DSM, Fall Meeting CY - Breda, The Netherlands DA - 07.11.2019 KW - Microstructure KW - LC-MS KW - Copolymer PY - 2019 AN - OPUS4-49587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Panne, Ulrich A1 - Falkenhagen, Jana T1 - Power of ultra performance liquid chromatography/electrospray ionization-MS reconstructed ion chromatograms in the characterization of small differences in polymer microstructure JF - Analytical Chemistry N2 - From simple homopolymers to functionalized, 3-dimensional structured copolymers, the complexity of polymeric materials has become more and more sophisticated. With new applications for instance in the semiconductor or pharmaceutical industry, the requirements for the characterization have risen with the complexity of the used polymers. For each additional distribution, an additional dimension in analysis is needed. Small, often isomeric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector, but affect the properties of materials significantly. For a drug delivery system for example, the degree of branching and branching distribution is crucial for the formation of micelles. Instead of a complicated, time consuming and/or expensive 2d-chromatography or ion mobility spectrometry (IMS) method, that also has its limitations, in this work a simple approach using size exclusion chromatography (SEC) coupled with electrospray ionization mass spectrometry (ESI) is proposed. The online coupling allows the analysis of reconstructed ion chromatograms (RIC) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities. Although some microstructural heterogeneities like short chain branching can for large polymers be characterized with methods such as light scattering, for oligomers where the heterogeneities just start to form and their influence is at the maximum, they are inaccessible with these methods. It is also shown, that with a proper calibration even quantitative information can be obtained. This method is suitable to detect small differences in e. g. branching, 3d-structure, monomer sequence or tacticity and could potentially be used in routine analysis to quickly determine deviations. KW - Polymer KW - Microstructure KW - UPLC KW - ESI-TOF-MS KW - Reconstructed ion chromatograms PY - 2018 DO - https://doi.org/10.1021/acs.analchem.7b05214 SN - 0003-2700 SN - 1520-6882 VL - 90 IS - 5 SP - 3467 EP - 3474 PB - ACS Publ. CY - Washington, DC AN - OPUS4-44423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana A1 - Epping, Ruben T1 - Microstructure characterization of oligomers by analysis of UPLC / ESI-TOF-MS reconstructed ion chromatograms N2 - It is a well-known story that copolymers beside their molar mass distribution (MMD) can exhibit a functionality type distribution (FTD), a copolymer composition distribution (CCD), a monomer sequence distribution (MSD) and additionally different topologies within one sample. Small, often isobaric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector. Nowadays a wide range of different analytical separation techniques and multi-detection possibilities are available. The challenge consists in a clever combination of these techniques with a specific approach of data analysis. In this presentation different liquid chromatographic separation modes were combined with Electrospray Time-of-Flight mass spectrometry. The online coupling allows the analysis of reconstructed ion chromatograms (RIC) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities in microstructure or topology, that are otherwise inaccessible This method is suitable to detect small differences in e. g. branching, topology, monomer sequence or tacticity and could potentially be used in production control of oligomeric products or other routinely done analyses to quickly indicate deviations from set parameters. Based on a variety of examples e.g. the topology elucidation of branched EO-PO copolymers, the possibilities and limitations of this approach were demonstrated. T2 - Analyticon 2020 CY - Online meeting DA - 05.11.2020 KW - Microstructure KW - Copolymer KW - LC-MS PY - 2020 AN - OPUS4-51540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Copolymer structure elucidation by multidimensional techniques with focus on UPLC x ESI-TOF-MS N2 - Structure elucidation of complex synthetic copolymers still represents a challenge. An one-dimensional separation technique cannot give the answer to the question: What are the molar mass distribution (MMD), the functionality distribution (FTD), the chemical composition distribution (CCD), the monomer sequence distribution (MSD), the topology differences within a single broad distributed polymer sample? Since the first LC/ ESI-MS experiment of the Nobel prize winner John B. Fenn in 1984, the coupling of liquid chromatographic to mass spectrometric techniques gained a continuous rapid development. Often the deficiencies of stand-alone methods can be bridged. LC, blind to structural information needs mass spectrometry as one of the most powerful detectors able to give detailed information on e.g. the repeat units, functionalization or copolymer composition of the chromatographic separated constituents. A separation prior to MS reduces radical the dispersity which is one of the reasons for failing of MS. Also problems with different ionization probabilities in complex mixtures can partly be overcame. Different LC separation techniques as size exclusion chromatography (SEC), liquid adsorption chromatography (LAC), liquid chromatography at critical conditions (LCCC) and gradient elution liquid chromatography (GELC) combined with Matrix assisted Laser Desorption Ionization (MALDI) respectively Electrospray Ionization (ESI) Time of Flight (TOF) mass spectrometry are able to give information which otherwise are completely inaccessible. In some cases CID tandem mass spectrometry is applied. Fragmentation of suitable precursor ions resulted in typical fragment ion patterns. This technique enables an additional information on e.g. sequences, structural defects and topology of complex polymer mixtures. Herein a new approach is demonstrated to provide evidence of different functionalities and short block sequences in statistical EO-PO copolymers. Furthermore silsesquioxane mixtures and Polyglycerols are investigated concerning occurring topology effects. T2 - 253rd ACS National Meeting CY - San Francisco, CA, USA DA - 02.04.2017 KW - Copolymer KW - Microstructure KW - Liquid chromatography KW - Mass spectrometry PY - 2017 AN - OPUS4-43372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -