TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute T1 - Quantification of the Total and Accessible Number of Functional Groups and Ligands on Nanomaterials N2 - Surface-functionalized organic and inorganic nanoparticles (NP) are of great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. NP performance in such applications depends not only on particle size, size distribution, and morphology, but also on surface chemistry, i.e. the total number of surface functional groups (FG) and the number of FG accessible for subsequent functionalization with ligands or biomolecules, which in turn determines surface charge, colloidal stability, biocompatibility, and toxicity. Methods for FG quantification should be simple, robust, reliable, fast, and inexpensive, and allow for the characteriza-tion of a broad variety of nanomaterials differing in size, chemical composition, and optical properties. Aiming at the development of simple, versatile, and multimodal tools for the quantification of many bioanalytically relevant FG such as amine, carboxy, thiol and aldehyde functionalities, we investigated and compared various analytical methods commonly used for functional group quantification. This includes electrochemical titration methods, dye-based optical assays, and other instrumental analytical techniques such as nuclear magnetic resonance, mass spectrometry, and thermal analysis methods. T2 - Nanotech France CY - Paris, France DA - 15.06.2022 KW - Optical assays KW - Functionalized nano- and microparticles KW - Particle surface analysis KW - Surface group quantification KW - Terminal functional groups PY - 2022 AN - OPUS4-55208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sternbaek, L. A1 - Kimani, Martha Wamaitha A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Janicke, B. A1 - Alm, K. A1 - Gjörloff-Wingren, A. A1 - Eriksson, H. T1 - Molecularly Imprinted Polymers Exhibit Low Cytotoxic and Inflammatory Properties in Macrophages In Vitro N2 - Molecularly imprinted polymers (MIPs) against sialic acid (SA) have been developed as a detection tool to target cancer cells. Before proceeding to in vivo studies, a better knowledge of the overall effects of MIPs on the innate immune system is needed. The aim of this study thus was to exemplarily assess whether SA-MIPs lead to inflammatory and/or cytotoxic responses when administered to phagocytosing cells in the innate immune system. The response of monocytic/macrophage cell lines to two different reference particles, Alhydrogel and PLGA, was compared to their response to SA-MIPs. In vitro culture showed a cellular association of SA-MIPs and Alhydrogel, as analyzed by flow cytometry. The reference particle Alhydrogel induced secretion of IL-1b from the monocytic cell line THP-1, whereas almost no secretion was provoked for SA-MIPs. A reduced number of both THP-1 and RAW 264.7 cells were observed after incubation with SA-MIPs and this was not caused by cytotoxicity. Digital holographic cytometry showed that SA-MIP treatment affected cell division, with much fewer cells dividing. Thus, the reduced number of cells after SA-MIP treatment was not linked to SA-MIPs cytotoxicity. In conclusion, SA-MIPs have a low degree of inflammatory properties, are not cytotoxic, and can be applicable for future in vivo studies. KW - Molecularly imprinted polymers KW - Digital holographic cytometry KW - Cytotoxicity KW - Proinflammatory cytokines PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552250 SN - 2076-3417 VL - 12 IS - 12 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Grauel, Bettina A1 - Pons, Monika A1 - Frenzel, Florian A1 - Rissiek, P. A1 - Rücker, Kerstin A1 - Haase, Markus A1 - Resch-Genger, Ute T1 - Yb- and Er concentration dependence of the upconversion luminescence of highly doped NaYF4:Yb,Er/NaYF4:Lu core/shell nanocrystals prepared by a water-free synthesis N2 - High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion (UC) nanocrystals (UCNC) like NaYF4:Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC. UC luminescence (UCL) is, however, controlled not only by dopant concentration, yet by an interplay of different parameters including size, crystal and shell quality, and excitation power density (P). Thus, identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy. Here, we quantify the dopant concentration dependence of the UCL quantum yield (ΦUC) of solid NaYF4:Yb,Er/NaYF4:Lu upconversion core/shell nanocrystals of varying Yb3+ and Er3+ concentrations (Yb3+ series: 20%‒98% Yb3+; 2% Er3+; Er3+ series: 60% Yb3+; 2%‒40% Er3+). To circumvent other luminescence quenching processes, an elaborate synthesis yielding OH-free UCNC with record ΦUC of ~9% and ~25 nm core particles with a thick surface shell were used. High Yb3+ concentrations barely reduce ΦUC from ~9% (20% Yb3+) to ~7% (98% Yb3+) for an Er3+ concentration of 2%, thereby allowing to strongly increase the particle absorption cross section and UCNC brightness. Although an increased Er3+ concentration reduces ΦUC from ~7% (2% Er3+) to 1% (40%) for 60% Yb3+. Nevertheless, at very high P (> 1 MW/cm2) used for microscopic studies, highly Er3+-doped UCNC display a high brightness because of reduced saturation. These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials. KW - Upconverion KW - Nanoparticle KW - Lanthanides KW - Quantum yield PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-551346 SP - 1 EP - 8 PB - Springer AN - OPUS4-55134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Chaudhary, A. A1 - Resch-Genger, Ute T1 - Development of amorphous silica particle based reference materials for surface functional group quantification N2 - Functionalized nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing, electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties.1 Besides other key parameters, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups and ligands, must be considered for a better performance, stability, and processibility of NM, as well as their interaction with the environment. Thus, particle standards with well-designed surfaces and methods for functional group quantification can foster the sustainable development of functional and safe(r) NM.2 Here we provide a brief overview of the ongoing research in division Biophotonics to design tailored amorphous silica reference particles with bioanalytically relevant functional groups and ligands, for the development of standardized and validated surface functional group quantification methods. T2 - Workshop NanoRiskSD project CY - Berlin, Germany DA - 09.06.2022 KW - Nanoparticle KW - Surface analysis KW - Silica KW - Fluorescence KW - Assay PY - 2022 AN - OPUS4-55004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - Krenzer, J. A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Müller, Th. J. J. T1 - Asymmetrically bridged aroyl-S,N-ketene acetalbased multichromophores with aggregationinduced tunable emission N2 - Asymmetrically bridged aroyl-S,N-ketene acetals and aroyl-S,N-ketene acetal multichromophores can be readily synthesized in consecutive three-, four-, or five-component syntheses in good to excellent yields by several successive Suzuki-couplings of aroyl-S,N-ketene acetals and bis(boronic)acid esters. Different aroyl-S,N-ketene acetals as well as linker molecules yield a library of 23 multichromophores with substitution and linker pattern-tunable emission properties. This allows control of different communication pathways between the chromophores and of aggregation-induced emission (AIE) and energy transfer (ET) properties, providing elaborate aggregation-based fluorescence switches. KW - Dye KW - Aggregation KW - Aggregation induced emission KW - Signal enhancement KW - Energy transfer KW - Switch KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Sythesis KW - Nanaoparticle PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550719 VL - 13 SP - 5374 EP - 5381 PB - Royal Society of Chemistry AN - OPUS4-55071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550720 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromer, Ch. A1 - Schwibbert, K. A1 - Gadicherla, A. K. A1 - Thiele, D. A1 - Nirmalananthan-Budau, Nithiya A1 - Laux, P. A1 - Resch-Genger, Ute A1 - Luch, A. A1 - Tschiche, H. R. T1 - Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor N2 - Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods. KW - Dye KW - Fluorescence KW - Signal enhancement KW - Sensor KW - Quantum yield KW - Synthesis KW - Nanoparticle KW - Nano KW - Polymer KW - Ph KW - Biofilm KW - MIC KW - Corrosion KW - Microorganism KW - Bacteria PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550751 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-55075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tuma, Dirk A1 - Shafi, P. M. A1 - Mohapatra, D. A1 - Reddy, V. P. A1 - Dhakal, G. A1 - Kumar, D. R. A1 - Brousse, T. A1 - Shim, J.-J. T1 - Sr- and Fe-substituted LaMnO3 Perovskite: Fundamental insight and possible use in asymmetric hybrid supercapacitor N2 - The symmetry or structural stability of ABO3-type perovskite oxides depends largely on the size of ‘A’ and ‘B’ cations, which determines the material properties. The partial substitution of these cations may be used to tune these properties. The ionic sizes and valence states of the cations play an important role in improving the prop- erties of perovskite. In this study, the substitution of La3+ with Sr2+ with a larger ionic radius and Mn3+ with Fe3+ with a similar ionic radius favored both the crystal symmetry and the mixed ionic–electronic conductivity of the perovskite. Electrodes based on La0.7Sr0.3Mn0.5Fe0.5O3 (LSMFO55) exhibited a faradaic behavior with a specific capacity of 330 C g−1 (92 mAh g−1 ) at 12C rate, while this electrode maintained a capacity of 259 C g−1 at 240C (charge or discharge in 15 s). Additionally, exohedral carbon nano-onions (CNO) were introduced as a negative electrode to design an asymmetric hybrid supercapacitor (AHS) with a widened cell voltage. The use of CNO as a negative electrode in the AHS improved the rate capability drastically compared to the use of rGO. This device maintained a good energy density even at an extra-high charging rate (600C) owing to its outstanding rate capability. The high-rate performance of the LSMFO55//CNO AHS can be elucidated by successful fabrication with a mixed ionic–electronic conductive positive electrode and a CNO negative electrode. Tuning the electronic and ionic conductivities by cationic substitution and adopting an appropriate carbon-derived negative electrode (such as CNO) can provide a practical high-rate hybrid device using various perovskites. KW - Perovskite KW - Carbon nano-onion KW - Supercapacitor PY - 2022 U6 - https://doi.org/10.1016/j.ensm.2021.11.028 SN - 2405-8297 VL - 45 SP - 119 EP - 129 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-54882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaufmann, Jan Ole A1 - Brangsch, J. A1 - Kader, A. A1 - Saatz, Jessica A1 - Mangarova, D. B. A1 - Zacharias, M. A1 - Kempf, W. E. A1 - Schwaar, T. A1 - Wilke, Marco A1 - Adams, L. C. A1 - Möckel, J. A1 - Botnar, R. M. A1 - Taupitz, M. A1 - Mägdefessel, L. A1 - Traub, Heike A1 - Hamm, B. A1 - Weller, Michael G. A1 - Makowski, M. R. T1 - ADAMTS4-specific MR-probe to assess aortic aneurysms in vivo using synthetic peptide libraries N2 - The incidence of abdominal aortic aneurysms (AAAs) has substantially increased during the last 20 years and their rupture remains the third most common cause of sudden death in the cardiovascular field after myocardial infarction and stroke. The only established clinical parameter to assess AAAs is based on the aneurysm size. Novel biomarkers are needed to improve the assessment of the risk of rupture. ADAMTS4 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 4) is a strongly upregulated proteoglycan cleaving enzyme in the unstable course of AAAs. In the screening of a one-bead-one-compound library against ADAMTS4, a low-molecular-weight cyclic peptide is discovered with favorable properties for in vivo molecular magnetic resonance imaging applications. After identification and characterization, it’s potential is evaluated in an AAA mouse model. The ADAMTS4-specific probe enables the in vivo imaging-based prediction of aneurysm expansion and rupture. KW - Peptide KW - Peptide library KW - OBOC library KW - Combinatorial chemistry KW - Peptide aptamers KW - Binding molecule KW - Affinity KW - Synthetic peptides KW - Contrast agent KW - Magnetic resonance imaging KW - One-bead-one-compound library KW - On-chip screening KW - Lab-on-a-chip KW - MALDI-TOF MS KW - SPR KW - Surface plasmon resonance KW - Alanine scan KW - Fluorescence label KW - MST KW - Docking KW - Chelate PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-560930 VL - 13 IS - 1 SP - 1 EP - 18 PB - Springer Nature Limited CY - Heidelberg AN - OPUS4-56093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, Thomas A1 - Hodoroaba, Vasile-Dan T1 - Correlative Analysis by Raman and other Micro & Nanospectroscopic Imaging Techniques N2 - In the present talk the basics of the Raman spectroscopy and particularly of Raman microscopy are explained. Advantages and disadvantages of the method are highlighted through selected case studies. In the second part of the lecture examples of correlative imaging with electron, X-ray, ion and optical microscopies from micro- to the nanoscale are highlighted. T2 - Charisma School on Raman Harmonisation CY - Turin, Italy DA - 19.10.2022 KW - Raman KW - Correlative Imaging KW - Microscopy KW - Hyperspectral imaging PY - 2022 UR - https://amdgroup.inrim.it/events/vamas-sc-meeting-47/program-sc47 AN - OPUS4-56094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Andresen, Elina A1 - Frenzel, Florian A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Upconversion for security tags and future applications N2 - NIR-excitable lanthanide nanocrystals (LnNC) show multi-color emission pattern composed of a multitude of narrow bands of varying intensity in the ultraviolet, visible, near-infrared, and short-wave infrared detectable with miniaturized optical instruments and simple color (RGB) cameras in complex environments. This makes these chemically inert luminescent materials ideal candidates for anticounterfeiting and authentication applications as well as for modules in optical sensors in which the LnNCs can be used as nanolamps in combination with analyte-sensitive fluorophores or the temperature sensitivity of defined emission bands can be utilized. Therefore, we are building up and exploring a platform of LnNC with application-specifically tuned size, composition, and surface chemistry. T2 - SHIFT 2022 CY - La Laguna, Tenerife, Spain DA - 10.10.2022 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence PY - 2022 AN - OPUS4-56229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Kochovski, Z. A1 - Retzmann, Anika A1 - Scoppola, E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - How do transition metal phosphates crystallise? N2 - Industrial and agricultural waste streams (waste waters, sludges, tailings etc.), which contain high concentrations of NH4+, PO43- and transition metals, are environmentally harmful due to their toxic pollutants. At the same time, phosphorus and selective transition metals such as Cobalt could be potentially depleted as a critical raw material due to the high demand and rapidly declining natural ore deposits. Therefore, due to simultaneous scarcity and abundance, the phosphorus and 3d metal recovery from agricultural, industrial, mining, or urban wastewaters have been an important factor in sustaining our global consumption and preservation of the natural environment. Typically, separate pathways have been considered to extract hazardous substances such as transition metals or phosphate, independently from each other. Here, we investigate the crystallization of transition metal phosphate (TMP) compounds (NH4MPO4∙6H2O, M3(PO4)2∙8H2O with M = Ni2+, Co2+, NixCo1-x2+ M-struvite and M-phosphate octahydrate) out of aqueous solutions, which allow for P, ammonia and metal co-precipitation. The precipitation of these compounds from industrial and agricultural waste waters has high potential as a P- and 3d metal recovery route. For this purpose, a detailed understanding of the crystallization process beginning from combination of solved ions and ending in a final crystalline product is required. Through adjusting the reaction conditions, the stability, crystallite size and morphology of the as-obtained TMPs could be controlled. Detailed investigations of the precipitation process in time using ex- and in-situ techniques provided new insights into their non-classical crystallization mechanism/crystal engineering of these materials. These TMPs involve transitional colloidal nanophases during the crystallization process. Over time, their complex amorphous framework changes significantly resulting simultaneously in an agglomeration and densification of the compound. After extended reaction times these colloidal nanophases condensed to a final crystal. However, the reaction kinetics of the formation of a final crystalline product and the lifetime of these intermediate phases vary significantly depending on the metal cation involved in the precipitation process. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P)-ratios, whereas Co tends to form Co-struvite and/or Co-phosphate octahydrate depending on the (M/P)-ratio. The mixed NixCo1-x system shows a significantly different crystallization behavior and reaction kinetics of the precipitation compared to the pure endmembers. The observed various degree of stability could be linked to the octahedral metal coordination environment in these compounds. The achieved level of control over the precipitates, is highly desirable for 3d- and P-recovery methods. Under this paradigm, the crystals can be potentially upcycled as precursor materials for (electro)catalytical applications. T2 - Granada Münster Discussion Meeting (GMDM) CY - Granada, Spain DA - 30.11.2022 KW - Struvite KW - Transition metal KW - Phosphates KW - Amorphous phases KW - Non-classical crystallization PY - 2022 AN - OPUS4-56478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fa, X. A1 - Lin, Sh. A1 - Yang, J. A1 - Shen, Ch. A1 - Liu, Y. A1 - Gong, Y. A1 - Qin, A. A1 - Ou, Jun A1 - Resch-Genger, Ute T1 - −808 nm-activated Ca2+ doped up-conversion nanoparticles that release no inducing liver cancer cell (HepG2) apoptosis N2 - Anear-infrared (NIR) light-triggered release method for nitric oxide (NO) was developed utilizing core/shell NaYF4: Tm/Yb/Ca@NaGdF4:Nd/Yb up-conversion nanoparticles (UCNPs) bearing a mesoporous silica (mSiO2) shell loaded with theNOdonor S-nitroso-N-acetyl-DL-penicillamine (SNAP). To avoid overheating in biological samples, Nd3+ was chosen as a sensitizer, Yb3+ ions as the bridging sensitizer, andTm3+ ions as UV-emissive activator while co-doping with Ca2+ was done to enhance the luminescence of the activatorTm3+.NOrelease from SNAP was triggered by an NIR-UV up-conversion process, initiated by 808nmlight absorbed by the Nd3+ ions.NOrelease was confirmed by the Griess method. Under 808nmirradiation, the viability of the liver cancer cell line HepG2 significantly decreased with increasing UCNPs@mSiO2-SNAP concentration. For a UCNPs@mSiO2-SNAP concentration of 200 μgml−1, the cell survival probability was 47%. These results demonstrate that UCNPs@mSiO2-SNAP can induce the release of apoptosis-inducingNOby NIR irradiation. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Triggered KW - Release KW - Cell KW - PDT KW - Dye KW - Therapy KW - Surface KW - Coating PY - 2022 U6 - https://doi.org/10.1088/2050-6120/ac5524 VL - 10 IS - 2 SP - 1 EP - 9 PB - IOP Publishing AN - OPUS4-54842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547397 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Knigge, Xenia A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Cant, D.J.H. A1 - Shard, A.G. A1 - Clifford, C.A. T1 - Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy N2 - Core–shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. KW - X-ray spectroscopy KW - Nanoparticles KW - Spectroscopy / Instrumentation KW - Spectroscopy / Theory PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-548305 VL - 414 IS - 15 SP - 4331 EP - 4345 PB - SpringerNature AN - OPUS4-54830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, Shan A1 - Wang, T. A1 - Behren, S. A1 - Westerlind, U. A1 - Gawlitza, Kornelia A1 - Persson, J. L. A1 - Rurack, Knut T1 - Sialyl-Tn Antigen-Imprinted Dual Fluorescent Core–Shell Nanoparticles for Ratiometric Sialyl-Tn Antigen Detection and Dual-Color Labeling of Cancer Cells N2 - Sialyl-Tn (STn or sialyl-Thomsen-nouveau) is a carbohydrate antigen expressed by more than 80% of human carcinomas. We here report a strategy for ratiometric STn detection and dual-color cancer cell labeling, particularly, by molecularly imprinted polymers (MIPs). Imprinting was based on spectroscopic studies of a urea-containing green-fluorescent monomer 1 and STn-Thr-Na (sodium salt of Neu5Acα2-6GalNAcα-O-Thr). A few-nanometer-thin green-fluorescent polymer shell, in which STn-Thr-Na was imprinted with 1, other comonomers, and a cross-linker, was synthesized from the surface of red-emissive carbon nanodot (R-CND)-doped silica nanoparticles, resulting in dual fluorescent STn-MIPs. Dual-color labeling of cancer cells was achieved since both red and green emissions were detected in two separate channels of the microscope and an improved accuracy was obtained in comparison with single-signal MIPs. The flow cytometric cell analysis showed that the binding of STn-MIPs was significantly higher (p < 0.001) than that of non-imprinted polymer (NIP) control particles within the same cell line, allowing to distinguish populations. Based on the modularity of the luminescent core–fluorescent MIP shell architecture, the concept can be transferred in a straightforward manner to other target analytes. KW - Cancer KW - Core−shell particles KW - Dual-color labeling glycan KW - Molecular imprinting PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-563106 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-56310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Kimani, Martha A1 - Kislenko, Evgeniia A1 - Rurack, Knut T1 - Fluorescent molecularly imprinted polymer particles for direct detection of glyphosate in organic solvents and water N2 - Glyphosate (GPS) is the most widely used pesticide in the world whose use increased dramatically after the introduction of genetically modified crops engineered to resist its herbicidal action during application. In recent years, there have been growing concerns over its toxicity following its classification by the International Agency for Research on Cancer (IARC) as a probable carcinogen as well as reports of its ecotoxicological effects. This resulted in increased efforts to develop quick and sensitive detection methods. In this work, molecular imprinting was combined with direct fluorescence detection of GPS by improving its solubility in organic solvents using tetrabutylammonium (TBA+) and tetrahexylammonium (THA+) as counterions. To achieve fluorescence detection, a fluorescent crosslinker containing urea binding motifs was used as a probe for GPS-TBA and GPS-THA salts in chloroform, generating stable complexes through hydrogen bond formation. The GPS/fluorescent dye complexes were imprinted into 2–3 nm molecularly imprinted polymer (MIP) shells on the surface of sub-micron silica particles. Thus, the MIP binding behavior could be easily evaluated by fluorescence titrations in suspension to monitor the spectral changes upon addition of the GPS analytes. While MIPs prepared with GPS-TBA and GPS-THA both displayed satisfactory imprinting following titration with the corresponding analytes in chloroform, GPS-THA MIPs displayed better selectivity against competing molecules. Moreover, the THA+ counterion was found to be a more powerful phase transfer agent than TBA+, enabling the direct fluorescence detection and quantification of GPS in water in a biphasic assay. A limit of detection of 1.45 µM and a linear range of 5–55 µM, which matches well with WHO guidelines for the acceptable daily intake of GPS in water (5.32 µM), have been obtained. The assay can be further optimized to allow miniaturization into microfluidic devices and shows potential for on-field applications by untrained personnel. T2 - 36th European Colloid & Interface Society Conference CY - Chania, Greece DA - 04.09.2022 KW - Glyphosate KW - Molecular Imprinting KW - Core-Shell Particles KW - Fluorescent Urea Receptors PY - 2022 AN - OPUS4-56311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya T1 - Functional molecular chromophores and nanomaterials reporters, optical probes, and sensors N2 - •Overview of expertise of division Biophotonics •Functional molecular and nanoscale luminescent reporters, probes, and sensors including design principles available from division Biophotonics •Examples for pH and O2 responsive molecular probes and particle sensors •Surface group quantification Analytical methods and cleavable probes •Concepts & standards for the validation and traceability of optical measurements T2 - FU-Seminar CY - Berlin, Germany DA - 09.12.2022 KW - Particle sensors KW - Surface group quantification KW - Nanoscale luminescent reporters KW - Cleavable probes PY - 2022 AN - OPUS4-56526 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gabler, Mariella T1 - Development of an affinity-based method for the site-selective synthesis of antibody-drug-conjugates N2 - For the site-selective synthesis of ADCs, a variety of obstacles must be overcome. Those include designing bifunctional affinity peptides with reasonably low 𝐾𝑑-values that couple to the mAb in a site-selective manner. These peptides should also include a functional group that links the payload to the mAb under mild conditions without adversely affecting it. The bioconjugation between peptide and antibody and the linker between peptide and payload must be stable and durable to provide safety when used for medical purposes. The usage of metals and organic solvents should be minimized. Within the project, new types of functionalized affinity peptides were designed, and their affinity towards the Fc-fragment was determined. KW - Antibody drug conjugate KW - ADC KW - Human antibody KW - Peptide KW - Linker KW - Toxin KW - Payload KW - Monomethyl Auristatin E KW - MMAE KW - DM1 KW - Click chemistry KW - Copper-catalyzed KW - SDS-PAGE KW - HPLC KW - Trastuzumab KW - Herceptin KW - SPR KW - MALDI-TOF-MS KW - Mertansine KW - Site-selective bioconjugation KW - Affinity PY - 2021 SP - 1 EP - 100 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Herrmann, Stefan T1 - Charakterisierung zweier monoklonaler Antikörper zur Detektion von Sprengstoffen N2 - In 2019 over 30 000 people were killed or injured by explosions caused by explosives like TNT, PETN, HMX and RDX. Therefore, highly sensitive assays for the detection of TNT are needed. In this study we compared two commercially available TNT antibodies: A1.1.1 and EW75C with a highly optimized indirect competitive ELISA based on a BSA-TNA conjugate. As a result, a precision profile for both antibodies was determined with a LOD of 170 pmol L-1 for the clone A1.1.1 and a LOD of 3,2 nmol L-1 for the clone EW75C. The measurements showed that the clone A1.1.1 is a highly sensitive antibody for the detection of TNT while the clone EW75C does show medium performance at most. In the cross-reactivity characterization of both antibodies many substances, closely related to the structure of TNT were tested. Both antibodies showed strong cross reactivity with trinitroaniline and trinitrobenzene. For the clone A1.1.1, which is known to originate from immunization of mice with an TNP-glycine-KLH conjugate, this has to be expected. Interestingly the clone EW75C, which was not characterized yet, showed similar behavior. This suggests a TNA-conjugate as immunogen for the EW75C antibody as well. None of both antibodies showed cross-reactions to the high explosives PETN, HMX and RDX. Also, the cross-reactions of nitro musks with the antibodies were investigated. Despite their prohibition, nitro musks are still used in Asia especially and are particularly popular in India. The overall superior clone A1.1.1 showed a significant cross-reactivity to musk ambrette. For practical reasons the influence of musk ambrette on this assay when used in natural environment should be investigated. In further experiments, the highly sensitive TNT antibody A1.1.1 was digested with papain to obtain monovalent Fab-fragments. Due to its high stability against the digestion, a custom protocol for the IgG1 subclass of mice, to which the clone A1.1.1 belongs, was developed, resulting in a quantitative digestion of the intact antibody to Fab fragments. The success of the digestion was determined with MALDI-TOF-MS and SDS-PAGE. It was shown that this protocol worked for many different antibodies of IgG1 subclass as well. KW - TNT KW - Trinitrotoluol KW - Nitroaromaten KW - Nitromoschus KW - Duftstoffe KW - ELISA KW - Immunoassay KW - Antibody KW - Explosives KW - Klon A1.1.1 KW - Klon EW75C KW - Fab Fragment KW - Kreuzreaktion KW - Crossreactivity KW - Precision Profile KW - Präzisionsprofil KW - Affinity KW - Affinitätskonstante KW - IC50 PY - 2020 SP - 1 EP - 113 PB - Hochschule für Technik und Wirtschaft Berlin - htw CY - Berlin AN - OPUS4-54556 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valderrey, Virginia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Thiourea- and Amino-Substituted Benzoxadiazole Dyes with Large Stokes Shifts as Red-Emitting Probe Monomers for Imprinted Polymer Layers Targeting Carboxylate-Containing Antibiotics N2 - Bifunctional fluorescent molecular oxoanion probes based on the benzoxadiazole (BD) chromophore are described which integrate a thiourea binding motif and a polymerizable 2-aminoethyl methacrylate unit in the 4,7-positions of the BD core. Concerted charge transfer in this electron donor-acceptor-donor architecture endows the dyes with strongly Stokes shifted (up to >250 nm) absorption and fluorescence. Binding of electron-rich carboxylate guests at the thiourea receptor leads to further analyte-induced red-shifts of the emission, shifting the fluorescence maximum of the complexes to ≥700 nm. Association constants for acetate are ranging from 1–5×105 M−1 in acetonitrile. Integration of one of the fluorescent probes through its polymerizable moiety into molecularly imprinted polymers (MIPs) grafted from the surface of submicron silica cores yielded fluorescent MIP-coated particle probes for the selective detection of antibiotics containing aliphatic carboxylate groups such as enoxacin (ENOX) at micromolar concentrations in highly polar solvents like acetonitrile. KW - Molecular imprinting KW - Anion recognition KW - Antibiotics KW - Benzoxadiazole dyes KW - Charge transfer KW - Fluorescence PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545027 SN - 1521-3765 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Döring, Sarah T1 - Vergleichende Darstellung SARS-CoV-2-spezifischer Nanobodys aus unterschiedlichen Wirtsorganismen N2 - Aufgrund der anhaltenden COVID-19-Pandemie werden neutralisierende Therapeutika benötigt. Eine Möglichkeit zur Behandlung stellt die Verwendung monoklonaler Anti-SARS-CoV-2-Immun-globuline dar. Ihre Produktion in Säugetierzellen ist jedoch schwer skalierbar, um den weltweiten Bedarf zu decken. VHH-Antikörper, auch Nanobodys genannt, bieten hierfür eine Alternative, da sie eine hohe Temperaturstabilität aufweisen und eine kostengünstige Produktion in prokaryotischen Wirtsorganismen ermöglichen. KW - E. coli KW - Corona KW - Virus KW - Spike-Protein KW - Nanobody KW - Antikörper KW - Expression KW - Fingerprint KW - Vhh KW - RBD KW - COVID-19 KW - SARS-CoV-2 KW - ELISA KW - MST KW - Halomonas elongata KW - Periplasma KW - SDS-PAGE KW - ACE2-Rezeptor PY - 2021 SP - 1 EP - 111 PB - Technische Universität Berlin CY - Berlin AN - OPUS4-54624 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Le Xuan, Hoa T1 - Gezieltes Crosslinking von Immunglobulinen mit ortspezifischen Bindern N2 - Die neue Crosslinking-Methode ist hilfreich, um Immunglobuline des Isotyps G ortspezifisch an ihrer Bindungsstelle mit Protein A oder G zu konjugieren. Die Kopplungen von Protein A und G konnten erfolgreich an Maus- und Human-IgG durchgeführt, sowie die Bedingungen untersucht und optimiert werden. Die Aktivierung von Protein G mit Glutaraldehyd erfolgt am besten bei pH 8 und die anschließende Kopplung mit Maus-IgG1 bei einem pH-Wert von 6. Jedoch wurden mit SIAB und Sulfo-SIAB als Crosslinker im Vergleich zu Glutaraldehyd noch höhere Signale erhalten. Für die Kopplung von SIAB sind 40% DMSO im Reaktionspuffer günstig, währenddessen Sulfo-SIAB gut wasserlöslich ist daher keine Lösungsvermittler benötigt. Es ergab sich ein optimaler pH-Wert von 7,4 um Protein A mit SIAB zu aktivieren und den gleichen pH-Wert um die Kopplung mit Maus-IgG1 durchzuführen. Für die Kopplung von Protein G mit Maus-IgG1 hingegen zeigten die Experimente, dass ein leicht saurer pH-Wert bei pH 6 für den IgG-Kopplungsschritt am günstigsten ist. Während die Inkubationszeit von Maus-IgG1 mit Protein G bei 16 h liegt, muss mit Protein A bis zu 40 h inkubiert werden, um das Kopplungsmaximum zu erreichen. Des Weiteren wurde das Crosslinking von Human-IgG (Herceptin) mit SIAB untersucht. Dabei zeigte sich, wie in der Abbildung 47 zu sehen ist, dass Protein A und G vergleichbar gut an Human-IgG zu koppeln sind. Für das Crosslinking von Protein G mit Maus-IgG1 ist dagegen ein deutlich besserer Umsatz im Vergleich zu Protein A zu erkennen (Abbildung 48). Heterobifunktionale Linker können mit der reaktiveren Gruppe die erste Bindung eingehen, um erst nach Zugabe eines weiteren Reagenzes die zweite Bindung auszubilden und zudem intramolekulare Reaktionen möglichst zu vermeiden. KW - Antikörper KW - Antibodies KW - Vernetzung KW - Immobilisierung KW - Immobilization KW - Herceptin KW - Human antibodies KW - Therapeutic antibodies KW - Diagnostic antibodies KW - Oriented immobilization PY - 2019 SP - 1 EP - 100 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54658 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bahri, Marwa T1 - Ortsspezifische Biokonjugation von humanen Antikörpern mit IgG-bindenden Peptiden N2 - Es wurde im Rahmen dieser Arbeit eine neue Methode der Biokonjugation entwickelt, die es ermöglicht humane Antikörper ortspezifisch mit IgG-bindenden Peptiden zu konjugieren. Als Basis fungierte ein Peptid, welches für den Einsatz gezielt modifiziert wurde. So sollte am C-Terminus ein Biotin eingefügt werden, dass für die spätere Detektion der Biokonjugation genutzt werden kann, während am N-Terminus ein Cross-Linker für die kovalente Bindung zum Antikörper eingefügt wurde. Das Biotin wurde mittels Biotin-Lysin eingebaut. Dies hat den Vorteil, dass die modifizierte Aminosäure direkt in der SPPS genutzt werden kann. Auch der Cross-Linker soll schon während der SPPS in das Peptid integriert werden. Als Cross Linker wurden die zwei heterobifunktionellen Succinimidyl(3-bromoacetamid)propionate und Succinimidyl(4-iodacetyl)aminobenzoat untersucht. Die Aktivierung des Peptides mit dem SBAP-Cross-Linker erfolgte am besten im pH-Bereich zwischen 7,0 und 9,0. Die Modifizierung des Peptides mit dem Iodid-Cross-Linker SIAB unter den gleichen Bedingungen zeigte allerdings keine zufriedenstellenden Ergebnisse. Da das erste Peptid allerdings in den Folgeexperimenten sehr gute Ergebnisse zeigte, musste kein weiterer Linker getestet werden. Zusätzlich zu der Cross-Linker-Wahl sollte der Abstand zwischen dem Cross-Linker und dem Grundgerüst des Peptides auf den Einfluss der Bindung untersucht werden. Dazu wurden drei Kontrollpeptide synthetisiert, die entweder um zwei Aminosäuren zwischen dem ursprünglichen N-Terminus des Peptides und dem SBAP-Linker verlängert wurden, keinen SBAP-Linker beinhalten oder die Verlängerung ohne SBAP-Linker besaßen. Die erfolgreiche Synthese aller vier Peptide wurde mittels MALDI-TOF-MS bestätigt. KW - Peptide KW - Bioconjugation KW - Crosslinker PY - 2020 SP - 1 EP - 82 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54659 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Linke, Michael T1 - Entwicklung einer magnetischen Anreicherungsmethode für Peptidbibliotheken zur Identifizierung von Proteinbindern N2 - Das Ziel der Arbeit war die Entwicklung einer magnetischen Anreicherungsmethode für eine Bead-basierte Substanzbibliothek zur Identifizierung von Proteinbindern. Im Ramen des Forschungsbelegs wurde bereits eine Anreicherungsmethode für ein Modellsystem einer Peptidbibliothek entwickelt. Das Modellsystem bestand dabei aus zwei verschiedenen Peptiden. Als Positivkontrolle wurde das FLAG-Peptid gewählt, welches selektiv gegen den Anti-FLAG-Antikörper bindet, und ein weiteres Peptid wurde als Negativkontrolle gewählt. Anhand dieses Modellsystems konnte die zuvor entwickelte Anreicherungsmethode von 20.000 auf 1.000.000 Beads vergrößert werden. Hierbei wurde ein Anreicherungsfaktor von 818 und eine gute Wiederfindungsrate von 82% erreicht. KW - Peptide library KW - OBOC library KW - Enrichment KW - Magnetic beads KW - Protein interaction PY - 2018 SP - 1 EP - 86 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54651 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tscheuschner, Georg T1 - Entwicklung einer Methode zur schnellen Identifikation von Antikörpern mittels MALDI-TOF-MS N2 - Im Vergleich zu anderen Proteinen ist die Identifizierung von Antikörpern anhand ihrer Sequenz zum Beispiel mittels "peptide mass fingerprinting" schwierig. Da die Sequenzinformation eines Antikörpers aufgrund der hypersomatischen Mutation während der Affinitätsreifung nicht im Genom eines Organismus gespeichert ist, kann die Aminosäuresequenz nicht auf einfachem Weg der DNA-Sequenzierung gewonnen werden. Das ist nur in seltenen Fällen möglich, wenn dem Endanwender der Zellklon der Antikörper-produzierenden Zelle zugänglich ist. Eine Sequenzierung auf Protein-Ebene ist sehr aufwändig und teuer und wird daher fast nie für die Charakterisierung von analytischen Antikörpern verwendet. Der Mangel an Validierung dieser analytischen Antikörper, die bei Experimenten verwendeten werden, löst aber eine Reihe Probleme aus, die die Wiederholbarkeit dieser Experimente schwierig und in einigen Fällen unmöglich macht. Das sorgt jährlich für verschwendete Forschungsgelder in Milliardenhöhe und hindert den wissenschaftlichen Fortschritt. Ziel der vorliegenden Arbeit war die Entwicklung einer einfachen und schnellen Methode, die es trotzdem ermöglicht, die Identifikation von Antikörpern sicherzustellen. Dazu wurde eine Methode basierend auf dem "peptide mass fingerprinting" gewählt. Das Problem der unbekannten Aminosäuresequenz der Antikörper wurde gelöst, indem lediglich die Peptidmuster der entstehenden Fingerprint-Spektren zur Identifikation herangezogen wurden. MALDI wurde dabei als Ionisationsmethode für die Massenspektrometrie gewählt, da die resultierenden Spektren im Gegensatz zu ESI-MS einfach auszuwerten sind. Auch kann auf eine vorige Trennung der Peptide mittels LC verzichtet werden, was zusätzlich Analysenzeit spart. Für die Proteinspaltung wurde eine simple saure Hydrolyse mittels Ameisensäure gewählt. Im Vergleich zum herkömmlichen Trypsin-Verdau konnten auf zeitraubende Arbeitsschritte wie Denaturierung, Reduktion und Alkylierung der Antikörper verzichtet werden. Die Hydrolyse mittels Ameisensäure wurde bisher nur auf kleine und mittelgroße Proteine angewendet, sodass im ersten Teil dieser Arbeit mehrere Schritte optimiert wurden bevor zufriedenstellende Fingerprint-Spektren von Antikörpern erhalten wurden. KW - Peptide KW - Fingerprint KW - Peptide mass fingerprinting KW - Massenspektrometrie KW - Saure Hydrolyse KW - Festphasenextraktion KW - Protein G KW - Ameisensäure KW - ABID KW - Korrelationsmatrix PY - 2019 SP - 1 EP - 116 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54626 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Ines A1 - Al-Sabbagh, Dominik A1 - Bentrup, U. A1 - Marquardt, Julien A1 - Schmid, Thomas A1 - Scoppola, E. A1 - Kraus, Werner A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill A1 - Weidner, Steffen A1 - Emmerling, Franziska T1 - Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate N2 - A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4] ⋅ 22 H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo−K and the Bi−L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi−Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure. KW - Bismuth KW - In situ EXAFS KW - In situ SAXS/WAXS KW - Lacunary Keggin ion KW - Polyoxometalates KW - Self-assembly PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546823 SN - 0947-6539 VL - 28 IS - 27 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Feldmann, Ines A1 - Emmerling, Franziska T1 - Mix and wait – a relaxed way for synthesizing ZIF-8 N2 - Herein we report the synthesis of a zeolitic imidazolate framework (ZIF-8) by an easy “mix and wait” procedure. In a closed vial, without any interference, the mixture of 2-methylimidazole and basic zinc carbonate assembles into the crystalline product with approx. 90% conversion after 70 h. The reaction exhibits sigmoidal kinetics due to the self-generated water which accelerates the reaction. KW - In-situ analysis KW - Mechanochemistry KW - MOF KW - Synthesis KW - ZIF-8 PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546841 VL - 12 SP - 8940 EP - 8944 PB - Royal Society of Chemistry AN - OPUS4-54684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Fa, X. A1 - Yang, J. A1 - Cheng, Z. A1 - Ansari, A. A. A1 - Ou, Jun A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Preparation of core–shell structured NaYF4:Yb3+/ Tm3+@NaYF4:Yb3+/Er3+ nanoparticles with high sensitivity, low resolution and good reliability and application of their fluorescence temperature properties N2 - A series of NaYF4:Yb3+/Tm3+@NaYF4:Yb3+/Er3+ nanoparticles doped with Tm3+ and Er3+ were successfully prepared by the solvothermal method. Under 980 nm laser excitation, intense upconversion emission peaks of Tm3+ and Er3+ were observed for all samples. By doping Tm3+ and Er3+ with core–shell partitioning, not only a significant increase in fluorescence intensity could be achieved, but also simultaneous temperature measurements on multiple thermocouple energy levels could be realised. In addition, the temperature sensing performance of different thermocouple energy levels was also investigated, and it was found that the 3 F3 → 3 H6 and 1 G4 → 3 F4 thermocouple energy level pairs of Tm3+ were the best, with maximum absolute sensitivity and maximum relative sensitivity of up to 0.0250 K−1 and 2.155% K−1 respectively, higher than the sensitivity of other thermocouple energy levels. It has a temperature resolution of less than 0.0139 K, which is lower than that of most materials available today. By using this material as a probe to build a fiber optic temperature sensor platform, it was found to have reliable temperature measurement performance. KW - Flourescence KW - Optical probe KW - Sensor KW - Dye KW - Temperature KW - Nano KW - Particle KW - Upconversion KW - Lanthanide KW - Qantum yield KW - Quality assurance KW - Monitoring KW - Infrastructure PY - 2022 U6 - https://doi.org/10.1039/d1ce01729b VL - 24 IS - 9 SP - 1752 EP - 1763 PB - RSC Publishing AN - OPUS4-54416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bastos, V. A1 - Oskoei, P. A1 - Andresen, Elina A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Oliveira, H. T1 - Stability, dissolution, and cytotoxicity of NaYF4‑upconversion nanoparticles with different coatings N2 - Upconversion nanoparticles (UCNPs) have attracted considerable attention owing to their unique photophysical properties. Their utilization in biomedical applications depends on the understanding of their transformations under physiological conditions and their potential toxicity. In this study, NaYF4: Yb,Er UCNPs, widely used for luminescence and photophysical studies, were modified with a set of four different coordinatively bound surface ligands, i.e., citrate, alendronate (AA), ethylendiamine tetra(methylene phosphonate) (EDTMP), and poly(maleic anhydride-alt-1-octadecene) (PMAO), as well as silica coatings with two different thicknesses. Subsequently, the aging-induced release of fluoride ions in water and cell culture media and their cytotoxic profile to human keratinocytes were assessed in parallel to the cytotoxic evaluation of the ligands, sodium fluoride and the lanthanide ions. The cytotoxicity studies of UCNPs with different surface modifications demonstrated the good biocompatibility of EDTMP-UCNPs and PMAO-UCNPs, which is in line with the low amount of fluoride ions released from these samples. An efficient prevention of UCNP dissolution and release of cytotoxic ions, as well as low cytotoxicity was also observed for UCNPs with a sufficiently thick silica shell. Overall, our results provide new insights into the understanding of the contribution of surface chemistry to the stability, dissolution behavior, and cytotoxicity of UCNPs. Altogether, the results obtained are highly important for future applications of UCNPs in the life sciences and bioimaging studies. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Excitation power density KW - Surface chemistry KW - Coating PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-544681 SN - 2045-2322 VL - 12 SP - 1 EP - 13 PB - Springer Nature CY - London AN - OPUS4-54468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Liehr, Sascha T1 - ANNforPAT - Artificial Neural Networks for Process Analytical Technology N2 - This code accompanies the paper "Artificial neural networks for quantitative online NMR spectroscopy" published in Analytical and Bioanalytical Chemistry (2020). KW - Artificial neural networks KW - Automation KW - Online NMR spectroscopy KW - Process industry KW - Real-time process monitoring PY - 2020 UR - https://github.com/BAMresearch/ANNforPAT PB - GitHub CY - San Francisco AN - OPUS4-54481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bandi, V.G. A1 - Luciano, M.P. A1 - Saccomano, M. A1 - Patel, N.L. A1 - Bischof, Th. S. A1 - Lingg, J.G.P. A1 - Tsrunchev, P.T. A1 - Nix, M.N. A1 - Ruehle, Bastian A1 - Sanders, C. A1 - Riffle, L. A1 - Robinson, C.M. A1 - Difilippantonio, S. A1 - Kalen, J.D. A1 - Resch-Genger, Ute A1 - Ivanic, J. A1 - Bruns, O.T. A1 - Schnermann, M. T1 - Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines N2 - Recent progress has shown that using wavelengths between 1,000 and 2,000 nm, referred to as the shortwave-infrared or near-infrared (NIR)-II range, can enable high-resolution in vivo imaging at depths not possible with conventional optical wavelengths. However, few bioconjugatable probes of the type that have proven invaluable for multiplexed imaging in the visible and NIR range are available for imaging these wavelengths. Using rational design, we have generated persulfonated indocyanine dyes with absorbance maxima at 872 and 1,072 nm through catechol-ring and aryl-ring fusion, respectively, onto the nonamethine scaffold. Multiplexed two-color and three-color in vivo imaging using monoclonal antibody and dextran conjugates in several tumor models illustrate the benefits of concurrent labeling of the tumor and healthy surrounding tissue and lymphatics. These efforts are enabled by complementary advances in a custom-built NIR/shortwave-infrared imaging setup and software package for multicolor real-time imaging. KW - Photoluminescence KW - Fluorescence KW - Dye KW - Cyanine KW - Antibody KW - Bioconjugate KW - Conjugate KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - NIR KW - SWIR KW - Mechanism KW - Imaging KW - Application KW - Contrast agent KW - Bioimaging PY - 2021 U6 - https://doi.org/10.1038/s41592-022-01394-6 VL - 19 IS - 3 SP - 353 EP - 358 PB - Nature Research AN - OPUS4-54465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunc, F. A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Sung, Y. A1 - Johnston, L.J. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on the Quantification of Total and Accessible Amine Groups on Silica Nanoparticles with qNMR and Optical Assays N2 - Risk assessment of nanomaterials requires not only standardized toxicity studies but also validated methods for nanomaterial surface characterization with known uncertainties. In this context, a first bilateral interlaboratory comparison on Surface group quantification of nanomaterials is presented that assesses different reporter-free and labeling methods for the quantification of the total and accessible number of amine functionalities on commercially available silica nanoparticles that are widely used in the life sciences. The overall goal of this comparison is the identification of optimum methods as well as achievable measurement uncertainties and the comparability of the results across laboratories. We also examined the robustness and ease of implementation of the applied analytical methods and discussed method-inherent limitations. In summary, this comparison presents a first step toward the eventually required standardization of methods for surface group quantification. KW - Nano KW - Nanomaterial KW - Surface KW - Method KW - QNMR KW - Quantification KW - Comparison KW - Quality assurance KW - Optical probe KW - Sensor KW - Interlabority comparison KW - Standardization KW - Optical assay KW - Functional group analysis KW - Silica KW - Particle KW - Safety KW - Environment PY - 2021 U6 - https://doi.org/10.1021/acs.analchem.1c02162 SN - 1520-6882 VL - 93 IS - 46 SP - 15271 EP - 15278 PB - ASC Publications AN - OPUS4-53818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Generalized Analysis Approach of the Profile Roughness by Electron Microscopy with the Example of Hierarchically Grown Polystyrene–Iron Oxide–Silica Core–Shell–Shell Particles N2 - The roughness as a property of core–shell (CS) microparticles plays a key role in their functionality. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task with approaches using electron microscopy images being scarce and showing pronounced differences in terms of methodology and results. This work presents a generalized method for the reliable roughness determination of nonplanar specimens such as CS particles from electron microscopic images, the method being robust and reproducible with a high accuracy. It involves a self-written software package (Python) that analyzes the recorded images, extracts corresponding data, and calculates the roughness based on the deviation of the identified contour. Images of single particles are taken by a dual mode scanning electron microscopy (SEM) setup which permits imaging of the same field-of-view of the sample with high resolution and surface sensitive in SE InLens mode as well as in transmission mode (TSEM). Herein, a new type of polystyrene core–iron oxide shell–silica shell particles is developed to serve as a set of lower micrometer-sized study objects with different surface roughness; the analysis of their images by the semiautomatic workflow is demonstrating that the particles’ profile roughness can be quantitatively obtained. KW - Core–shell particles KW - Image analysis KW - Nanoparticles KW - Roughness KW - SEM KW - transmission mode PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542576 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Safarov, J. A1 - Tuma, Dirk A1 - Müller, K. T1 - Thermophysical properties of the paramagnetic ionic liquid 1-butyl-3-methylimidazolium tetrachloroferrate over an extended range of temperature and pressure N2 - The paramagnetic ionic liquid 1-butyl-3-methylimidazolium tetrachloroferrate [BMIM][FeCl4] was subject to multiple high-precision thermophysical property measurements under both ambient and high pressure. Density rho(p0,T) / kg m-3 and speed of sound u(p0,T) / m s-1 data at ambient pressure were recorded at temperatures T = (278.15 to 343.16) K using a DSA 5000 M combined vibrating tube densimeter and speed of sound analyser with a standard uncertainty of delta rho(p0,T) = ±0.001 kg m-3 and delta u(p0,T) = ±0.1 m s-1, respectively. High-pressure volumetric (p,rho,T) data were measured on an Anton Paar DMA HPM vibrating tube densimeter at T = (273.16 to 413.15) K and at pressures up to p = 140 MPa with an estimated experimental relative combined average percentage deviation (APD) of delta rho(p,T) / rho(p,T) = ±(0.01 to 0.08) %. The specific isobaric heat capacity cp(p0,T) / J kg-1 K-1, a caloric property, was determined at T = (273.15 to 413.15) K with an uncertainty delta cp / cp = ±0.5 % using a Perkin Elmer Pyris 1 DSC differential scanning calorimeter. To gain knowledge of transport properties, the dynamic viscosity eta(p0,T) / mPa s at ambient pressure was recorded at T = (275.03 to 413.18) K by an Anton Paar SVM 3000 Stabinger viscometer and additionally an Anton Paar rheometer MCR 302 device with uncertainties of delta eta / eta = ±0.35 % and delta eta / eta = ±1 %, respectively. The obtained data were first correlated by empirical polynomial equations of state and further processed by the application of classic thermodynamic potentials to determine isothermal compressibility kappa T(p,T) / MPa-1, isobaric thermal expansivity alpha p(p,T) / K-1, thermal pressure coefficient gamma(p,T) / MPa K-1, internal pressure pint(p,T) / MPa, specific heat capacity at constant pressure cp(p,T) / J kg-1 K-1 and at constant volume cv(p,T) / J kg-1 K-1, the difference of isobaric and isochoric heat capacity (cp–cv)(p,T) / J kg-1 K-1, speed of sound u(p,T) / m s-1 and ultimately isentropic exponent kappa s(p,T). This work extends knowledge about the thermophysical properties of [BMIM][FeCl4] particularly to high temperatures and pressures. KW - Ionic liquid KW - Volumetric properties KW - Transport properties KW - Caloric properties PY - 2022 U6 - https://doi.org/10.1016/j.molliq.2021.117939 SN - 0167-7322 VL - 346 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam AN - OPUS4-54228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Metasurface-Enhanced Photon Upconversion upon 1550 nm Excitation N2 - Photon upconversion upon 1550 nm excitation is of high relevance for applications in the third biological excitation window, for photovoltaics beyond current limitations, and enables appealing options in the field of glass Fiber telecommunications. Trivalent doped erbium ions (Er3+) are the material of choice for 1550 nm excited upconversion, however, they suffer from a low absorption cross-section and a low brightness. Therefore, the ability of Silicon metasurfaces to provide greatly enhanced electrical near-fields is employed to enable efficient photon upconversion even at low external Illumination conditions. Hexagonally shaped β-NaYF4:Er3+ nanoparticles are placed on large-area silicon metasurfaces designed to convert near-infrared (1550 nm) to visible light. More than 2400-fold enhanced photon upconversion luminescence is achieved by using this metasurface instead of a planar substrate. With the aid of optical simulations based on the finite-element method, this result is attributed to the coupling of the excitation source with metasurface resonances at appropriate incident angles. Analysis of the excitation power density dependence of upconversion luminescence and red-to-green-emission ratios enables the estimation of nanoscale near-field enhancement on the metasurface. The findings permit the significant reduction of required external excitation intensities for photon upconversion of 1550 nm light, opening perspectives in biophotonics, telecommunication, and photovoltaics. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Single enhancement KW - SWIR KW - Method PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-537193 SN - 2195-1071 VL - 9 IS - 24 SP - 2101285 PB - Wiley-VCH-GmbH AN - OPUS4-53719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Gornushkin, Igor B. A1 - Baensch, Franziska A1 - Rethmeier, Michael T1 - In-situ Prozessüberwachung beim Laser-Pulver-Auftragschweißen (LPA) mittels Thermografie, optischer Emissionsspektroskopie (OES) und Schallemissionsanalyse (SEA) N2 - Vor allem in den letzten Jahren ist das Interesse der Industrie an der additiven Fertigung deutlich gestiegen. Die Vorteile dieser Verfahren sind zahlreich und ermöglichen eine ressourcenschonende, kundenorientierte Fertigung von Bauteilen, welche zur stetigen Entwicklung neue Anwendungsbereiche und Werkstoffe führen. Aufgrund der steigenden Anwendungsfälle, nimmt auch der Wunsch nach Betriebssicherheit unabhängig von anschließenden kostenintensiven zerstörenden und zerstörungsfreien Prüfverfahren zu. Zu diesem Zweck werden im Rahmen des von der BAM durchgeführten Themenfeldprojektes „Prozessmonitoring in Additive Manufacturing“ verschiedenste Verfahren auf ihre Tauglichkeit für den in-situ Einsatz bei der Prozessüberwachung in der additiven Fertigung untersucht. Hier werden drei dieser in-situ Verfahren, die Thermografie, die optische Emissionsspektroskopie und die Schallmissionsanalyse für den Einsatz beim Laser-Pulver-Auftragschweißen betrachtet. T2 - 41. Assistentenseminar der Füge- und Schweißtechnik CY - Magdeburg, Germany DA - 02.09.2020 KW - Laser-Pulver-Auftragschweißen (LPA) KW - Thermographie KW - Optische Emissionsspektroskopie (OES) KW - Schallemissionsanalyse (SEA) PY - 2021 SN - 978-3-96144-141-9 VL - 370 SP - 132 EP - 140 PB - DVS MEdia CY - Düsseldorf AN - OPUS4-53967 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daly, H.C A1 - Matikonda, S.S A1 - Steffens, H.C A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Ivanic, J. A1 - Schermann, M.J T1 - Daly_Photochem Photobiol 2021_Ketone Incorporation Extends the Emission Properties of the Xanthene Scaffold N2 - Imaging in the shortwave-infrared region (SWIR, λ = 1000–2500 nm) has the potential to enable deep tissue imaging with high resolution. Critical to the development of these Methods is the identification of low molecular weight, biologically compatible fluorescent probes that emit beyond 1000 nm. Exchanging the bridging oxygen atom on the xanthene scaffold (C10’ position) with electron withdrawing groups has been shown to lead to significant redshifts in absorbance and emission. Guided by quantum chemistry computational modeling studies, we investigated the installation of a Ketone bridge at the C10’ position. This simple modification extends the absorbance maxima to 860 nm and the emission beyond 1000 nm, albeit with reduced photon output. Overall, These studies demonstrate that broadly applied xanthene dyes can be extended into the SWIR range. KW - Flourescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Reliability KW - Method KW - Quality assurance PY - 2021 U6 - https://doi.org/10.1111/php.13544 SN - 1751-1097 VL - 98 IS - 2 SP - 325 EP - 333 PB - Wiley Online Library AN - OPUS4-54080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Pauli, Jutta A1 - Weigert, Florian T1 - Quantitative optical-spectroscopic characterization of luminescent nanomaterials - Photoluminescence Quantum Yields N2 - Accurate and quantitative photoluminescence measurements are mandatory for the comparison of different emitter classes and the rational design of the next generation of molecular and nanoscale reporters as well as for most applications relying on their luminescence features in the life and material sciences and nanobiophotonics. In the following, procedures for the determination of the spectroscopic key parameter photoluminescence quantum yield, i.e., the number of emitted per absorbed photons, in the UV/vis/NIR/SWIR are presented including pitfalls and achievable uncertainties and material-specific effects related to certain emitter classes are addressed. Special emphasis is dedicated to luminescent nanocrystals. T2 - International Workshop on "Emerging Nanomaterials for Displays and SSL" CY - Dresden, Germany DA - 11.11.2021 KW - Nano KW - Nanomaterial KW - Nanocrystal KW - Semiconductor quantum dot KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Brightness KW - NIR KW - SWIR KW - Method KW - Uncertainty KW - Rreference material PY - 2021 AN - OPUS4-53783 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Enhanced photon upconversion using erbium-doped nanoparticles interacting with silicon metasurfaces N2 - Photon upconversion (UC) using trivalent erbium (Er+3) doped crystals is a promising concept to harness near infrared photons of the solar spectrum which cannot be directly absorbed by silicon solar cells. However, their UC efficiency at low-intensity 1 sun illumination is not relevant on device level so far. Exploiting giant near-field enhancement effects on metasurfaces is an appealing approach to enable efficient UC at low irradiance conditions. Here, we report on more than 1000-fold enhanced photon UC of NaYF4:Er+3 nanoparticles interacting with the near-fields supported by a silicon metasurface under 1550 nm excitation. T2 - 48th Photovoltaic Specialists Conference (PVSC) CY - Online meeting DA - 20.06.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer KW - Photonic crystal KW - Enhancement strategy PY - 2021 U6 - https://doi.org/10.1109/pvsc43889.2021.9518495 SP - 1 EP - 3 PB - IEEE CY - Berlin AN - OPUS4-53786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Frenzel, Florian A1 - Würth, Christian A1 - Grauel, Bettina A1 - Hirsch, T. A1 - Haase, M. T1 - Measuring the Upconversion Luminescence of Ensemble and Single Particle Lanthanide-Based Upconversion Nanocrystals N2 - Lanthanide-based upconversion nanoparticles (UCNPs) like hexagonal 𝛽-NaYF4 UCNPs doped with Yb3+ and Er3+, which efficiently convert 976 nm light to ultraviolet, visible, and near infrared photons, offer new strategies for luminescence-based sensing, barcoding, and Imaging. Their upconversion (UC) luminescence (UCL) features like UCL intensity, quantum yield, relative spectral distribution / UCL luminescence color, and luminescence decay kinetics are, however, strongly influenced by particle size, dopant ion concentration, particle architecture, surface chemistry including presence and thickness of surface passivation and shielding shells, microenvironment/presence of quenchers with high energy vibrations, and excitation power density (P). We present here a comprehensive study of the influence of excitation power density on the UCL features of different types of UCNPs, focusing on Yb3+ and Er3+ co-doped NaYF4 core-only and core-shell nanostructures with different sizes and doping ion concentration, which underlines the importance of P-dependent optimum dopant concentrations for UCNP performance and the potential of P-tuning of UCL. T2 - Materials Challenges in Alternative & Renewable Energy 2021 (MCARE 2021) CY - Online meeting DA - 19.07.2021 KW - Fluorescence KW - Lifetime KW - Method KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Upconversion KW - Nano KW - Particle KW - Single particle spectroscopy KW - Quantum yield KW - Microscopy KW - Photophysics PY - 2021 AN - OPUS4-53111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - May, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - Communication of Bichromophore Emission upon Aggregation – Aroyl-S,N-ketene Acetals as Multifunctional Sensor Merocyanines N2 - Aroyl-S,N-ketene acetal-based bichromophores can be readily synthesized in a consecutive three-component synthesis in good to excellent yields by condensation of aroyl chlorides and an N-(p-bromobenzyl) 2-methyl benzothiazolium salt followed by a Suzuki coupling, yielding a library of 31 bichromophoric fluorophores with substitution patterntunable emission properties. Varying both chromophores enables different communication pathways between the chromophores, exploiting aggregation-induced emission (AIE) and energy transfer (ET) properties, and thus, furnishing aggregation-based fluorescence switches. Possible applications range from fluorometric analysis of alcoholic beverages to pH sensors. KW - Dye KW - Fluorescence KW - Aggregation induced emission KW - Signal enhancement KW - Energy transfer KW - Switch KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Synthesis PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-531123 VL - 27 IS - 53 SP - 13426 EP - 13434 PB - Wiley-VCH AN - OPUS4-53112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Nirmalananthan-Budau, Nithiya A1 - Weigert, Florian A1 - Götze, J. P. A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores N2 - The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects. KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Theory KW - Quantum yield KW - Mechanism KW - Quantum chemistry KW - Modelling KW - Aggregation KW - Lifetime KW - Single particle KW - Microscopy KW - Solid KW - Crystal PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-531138 SP - 1 EP - 9 PB - Royal Society of Chemistry AN - OPUS4-53113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Soraya A1 - Hülagü, Deniz A1 - Bennet, Francesca A1 - Carl, Peter A1 - Flemig, Sabine A1 - Schmid, Thomas A1 - Schenk, J. A. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf T1 - Electrochemical Immunomagnetic Ochratoxin A Sensing: Steps Forward in the Application of 3,3’,5,5’- Tetramethylbenzidine in Amperometric Assays N2 - Electrochemical methods offer great promise in meeting the demand for user-friendly on-site devices for Monitoring important parameters. The food industry often runs own lab procedures, for example, for mycotoxin analysis, but it is a major goal to simplify analysis, linking analytical methods with smart technologies. Enzyme-linked immunosorbent assays, with photometric detection of 3,3’,5,5’-tetramethylbenzidine (TMB),form a good basis for sensitive detection. To provide a straightforward approach for the miniaturization of the detectionstep, we have studied the pitfalls of the electrochemical TMB detection. By cyclic voltammetry it was found that the TMB electrochemistry is strongly dependent on the pH and the electrode material. A stable electrode response to TMB could be achieved at pH 1 on gold electrodes. We created a smartphonebased, electrochemical, immunomagnetic assay for the detection of ochratoxin A in real samples, providing a solid basis forsensing of further analytes. KW - Ochratoxin A KW - Amperometry KW - Cyclic voltammetry KW - Electrochemistry KW - Immunoassay PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-530421 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. VL - 8 IS - 13 SP - 2597 EP - 2606 AN - OPUS4-53042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Iqbal, S. A1 - Mady, A. H. A1 - Kim, Y.-I. A1 - Javed, U. A1 - Shafi, P. M. A1 - Nguyen, V. Q. A1 - Hussain, I. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Self-templated hollow nanospheres of B-site engineered non-stoichiometric perovskite for supercapacitive energy storage via anion-intercalation mechanism N2 - The continual increase in energy demand and inconsistent supply have attracted attention towards sustainable energy storage/conversion devices, such as electrochemical capacitors with high energy densities and power densities. Perovskite oxides have received significant attention as anion-intercalation electrode materials for electrochemical capacitors. In this study, hollow nanospheres of nonstoichiometric cubic perovskite fluorides, KNi1-xCoxF3-delta (x = 0.2; delta = 0.33) (KNCF-0.2) have been synthesized using a localized Ostwald ripening. The electrochemical performance of the non-stoichiometric perovskite has been studied in an aqueous 3 M KOH electrolyte to categorically investigate the fluorine-vacancy-mediated charge storage capabilities. High capacities up to 198.55 mA h g-1 or 714.8 C g-1 (equivalent to 1435 F g-1) have been obtained through oxygen anion-intercalation mechanism (peroxide pathway, O-). The results have been validated using ICP (inductively coupled Plasma mass spectrometry) analysis and cyclic voltammetry. An asymmetric supercapacitor device has been fabricated by coupling KNCF-0.2 with activated carbon to deliver a high energy density of 40 W h kg-1 as well as excellent cycling stability of 98 % for 10,000 cycles. The special attributes of hollow-spherical, non-stoichiometric perovskite (KNCF-0.2) have exhibited immense promise for their usability as anion-intercalation type electrodes in supercapacitors. KW - Nanospheres KW - Perovskite KW - Supercapacitor PY - 2021 U6 - https://doi.org/10.1016/j.jcis.2021.03.147 SN - 0021-9797 VL - 600 SP - 729 EP - 739 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-52873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute T1 - Tumore abbilden, Biomarker nachweisen, Messungen standardisieren N2 - Zu den am häufigsten eingesetzten Analysemethoden in den Lebens- und Materialwissenschaften gehören Lumineszenzmethoden. Sie nutzen die Emission von Licht nach Absorption von Energie, um Signale zu erzeugen, und umfassen spektroskopische und mikroskopische Messungen. KW - Quality assurance KW - Sensor KW - Imaging KW - Reference material KW - Nano KW - Particle KW - Nanomaterial KW - Upconversion KW - Nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Excitation KW - Power density KW - Single particle KW - Brightness KW - NIR PY - 2021 SP - 75 EP - 77 PB - GDCH AN - OPUS4-53526 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Krumrey, Julian Frederic A1 - Hodoroaba, Vasile-Dan T1 - Workflow towards automated segmentation of agglomerated, non‑spherical particles from electron microscopy images using artificial neural networks N2 - We present a workflow for obtaining fully trained artificial neural networks that can perform automatic particle segmentations of agglomerated, non-spherical nanoparticles from scanning electron microscopy images “from scratch”, without the need for large training data sets of manually annotated images. The whole process only requires about 15 minutes of hands-on time by a user and can typically be finished within less than 12 hours when training on a single graphics card (GPU). After training, SEM image analysis can be carried out by the artificial neural network within seconds. This is achieved by using unsupervised learning for most of the training dataset generation, making heavy use of generative adversarial networks and especially unpaired image-to-image translation via cycle-consistent adversarial networks. We compare the segmentation masks obtained with our suggested workflow qualitatively and quantitatively to state-of-the-art methods using various metrics. Finally, we used the segmentation masks for automatically extracting particle size distributions from the SEM images of TiO2 particles, which were in excellent agreement with particle size distributions obtained manually but could be obtained in a fraction of the time. KW - Electron microscopy KW - Neural networks KW - Artificial intelligence KW - Image segmentation KW - Automated image analysis PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-522454 VL - 11 IS - 1 SP - 4942 PB - Springer Nature AN - OPUS4-52245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rühle, Bastian A1 - Krumrey, Julian Frederic A1 - Hodoroaba, Vasile-Dan T1 - Dataset accompanying the publication "Workflow towards automated segmentation of agglomerated, non-spherical particles from electron microscopy images using artificial neural networks" N2 - This dataset accompanies the following publication, first published in Scientific Reports (www.nature.com/articles/s41598-021-84287-6): B. Ruehle, J. Krumrey, V.-D. Hodoroaba, Scientific Reports, Workflow towards Automated Segmentation of Agglomerated, Non-Spherical Particles from Electron Microscopy Images using Artificial Neural Networks, DOI: 10.1038/s41598-021-84287-6 It contains electron microscopy micrographs of TiO2 particles, the corresponding segmentation masks, and their classifications into different categories depending on their visibility/occlusion. Please refer to the publication and its supporting information for more details on the acquisition and contents of the dataset, as well as the GitHub repository at https://github.com/BAMresearch/automatic-sem-image-segmentation KW - Electron microscopy KW - Neural networks KW - Image segmentation KW - Automated image analysis PY - 2021 U6 - https://doi.org/10.5281/zenodo.4563942 PB - Zenodo CY - Geneva AN - OPUS4-52246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fiedler, Saskia A1 - Tserkezis, C. A1 - Wolff, C. A1 - Mortensen, N. A. A1 - Raza, S. A1 - Stamatopoulou, E. P. A1 - Sugimoto, H. A1 - Fuji, M. T1 - Cathodoluminescence of Silicon Nanoparticles N2 - In this work, Mie resonances in single Si nanoparticles (NPs) of different sizes have been systematically studied, using dark field (DF) and cathodoluminescence (CL) spectroscopy. An analytical method has been developed to compare experiment with theory. Experimental CL spectra are averaged over entire Si NPs, allowing for direct comparison to DF spectra of identical NPs. Theoretical spectra clarify the assignment of Mie resonances within the NP which contribute with different intensity in DF and CL, resulting in an apparent spectral shift. Furthermore, a substrate effect appears. A 100 nm-Si NP on 15 nm SiN results in a broad peak, spectrally in between that of the calculated electric and magnetic dipole, a NP on 50 nm SiN exhibits two separated peaks as theoretically predicted. High spatial resolution of electron beam excitation allows to study the spectral CL changes at varying beam impact parameters. Theory and experiment agree that depending on beam position within a small Si NP, relative intensity of electric and magnetic dipole change; electric dipole vanishing in the center of the NP. Similar results are found for larger (d = 210 nm) Si NPs although the mode assignment is challenging as higher order modes appear and overlap with others. In conclusion, comparison of CL and DF spectra is not trivial, in fact, excitation/radiation of distinct Mie resonances within a single Si NP are dependent on beam placement. However, substrate effects need to be considered in CL. T2 - European Material Research Society Fall Meeting 2021 CY - Online meeting DA - 20.09.21 KW - Cathodoluminescence KW - Silicon nanoparticles KW - Mie resonances PY - 2021 AN - OPUS4-53439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - López de Ipina, J.-M. A1 - Arevalillo, A. A1 - Martín, A. A1 - Caillard, B. A1 - Marcoulaki, E. A1 - Aguerre- Charol, O. A1 - van Duuren-Stuurman, B. A1 - Hodoroaba, Vasile-Dan A1 - Viitanen, A.-K. A1 - Witters, H. A1 - Vercauteren, S. A1 - Persson, K. A1 - Bard, D. A1 - Evans, G. A1 - Jensen, K.A. A1 - Himly, M. A1 - Scalbi, S. A1 - Papin, A. A1 - Le Bihan, O. A1 - Kanerva, T. A1 - Tirez, K. A1 - Frijns, E. A1 - Niga, P. A1 - Eleftheriadis, K. A1 - Travlos, A. A1 - Geppert, M. A1 - Himly, M. A1 - Radnik, Jörg A1 - Kuchenbecker, Petra A1 - Resch-Genger, Ute A1 - Fraboulet, I. A1 - Bressot, C. A1 - Rissler, J. A1 - Gaucher, R. A1 - Binotto, G. A1 - Krietsch, Arne A1 - Braun, A. A1 - Abenet, S. A1 - Catalan, J. A1 - Verstraelen, S. A1 - Manier, N. A1 - Manzo, S. A1 - Fransman, S. A1 - Queron, J. A1 - Charpentier, D. A1 - Taxell, D. A1 - Säämänen, A. A1 - Brignon, J.-M. A1 - Jovanovic, A. A1 - Bisson, M A1 - Neofytou, P. T1 - EC4Safenano - Catalogue of Services N2 - The publicly available document encapsulates the first version of the Catalogue of Services of the future EC4Safenano Centre (CoS 2019). The CoS 2019 is structured in 12 Service Categories and 27 Service Topics, for each of the 12 categories considered. This architecture configures a 12 x 27 matrix that allows ordering the potential EC4Safenano offer in 324 types of services/groups of services. Each type of service/group of services is described, in a simple and friendly way, by means of a specific service sheet: the EC4Safenano - Service Data Sheet (EC4-SDS). These EC4-SDSs allow structuring and summarizing the information of each service, providing the customer with a concise view of characteristics of the service and also the contact details with the service provider. The CoS 2019 deploys a map of services consisting of a set of 100 EC4-SDSs, covering 7 of the 12 Service Categories and 17 of the 27 Service Topics. The harmonization of services is visualized as a future necessary step in EC4Safenano, in order to strengthen the offer and provide added value to customers with a growing offer of harmonized services in future versions of the CoS. The information contained in this document is structured in 3 main sections, as follows: • Catalogue structure. This section describes in short the main characteristics of the CoS 2019. • Catalogue content. This section represents the core part of the document and encapsulates the set of 100 SDSs displaying the offer proposed by the CoS 2019. • Online Catalogue. This section describes the resources implemented by EC4Safenano to facilitate the on-line consultation of the CoS 2019 by customers and other interested parties. KW - Nano-safety KW - Analytical services KW - Nanomaterials KW - Catalogue of services KW - EC4SafeNano KW - European Centre PY - 2021 UR - https://ec4safenano.eu-vri.eu/Public/Guidance SP - 1 EP - 72 PB - EU-VRi – European Virtual Institute for Integrated Risk Management CY - Stuttgart, Germany AN - OPUS4-52943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Vergleich der Messungen der Schmelzbadtemperatur bei der Additiven Fertigung von Metallen mittels IR-Spektroskopie und Thermografie T1 - Comparison of measurements of the melt pool temperature during the additive production of metals by means of IR spectroscopy and thermography N2 - Im Rahmen des Themenfeldprojektes „Process Monitoring of AM“ (ProMoAM) evaluiert die Bundesanstalt für Materialforschung und -Prüfung (BAM) gegenwärtig die Anwendbarkeit verschiedenster ZfP-Verfahren zur in-situ Prozessüberwachung in der additiven Fertigung (AM) von Metallen in Hinblick auf die Qualitätssicherung. Einige der wichtigsten Messgrößen sind hierbei die Temperatur des Schmelzbades und die Abkühlrate, welche starken Einfluss auf das Gefüge und die Eigenspannung haben. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zu Temperaturbestimmung an. Hierbei stellen jedoch u. a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen der verwendeten Legierung große experimentelle Herausforderungen dar. Eine weitere Herausforderung stellt für die IR-Spektroskopie die Absorption durch das Schutzgas und weitere optische Elemente dar. Um diese auch in einem industriellen Umfeld kompensieren zu können, wurde eine Methode entwickelt, die das gemessene Spektrum bei der Verfestigung des Werkstoffes als Referenz nutzt. In diesem Beitrag wird die Anwendung dieser Methode für die IR-Spektrometrie als auch Thermografische Messungen beim Laser-Pulver-Auftragschweißen von 316L gezeigt, wobei beide Methoden weiterhin in Hinblick auf ihre individuellen Vor- und Nachteile miteinander verglichen werden. N2 - Within the topic area project “Process Monitoring of AM” (ProMoAM) the Federal Institute for Materials Research and Testing is currently evaluating the applicability of various NDT methods for in-situ process Monitoring in the additive manufacturing (AM) of metals with regard to quality assurance. Two of the most important variables to measure are the temperature of the molten pool and the cooling rate, which have a strong influence on the microstructure and the residual stress. Due to the accessibility of the workpiece during the construction process, optical methods for temperature determination are suitable. However, the wide range of temperatures to be measured, the determination of emissivity and its change during phase transitions of the alloy pose great experimental challenges. Another challenge for IR spectroscopy is the absorption by the inert gas and other optical elements. In order to be able to compensate for this in an industrial environment, a method was developed which uses the measured spectrum as a reference when the material is solidified. This paper shows the application of this method for IR spectrometry as well as thermographic measurements during laser powder cladding of 316L. Furthermore both methods are compared with respect to their individual Advantages and disadvantages. KW - Laser-Pulver-Auftragschweißen KW - Thermografie KW - Direct Energy Deposition KW - IR-Spektroskopie KW - Additive Fertigung KW - Laser metal deposition KW - Thermography KW - IR-spectroscopy KW - Additive manufacturing PY - 2021 U6 - https://doi.org/10.1515/teme-2021-0056 VL - 88 IS - 10 SP - 626 EP - 632 PB - De Gruyter CY - Oldenburg AN - OPUS4-52987 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Kohl, Anka T1 - Short-term exposure tests of ɣ-Al2O3 Sol-gel coating on X20Cr13 in artificial geothermal waters with different pH N2 - The suitability of an Al2O3 coating for corrosion protection on X20Cr13 was evaluated in various artificial geothermal brines, focusing on the influence of different pH (4, 6 and 8) and their chemical compositions on the coating properties. All experiments were performed in the laboratory using autoclaves at 150 ◦C and 1 MPa in deaerated condition for 1 and 7 days. Results showed that the pH of geothermal waters is the most detrimental factor in the transformation of ɣ-Al2O3 and its protective abilities. Delaminations were found in the Coating exposed to geothermal brines with pH 4. FTIR spectra indicated a transformation of ɣ-Al2O3 to boehmite AlOOH after exposure to pH 4 and 6, and bayerite Al(OH)3 was formed after exposure to pH 8. Different Crystal structures of the hydrated Al2O3 also contribute to the stability of the coatings, observed by the SEM- EDX of the surface and cross-section of coatings. This study indicated that ɣ-Al2O3 sol-gel coating presents a promising aspect of corrosion protection in geothermal environment with a neutral pH. KW - Al2O3 KW - Corrosion KW - Coating KW - Martensitic steel PY - 2021 U6 - https://doi.org/10.1016/j.geothermics.2021.102193 SN - 0375-6505 VL - 96 SP - 102193 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Würth, Christian A1 - Güttler, Arne A1 - Resch-Genger, Ute T1 - Reliable Determination of the Signal-Relevant Spectroscopic Key Characteristics of Luminescent Reporters and Optical Probes for Imaging in the vis/NIR/SWIR N2 - Introduction. Comparing different emitter classes and rationally designing the next generation of molecular and nanoscale probes for bioimaging applications require accurate and quantitative methods for the measurement of the key parameter photoluminescence quantum yield f.1 f equals the number of emitted per number of absorbed photons. This is particularly relevant for increasingly used fluorescence imaging in the short wave-infrared region (SWIR) ≥ 900 nm providing deeper penetration depths, a better image resolution, and an improved signal-to-noise or tumor-to-background ratio.2, 3 However, spectroscopic measurements in the SWIR are more challenging and require specific calibrations and standards. T2 - EMIM 2021 CY - Göttingen, Germany DA - 24.08.2021 KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Reference material KW - Reliability KW - Nano KW - Particle KW - Method KW - Quality assurance PY - 2021 AN - OPUS4-53233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fiedler, Saskia A1 - Mortensen, N. A. A1 - Wolff, C. A1 - Morozov, S. A1 - Illiushyn, L. A1 - Booth, T. J. A1 - Stenger, N. A1 - Tserkezis, C. T1 - Giant photon bunching of WS2 monolayer in cathodoluminescence N2 - Cathodoluminescence (CL) spectroscopy has become a powerful tool to study nanostructures due to its high spectral and spatial resolution down to sub-nanometer. More recently, CL technique has also been used for second order auto-correlation measurements (g(2)(t)) to identify different single photon emitters and photon bunching in different materials [1-2]. In this work, tungsten disulfide (WS2) monolayers encapsulated in hexagonal boron nitride (hBN) with and without monocrystalline Au nanodisks (NDs) have been studied, using CL and PL spectroscopy as well as g(2)-CL- and PL-measurements. CL and PL maps of different WS2 monolayers before/after Au ND deposition show a narrow peak at ~625 nm without any background emission. In CL, the hBN not only protects WS2 from the electron beam but also acts as a charge carrier sink which substantially increases the CL signal [3]. A further CL enhancement is achieved by Au ND deposition, exhibiting the maximum at the center of the NDs without any size dependence. The PL intensity is unaffected. This indicates that Purcell enhancement cannot be the underlying mechanism. Furthermore, a giant CL-photon bunching of the hBN-encapsulated WS2 monolayers is found which is independent of the applied voltage but highly dependent on the electron beam current. At the lowest current of ~2 pA, a CL bunching factor of up to 160 is observed. Varying thicknesses of the surrounding hBN increases the overall CL signal but does not affect the bunching factor, though it exhibits small local changes within the same flake. In contrast, there is no PL correlation (g(2)(0) = 1). Interestingly, this photon bunching can be further increased by Au NDs, resulting in the highest ever observed bunching factor of close to 2200. Once again, this enhancement is independent of the Au ND’s diameter although some disks show higher bunching factors than others. Most likely, the Au acts as shield for the incoming primary electrons, resulting in an even further decreased current, and thereby, increased bunching. In conclusion, large CL-photon bunching is found in hBN-encapsulated WS2 monolayers which can be substantially enhanced by Au NDs. References [1] M.A. Feldmann, E.F. Demitrescu, D. Bridges, M.F. Chisholm, R.B. Davidson, P.G. Evans, J.A. Hachtel, A. Hu, R.C. Pooser, R.F. Haglund, B.J. Lawrie, Phys. Rev. B, 97, 081404(R) (2018) [2] S. Meuret, L.H.G. Tizei, T. Cazimajou, R. Bourrellier, H.C. Chang, F. Treussartm M. Kociak, Phys. Rev. Letter, 114, 197401 (2015) [3] S. Zheng, J.-K. So, F. Liu, Z. Liu, N. Zheludev, H.J. Fan, Nano Lett., 17, 6475-6480 (2017) T2 - GSELOP2021 CY - Paris, France DA - 23.08.2021 KW - Cathodoluminescence KW - Photon bunching KW - 2D materials KW - TMDCs KW - Au nanodisks KW - Transition metal dichalcogenide KW - Au nanoparticles PY - 2021 AN - OPUS4-53153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Monodisperse iron oxide nanoparticles as reference material candidate for particle size measurements N2 - In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important, especially with respect to the assessment of their environmental or biological impact. Furthermore, the European Commission’s REACH Regulations require the registration of nanomaterials traded in quantities of at least 1 ton. Powders or dispersions where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as nanomaterials. This creates a need for industrial manufacturers and research or analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution and will also target other key parameters like shape, structure, porosity or functional properties. In this respect, materials like iron oxide or titanium dioxide are considered as candidates to complement the already available silica, Au, Ag, and polystyrene reference nanoparticles. The thermal decomposition of iron oleate precursors in high boiling organic solvents can provide large quantities of iron oxide nanoparticles that can be varied in size and shape.[1, 2] The presence of oleic acid or other hydrophobic ligands as capping agents ensures stable dispersion in nonpolar solvents. Such monodisperse, spherical particles were synthesized at BAM and pre-characterized by electron microscopy (TEM, SEM including the transmission mode STEM-in-SEM) and dynamic light scattering comparing cumulants analysis and frequency power spectrum. 1. REACH regulations and nanosafety concerns create a strong need for nano reference materials with diverse properties. 2. Iron oxide nanoparticles are under development as new candidate reference material at BAM. 3. Narrow particle size distribution confirmed by light scattering and electron microscopy. T2 - Nanosafety 2020 CY - Online meeting DA - 05.10.2020 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Electron microscopy KW - Nanoplattform PY - 2020 AN - OPUS4-52774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Sinha, S. A1 - Krappe, A. A1 - Joswig, J.-O. A1 - Götze, J. P. A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Fluorescence Quenching in J‑Aggregates through the Formation of Unusual Metastable Dimers N2 - Molecular aggregation alters the optical properties of a system as fluorescence may be activated or quenched. This is usually described within the well-established framework of H- and J-aggregates. While H-aggregates show nonfluorescent blueshifted absorption bands with respect to the isolated monomer, Jaggregates are fluorescent displaying a redshifted peak. In this publication, we employ a combined approach of experiment and theory to study the complex aggregation features and photophysical properties of diaminodicyanoquinone derivatives, which show unusual and puzzling nonfluorescent redshifted Absorption bands upon aggregation. Our theoretical analysis demonstrates that stable aggregates do not account for the experimental observations. Instead, we propose an unprecedented mechanism involving metastable dimeric species formed from stable dimers to generate nonfluorescent J-aggregates. These results represent a novel kind of aggregation-induced optical effect and may have Broad implications for the photophysics of dye aggregates. KW - Fluorescence KW - Llifetime KW - Dye KW - Quantum yield KW - Label KW - Reporter KW - Aggregation KW - Monomer KW - Heory KW - Mechanism KW - photophysics PY - 2021 U6 - https://doi.org/10.1021/acs.jpcb.1c01600 SN - 1520-5207 VL - 125 IS - 17 SP - 4438 EP - 4446 PB - ACS Publikations AN - OPUS4-52619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Straße, Anne A1 - Maierhofer, Christiane A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - In-situ Monitoring der Additiven Fertigung von Metallen im LPA Prozess mittels Optischer Emissionsspektrometrie (OES) und Thermografie (TT) N2 - Einer der aussichtsreichsten Ansätze, die Qualität und Sicherheit der gefertigten Teile in der metallbasierten additiven Fertigung (AM) zu erhöhen und die Notwendigkeit aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen (ZfP) nach der Fertigung zu verringern, liegt in dem Einsatz von in-situ Prozessüberwachungstechniken. Viele wichtige Prozessgrößen bei der additiven Fertigung sind thermischer Natur, wie z.B. die Temperatur des Schmelzbades. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zur Temperaturbestimmung an. Für die Thermografie und Optische Emissionsspektrometrie im IR-Bereich, welche für die in-situ Anwendung prinzipiell als geeignet angesehen werden können, gibt es allerdings noch wenig konkrete praktische Umsetzungen, da die Möglichkeiten und individuellen Grenzen dieser Methoden, angewendet auf AM, noch nicht ausreichend erforscht sind. Aus diesem Grund verfolgt die BAM mit dem Projekt „Process Monitoring of AM“ (ProMoAM) im Themenfeld Material das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile weiterzuentwickeln. Im Beitrag wird der Fokus auf eine Versuchsserie gelegt, bei der Aufbau von Probekörpern aus dem austenitischen Edelstahl 316L mittels Laser-Pulver-Auftragschweißen (LPA) durch od. mit Hilfe von IR-Spektrometrie und Thermografie in-situ überwacht wurde. Hierbei stellen u.a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen des Metalls große experimentelle Herausforderungen dar, wobei jede Methode individuelle Vor- und Nachteile aufweist, welche verglichen werden. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition KW - Additive Fertigung KW - Thermografie KW - Laserauftragschweißen PY - 2021 AN - OPUS4-52744 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered glass monoliths as supports for affinity columns N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 min. Due to the glass material’s excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nano-filtration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Affinity Extraction KW - Affinity Separation KW - Protein Purification KW - Down Stream Processing KW - Antibody Purification KW - Diagnostic Antibodies KW - Therapeutic Antibodies KW - Automated Purification KW - HPLC KW - FPLC KW - IgG determination KW - Concentration step KW - Monoclonal Antibodies KW - Polyclonal Antibodies KW - Human Plasma KW - Glass Support KW - Borosilicate Glass KW - Monolith KW - Sintered Material KW - Additive Manufacturing KW - Column holder KW - Construction KW - Open Science KW - Citizen Science KW - Protein A KW - Regeneration KW - High-Speed Separations KW - Robustness PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527581 SN - 2297-8739 VL - 8 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-52758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Gornushkin, Igor B. T1 - In-situ temperature measurements of the LMD process by IR-spectroscopy and Thermography N2 - Temperature measurements of the LMD process by IR-spectroscopy and Thermography are presenet and compared. T2 - 2st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Thermography PY - 2021 AN - OPUS4-52565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering corrosion processes of MIC organisms - single cell-ICP-ToF-MS analysis of archaea on solid steels N2 - ICP-ToF (time of flight) MS enables the analysis of the multi-element fingerprint of single cells. The single cell ICP-ToF-MS is used in the presented poster for the analysis of archaea involved in microbiologically influenced corrosion (MIC) of steel. By means of sc-ICP-ToF-MS, the possible uptake of individual elements from the respective steel is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts. The work combines modern methods of analytical sciences with materials. T2 - SALSA - Make & Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea KW - Poster presentation PY - 2021 AN - OPUS4-53337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Development of a single cell-ICP-ToF-MS-method for multielement analysis of MIC organisms grown on solid steel samples N2 - The latest ICP-MS technology - ICP-ToF (time of flight)-MS – enables the analysis of the multi-element fingerprint of individual cells. The interface between material and environmental analysis thus receives special attention, e.g., when considering corrosion processes. Microbiologically influenced corrosion (MIC) is a highly unpredictable phenomenon due to the influence of the environment, microbial communities involved and the respective electron source. However, the interaction pathway between cells and the metal surface remains unclear. The development of the MIC-specific ICP-ToF-MS analytical method presented here at the single cell level, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. For this, a MIC-specific staining procedure was developed. It allows the analysis of archaea at a single cell level and provides information about the interaction of the cells with the staining agent which is extremely scarce compared to other well characterized organisms. Additionally, the single cell ICP-ToF-MS is used for the analysis of archaea involved in MIC of steel. Hence, the possible uptake of individual elements from different steel samples is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials. T2 - DAAS Doktorandenseminar 2021 CY - Online meeting DA - 20.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea PY - 2021 AN - OPUS4-53340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Nirmalananthan-Budau, Nithiya A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute T1 - Analyzing the surface of functional nanomaterials — how to quantify the total and derivatizable number of functional groups and ligands N2 - Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address methodand material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5–10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization. KW - Functional group quantification KW - Surface ligand KW - Nanomaterial KW - Optical detection KW - Electrochemical titration KW - Nanosafety (Safe-by-design) PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-533597 VL - 188 IS - 10 SP - 1 EP - 28 PB - Springer Nature AN - OPUS4-53359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Weigert, Florian A1 - Häusler, I. A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Correlating HR-TEM and XPS to elucidate the core-shell structure of ultrabright CdSE/CdS semiconductor quantum dots N2 - Controlling the thickness and tightness of surface passivation shells is crucial for many applications of core-shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the application-relevant functionality like a high photoluminescence (PL) quantum yield. This calls for a whole nanoobject approach. Moreover, the thickness of the organic coating remains often unclear. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. The results of the different methods match very well within the different measurement uncertainties. Additionally, results obtained with energy-resolved XPS using excitation energies between 200 eV and 800 eV are discussed with respect to a potential core/shell intermixing. Moreover, the future application potential of this approach correlating different sizing and structural methods is discussed considering the method-inherent uncertainties and other core/multi-shell nanostructures. T2 - E-MRS Fall Meeting CY - Online meeting DA - 20.09.2021 KW - Core-shell nanoparticles KW - Quantum dots KW - High-resolution transmission electron microscopy KW - X-ray Photoelectron Spectroscopy PY - 2021 AN - OPUS4-53365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Güttler, Arne A1 - Richter, Maria A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - New Reference Materials for the Quantification and Standardization of Fluorescence-based Measurements N2 - Luminescence techniques are amongst the most commonly used analytical methods in the life and material sciences due to their high sensitivity and non-destructive and multiparametric character. Photoluminescence signals are, however, affected by wavelength-, polarization-, and time-dependent instrument specific effect and the compound-specific photoluminescence quantum yield. The former hamper the comparability of fluorescence measurements, while the relative determination of the latter requires suitable quantum yield standards with well-known photoluminescence quantum yields (QY). For the simple correction of instrument specific effects in the wavelength region of 300 nm to 950 nm, the set of the five certified spectral fluorescence standards BAM-F001 – BAM-F005, has been extended to the NIR range by including two new fluorescence standards currently under certification. For the reliable and accurate determination of QY which is the key performance parameter for the comparison of different luminophores, we certified a set of 12 quantum yield standards, which absorb and emit in the wavelength range from 300 nm to 1000 nm. T2 - Methods and Applications in Fluorescence CY - Gothenburg, Sweden DA - 11.09.2022 KW - Luminescence KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Certified reference material KW - Standard PY - 2022 AN - OPUS4-55914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroyuk, O. A1 - Raievska, O. A1 - Barabash, A. A1 - Batentschuk, M. A1 - Osvet, A. A1 - Fiedler, Saskia A1 - Resch-Genger, Ute A1 - Hauch, J. A1 - Brabec, C. J. T1 - “Green” Synthesis of Highly Luminescent Lead-Free Cs2AgxNa1-xBiyIn1-yCl6 Perovskites N2 - A new “green” and mild synthesis of highly stable microcrystalline Cs2AgxNa1-xBiyIn1-yCl6 (CANBIC) perovskites under ambient conditions was developed that is scalable to the multi-gram production. Under UV illumination, the CANBIC perovskites emit intense broadband photoluminescence (PL) with a quantum yield (QY) of 92% observed for x = 0.35 and y = 0.01-0.02. The combination of strong UV absorbance and broadband visible emission, high PL QY, and long PL lifetimes of up to 1.4 μs, along with an outstanding stability makes these CANBICs a promising material class for many optical applications. KW - Fluorescence KW - Perovskites KW - Solar cell KW - Automated synthesis KW - Green synthesis KW - Quantum yield KW - Integrating sphere spectroscopy KW - Absolute fluorescence KW - Quality assurance KW - Nano KW - Particle KW - Application KW - Semiconductor KW - Quantum dot KW - Renewable energy PY - 2022 U6 - https://doi.org/10.1039/d2tc02055f SN - 2050-7526 VL - 10 IS - 27 SP - 9938 EP - 9944 PB - Royal Society of Chemistry AN - OPUS4-55453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Yang, J. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Ou, J. T1 - Fluorescence temperature sensing of NaYF4:Yb3+/Tm3+@NaGdF4:Nd3+/Yb3+ nanoparticles at low and high temperatures N2 - NaYF4:Yb3+/Tm3+@NaGdF4:Nd3+/Yb3+ upconversion nanoparticles (UCNPs) were prepared using a solvothermal method, and the effects of key factors such as the content of sensitiser Nd 3+ and Yb3+ on their luminescence properties were investigated. The nanoparticles are homogeneous in size and well dispersed. Under 808 nm excitation, it can produce strong upconversion fluorescence. At the same time, the nanoparticles have good temperature-sensing properties at the thermally coupled energy levels of 700 nm and 646 nm for Tm3+. Using its fluorescence intensity ratio (FIR), accurate temperature measurements can be performed, and it has been found that it exhibits different temperature sensing properties in low and high-temperature regions. The maximum relative sensitivity was found to be 0.88% K-1 and 1.89% K-1 for the lowtemperature region of 285 K-345 K and the high-temperature region of 345 K-495 K. The nanoparticles were applied to the internal temperature measurement of lithium batteries and the actual high-temperature environment, respectively, and were found to have good temperature measurementt performance. KW - Fluorescence KW - Sensor KW - Temperature KW - Ratiometric KW - Lanthanide KW - Quantum yield KW - Integrating sphere spectroscopy KW - Absolute fluorescence KW - Quality assurance KW - Nano KW - Particle KW - Application KW - Upconversion nanoparticle PY - 2022 U6 - https://doi.org/10.1088/1361-6528/ac84e4 SN - 1361-6528 VL - 33 IS - 34 SP - 1 EP - 15 PB - IOP Publishing CY - Bristol AN - OPUS4-55454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tuma, Dirk A1 - Moreau, A. A1 - Polishuk, I. A1 - Segovia, J. J. A1 - Vega-Maza, D. A1 - Martín, M. C. T1 - Measurements and predictions of densities and viscosities in CO2 + hydrocarbon mixtures at high pressures and temperatures: CO2 + n-pentane and CO2 + n-hexane blends N2 - This work reports new experimental data on densities and viscosities of (CO2 + n-pentane) and (CO2 + n-hexane) mixtures at high pressures and temperatures. The densities were measured by a vibrating-tube densimeter with an expanded uncertainty (k = 2) smaller than 1.8 kg/m3 at six isotherms (from 273.15 K to 373.15 K), twelve pressures starting at 5 MPa up to 100 MPa, and at six CO2 molar compositions (from 0 to 0.6). The viscosities were measured by a vibrating-wire viscometer with the corresponding relative expanded uncertainty (k = 2) smaller than 0.016 at five isotherms (from 273.15 K to 373.15 K), twelve pressures (from 5 MPa up to 100 MPa), and at two CO2 molar compositions (0.1 and 0.3). The densities were fitted by the semiempirical Tammann-Tait equation for density data and the Vogel-Fulcher-Tammann (VFT) equation for viscosity data, respectively. The Groupe Européen de Recherches Gazières (GERG-2008) equation of state was also applied for modelling the densities. Over-all robustness and reliability of the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and its critical point-based modification (CP-PC-SAFT) were examined. Accuracies of the Modified Yarranton-Satyro (MYS) coupled with CP-PC-SAFT and the NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP 10) in predicting the viscosities were evaluated. KW - CO2 + n-alkanes KW - thermophysical properties KW - Perturbed-Chain Statistical Association Fluid Theory PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555728 SN - 0167-7322 VL - 360 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam AN - OPUS4-55572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Quantification of surface functional groups on inorganic and organic nanomaterials using cleavable reporters N2 - Engineered nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing and electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties. Especially, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups and ligands, is an important key driver for the performance, stability, and processibility of NM, as well as their interaction with the environment. Thus, methods for functional group quantification can foster the sustainable development of functional and safe(r) NM. Aiming at the development of simple, versatile and multimodal tools for the quantification of common bioanalytically relevant functional groups, we designed a catch-and-release assay based on cleavable probes that enable the quantification of the cleaved-off reporters in the supernatant after particle separation. Thus, the approach circumvents interferences resulting from particle light scattering and sample-inherent absorption or emission. To study the potential of the assay, commercially available and in-house synthesized aminated and carboxylated polymer and silica nanoparticles of different functional group densities were tested. Our cleavable probe strategy can be easily adapted to other analytical techniques requiring different reporters, or to different types of linkers that can be cleaved thermally, photochemically, or by variation of pH, utilizing well-established chemistry. In addition, it can contribute to the development of multi-method characterization strategies to provide a more detailed picture of the intrinsic physicochemical property - performance/safety relationships and thus can support the design of tailored nanomaterials with better controlled properties. T2 - E-MRS Spring Meeting 2021 / ALTECH 2021 - Analytical techniques for precise characterization of nanomaterials CY - Online meeting DA - 31.05.2021 KW - Surface modified nano- and microparticles KW - Optical assays KW - Particle surface analysis KW - Surface functional group quantification PY - 2021 AN - OPUS4-55596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - Multi-color nanosensors for ratiometric measurements of acidic, neutral, and basic pH based on silica and polystyrene particles N2 - pH presents one of the most important analytes in the life and material sciences, indicating, e.g., diseases and corrosion processes. This includes the optical monitoring of pH in living cells for studying cellular internalization pathways, such as phagocytosis, endocytosis, and receptor mediated internalization with the aid of molecular and nanoscale fluorescent sensors. Nanoparticle (NP)-based sensors, that are labelled or stained with a multitude of sensor dyes, have several advantages as compared to conventional molecular probes like enhanced brightness, i.e., amplified signals, ease of designing ratiometric systems by combining analyte-sensitive and inert reference dyes, and increased photostability. Moreover, this can enable the use of hydrophobic dyes in aqueous environments. Versatile templates and carriers for the fabrication of nanosensors by staining and/or labelling with different fluorophores and sensor molecules are surface-functionalized particles like silica (SiO2) and polystyrene (PS) particles. Here we present a platform of blue-red-green fluorescent pH nanosensors for the measurement of acidic, neutral, and basic pH utilizing both types of matrices and two spectrally distinguishable sensor dyes with an integrated reference dye and demonstrate its applicability for cellular studies. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Nanosensors KW - pH sensing KW - Silica- and polystyrene particles KW - Ratiometric sensors KW - Fluorescence PY - 2022 AN - OPUS4-55597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Völzke, Jule L. A1 - Hodjat Shamami, P. A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Weller, Michael G. T1 - High-purity corundum as support for affinity extractions from complex samples N2 - Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, and zeta potential measurements. The strong Al-O-P bonds between the corundum surface and amino phosphonic acids are used to introduce functional groups for further conjugations. The common cross-linker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter is oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). This work shows that oxidized polyglycerol can be used as an alternative to glutaraldehyde. With polyglycerol, more of the model protein bovine serum albumin (BSA) could be attached to the surface under the same conditions, and lower nonspecific binding (NSB) was observed. As a proof of concept, IgG was extracted with protein A from crude human plasma. The purity of the product was examined by SDS-PAGE. A binding capacity of 1.8 mg IgG per g of corundum powder was achieved. The advantages of corundum are the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, and flexible application. KW - Protein KW - Bioseparation KW - Purification KW - Immunoprecipitation KW - Affinity chromatography KW - Polyglycerol KW - Glutaraldehyde KW - Linker KW - Bioconjugation KW - Self-assembled monolayer (SAM) KW - Periodate oxidation KW - Reductive amination KW - Antibodies KW - Igg KW - Immunoglobulins KW - Carrier KW - Solid phase KW - Hyperbranched polymer KW - Aromatic amino acid analysis aaaa PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555142 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wetzel, Annica A1 - von der Au, Marcus A1 - Dietrich, P. M. A1 - Radnik, Jörg A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - The comparison of the corrosion behavior of the CrCoNi medium entropy alloy and CrMnFeCoNi high entropy alloy N2 - This work presents the determination of the corrosion characteristics of CrCoNi (medium entropy alloy) and CrMnFeCoNi (high entropy alloy) in 0.1 M NaCl and 0.1 M H2SO4. The morphology and chemical composition of the oxide layers formed on CrCoNi and CrMnFeCoNi were comparatively analyzed by scanning Kelvin probe microscopy (SKPFM) and scanning electron microscopy (SEM) and supported with chemical analysis by means of inductively coupled plasma mass spectrometry (ICP-MS) and X-Ray photoelectron spectroscopy (XPS). The analysis of the 3p core level peaks showed that the oxide layer (native and after anodic passivation) on CrCoNi consisted mainly of Cr oxides, while the oxide layer on CrMnFeCoNi was primarily composed of a mixture of Cr and Fe oxides. In addition, XPS was utilized to assess the oxide layer thicknesses. These results were compared to the thicknesses obtained by means of electrochemical impedance spectroscopy (EIS), with both approaches yielding values up to about 4 nm depending on the electrolyte and the alloy. Cyclic polarization measurements indicated superior corrosion resistance of CrCoNi in both aqueous environments compared to CrMnFeCoNi, as well as to AISI 304 stainless steel. KW - Medium entropy alloy KW - High entropy alloy KW - SKPFM KW - XPS KW - Passivation KW - Corrosion PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-559902 SN - 0169-4332 VL - 601 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-55990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Resch-Genger, Ute ED - Koch, Matthias ED - Meermann, Björn ED - Weller, Michael G. T1 - Topical collection: Analytical methods and applications in the materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - 150th anniversary KW - ABC KW - Analysis KW - Analytical sciences KW - BAM KW - Collection KW - Environment KW - Fluorescence KW - Life sciences KW - Limit of detection KW - Material sciences KW - Method KW - Nanoparticle KW - Pollutant KW - Quality assurance KW - Reference material KW - Sensor KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://link.springer.com/journal/216/topicalCollection/AC_16a2ef9b81853377e321ef84d9c4a431 SN - 1618-2642 SN - 1618-2650 VL - 414 SP - 4267 EP - 4529 PB - Springer CY - Berlin AN - OPUS4-55670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Genger, C. A1 - Welker, P. A1 - Huebner, Oskar A1 - Resch-Genger, Ute T1 - Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies N2 - A first tricolor fluorescent pH nanosensor is presented, which was rationally designed from biocompatible carboxylated polystyrene nanoparticles and two analyte-responsive molecular fluorophores. Its fabrication involved particle staining with a blue-red-emissive dyad, consisting of a rhodamine moiety responsive to acidic pH values and a pH-inert quinoline fluorophore, followed by the covalent attachment of a fluorescein dye to the particle surface that signals neutral and basic pH values with a green fluorescence. These sensor particles change their fluorescence from blue to red and green, depending on the pH and excitation wavelength, and enable ratiometric pH measurements in the pH range of 3.0−9.0. The localization of the different sensor dyes in the particle core and at the particle surface was confirmed with fluorescence microscopy utilizing analogously prepared polystyrene microparticles. To show the application potential of these polystyrene-based multicolor sensor particles, fluorescence microscopy studies with a human A549 cell line were performed, which revealed the cellular uptake of the pH nanosensor and the differently colored emissions in different cell organelles, that is, compartments of the endosomal-lysosomal pathway. Our results demonstrate the underexplored potential of biocompatible polystyrene particles for multicolor and multianalyte sensing and bioimaging utilizing hydrophobic and/or hydrophilic stimuli-responsive luminophores. KW - Microparticle KW - Fluorescence KW - Sensor KW - pH KW - Quantum yield KW - Multiplexing KW - Imaging KW - Cell KW - Quality assurance KW - Nano KW - Polymer KW - Bioimaging KW - Particle KW - Application PY - 2022 U6 - https://doi.org/10.1021/acs.analchem.2c00944 VL - 94 IS - 27 SP - 9656 EP - 9664 PB - ACS AN - OPUS4-55365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zou, Q. A1 - Marcelot, C. A1 - Ratel-Ramond, N. A1 - Yi, X. A1 - Roblin, P. A1 - Frenzel, Florian A1 - Resch-Genger, Ute A1 - Eftekhari, A. A1 - Bouchet, A. A1 - Coudret, C. A1 - Verelst, M. A1 - Chen, X. A1 - Mauricot, R. A1 - Roux, C. T1 - Heterogeneous Oxysulfide@Fluoride Core/ Shell Nanocrystals for Upconversion-Based Nanothermometry N2 - Lanthanide (Ln3+)-doped upconversion nanoparticles (UCNPs) often suffer from weak luminescence, especially when their sizes are ultrasmall (less than 10 nm). Enhancing the upconversion luminescence (UCL) efficiency of ultrasmall UCNPs has remained a challenge that must be undertaken if any practical applications are to be envisaged. Herein, we present a Ln3+-doped oxysulfide@fluoride core/shell heterostructure which shows efficient UCL properties under 980nm excitation and good stability in solution. Through epitaxial heterogeneous growth, a ∼4 nm optically inert β-NaYF4 shell was coated onto ∼5 nm ultrasmall Gd2O2S:20%Yb,1%Tm. These Gd2O2S:20%Yb,1%Tm@NaYF4 core/shell UCNPs exhibit a more than 800-fold increase in UCL intensity compared to the unprotected core, a 180-fold increase in luminescence decay time of the 3H4 → 3H6 Tm3+ transition from 5 to 900 μs, and an upconversion quantum yield (UCQY) of 0.76% at an excitation power density of 155 W/cm2. Likewise, Gd2O2S:20%Yb,2%Er@NaYF4 core/shell UCNPs show a nearly 5000-fold increase of their UCL intensity compared to the Gd2O2S:20%Yb,2%Er core and a maximum UCQY of 0.61%. In the Yb/Er core−shell UCNP system, the observed variation of luminescence intensity ratio seems to originate from a change in lattice strain as the temperature is elevated. For nanothermometry applications, the thermal sensitivities based on thermally coupled levels are estimated for both Yb/Tm and Yb/Er doped Gd2O2S@NaYF4 core/shell UCNPs. KW - Upconversion nanoparticle KW - Nanosensor KW - Lanthanide KW - Surface coating KW - Quantum yield KW - Photophysic PY - 2022 U6 - https://doi.org/10.1021/acsnano.2c02423 SN - 1936-0851 SP - 1 EP - 11 PB - ACS Publications AN - OPUS4-55440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Advanced materials broadening the scope of antibody-based analytical methods N2 - Immunoanalytical Techniques, i.e., antibody-based analytical methods, have been used for decades in clinical diagnostics. What makes them attractive for other fields of application is their short time-to-result and high sensitivity. Microplate-based assays such as ELISA have been adopted early in environmental and food analysis. Yet, to make immunoassays even faster, more sensitive, robust, and, most desirable, portable, advanced materials, sometimes developed for other purposes, can be profitably used to achieve these goals. Materials can be novel labels, e.g., chemical or particle labels, such as fluorophores or nanoparticles. Carrier particles, such as magnetic or polymer beads, make it possible to adopt the assays to meso- or microfluidic set-ups and encoding them opens the path to multiplex analysis. Specialty electrodes can enable for higher sensitivity in electrochemical detection. All this broadens the scope of application and lowers effort and cost for analysis at the point-of-need. T2 - ChemForum - Kolloquium des Instituts für Strukturchemie CY - Lisbon, Portugal DA - 07.09.2022 KW - Immunoassay KW - Biosensor KW - Antibody PY - 2022 AN - OPUS4-56782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Field Analysis by Antibody-based Analytical Methods: The Importance of Advanced Materials N2 - Analytical methods based on the selectivity of antibodies, often called immunoassays, are a back-bone of clinical laboratory diagnostics. To bring them to the field, i.e., to make immunoanalytical methods portable, hopefully even faster, more sensitive, and robust, advanced materials are re-quired. Materials can be novel labels, e.g., chemical or particle labels, such as fluorophores or na-noparticles. Carrier particles, such as magnetic or polymer beads, make it possible to adopt the as-says to meso- or microfluidic set-ups and encoding them opens the path to multiplex analysis. Spe-cialty electrodes can enable for higher sensitivity in electrochemical detection. Without research into better materials, efforts to bring analysis to the point-of-need will not bear fruit. T2 - Kolloquium des Aveiro Institut of Materials (CICECO) der Universität Aveiro CY - Aveiro, Portugal DA - 20.09.2022 KW - Immunoassay KW - Biosensor KW - Antibody PY - 2022 AN - OPUS4-56785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Liu, Y. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, J. T1 - NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ Upconversion Nanoparticles for Optical Temperature Monitoring and Self-Heating in Photothermal Therapy N2 - The core−shell NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ upconversion nanoparticles were successfully prepared by a solvothermal method, and a layer of mesoporous silica (mSiO2) was successfully coated on the periphery of the core−shell nanoparticles to transform their surface from lipophilic to hydrophilic, further expanding their applications in biological tissues. The physical phase, morphology, structure, and fluorescence properties were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (TEM), Fourier infrared spectroscopy (FT-IR), ζ potential analysis, and fluorescence spectroscopy. It was found that the material has a hexagonal structure with good hydrophilicity and emits intense fluorescence under 980 nm pump laser excitation. The non-contact temperature sensing performance of nanoparticles was evaluated by analyzing the upconversion fluorescence of Tm3+ (1G4 → 3F4 and 3F3 → 3H6) in the temperature range of 284−344 K. The absolute and relative sensitivities were found to be 0.0067 K−1 and 1.08 % K−1, respectively, with high-temperature measurement reliability and good temperature cycling performance. More importantly, its temperature measurement in phosphate-buffered saline (PBS) solution is accurate. In addition, the temperature of the cells can be increased by adjusting the laser power density and laser irradiation time. Therefore, an optical temperature sensing platform was built to realize the application of real-time monitoring of cancer cell temperature and the dual function of photothermal therapy. KW - Sensor KW - Temperature KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Synthesis KW - Environment KW - Monitoring KW - Sensing KW - Nano KW - Life sciences KW - Upconversion PY - 2023 U6 - https://doi.org/10.1021/acsanm.2c05110 VL - 6 IS - 1 SP - 759 EP - 771 PB - ACS Publications AN - OPUS4-57081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Li, Z. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, Jun T1 - Preparation of NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles and application of their fluorescence temperature sensing properties N2 - The NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles were successfully prepared by the solvothermal method, and the samples were pure hexagonal phase with good crystallinity and homogeneous size, asevidenced by XRD and TEM analysis. The FT-IR analysis shows that β-CD is successfully encapsulated on the surface of NaYF4: Yb3+/Tm3+@NaYF4 nanoparticles. The fluorescence intensity 3and lifetime were significantly increased after coating the inert layer on the surface of core nanoparticles. After further surface modification of β-CD, the fluorescence intensity and fluorescence lifetime were reduced, but the overall fluorescence was stronger. Temperature measurements using the fluorescence intensity ratio technique were found to have relatively low reliability and absolute sensitivity for temperature measurements using thermally coupled energy levels. However, the reliability of temperature measurements using non-thermally coupled energy levels is significantly higher and the absolute sensitivity is much higher than for measurements at thermally coupled levels. Since the maximum absolute sensitivity, maximum relative sensitivity and minimum temperature resolution are determined to be 0.1179 K-1, 2.19 %K􀀀 1 and 0.00019 K, respectively, NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles are expected to be widely used in the biomedical field due to their feasibility, reliability, non-toxicity and harmlessness. KW - Upconversion KW - Surface modification KW - Fluorescence intensity ratio KW - Thermally coupled levels KW - Non-thermally coupled levels PY - 2023 U6 - https://doi.org/10.1016/j.optmat.2022.113389 SN - 0925-3467 VL - 136 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-57105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cheng, Z. A1 - Meng, M. A1 - Qiao, X. A1 - Liu, Y. A1 - Resch-Genger, Ute A1 - Ou, J. T1 - The synthesis of Er3+/Yb3+/K+ triple-doped NaYF4 phosphors and its high sensitivity optical thermometers at low power N2 - Optical Thermometry is popular among researchers because of its non-contact, high sensitivity, and fast measurement properties. In the present experiment, Er3+/Yb3+/K+ co-doped NaYF4 nanoparticles with different K+ concentrations were synthesized by solvothermal method, and the samples showed bright upconversion green emission under the excitation of a 980 nm laser. The powder X-ray diffractometer and transmission electron microscope were used to characterize the crystal structure and its surface morphology, respectively. The spectral characteristics of nanoparticles with K+ doping concentration from 10% to 30% (Molar ratio) were investigated by fluorescence spectroscopy, and it was observed that the fluorescence intensity reached the maximum at the K+ concentration of 20%, after which the intensity weakened when the K+ content continued to increase. According to the dependence between the luminescence intensity of the sample and the laser power density and fluorescence lifetime, the intrinsic mechanism was carefully investigated. Temperature-dependent spectra of the samples were recorded in the temperature range of 315–495 K, and the maximum values of absolute sensitivity (Sa) and relative sensitivity (Sr) were measured at 0.0041 K−1 (455 K) and 0.9220%K−1 (315 K). The experimental results show that K+/Er3+/Yb3+ triple-doped NaYF4 green fluorescent nanoparticles (GFNs) have good prospects for applications in display devices, temperature sensing, and other fields. KW - K+ doped KW - Upconversion luminescence KW - Optical temperature sensing KW - Thermal coupling energy level PY - 2023 U6 - https://doi.org/10.1016/j.jallcom.2022.168299 VL - 937 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-57106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Wegmann, Marc A1 - Hannemann, M. A1 - Somma, V. A1 - Jochum, T. A1 - Niehaus, J. A1 - Roggenbuck, D. T1 - Automated determination of genotoxicity of nanoparticles with DNA-based optical assays - The NANOGENOTOX project N2 - The overall interest in nanotoxicity, triggered by the increasing use of nanomaterials in the material and life sciences, and the synthesis of an ever increasing number of new functional nanoparticles calls for standardized test procedures1,2 and for efficient approaches to screen the potential genotoxicity of these materials. Aiming at the development of fast and easy to use, automated microscopic methods for the determination of the genotoxicity of different types of nanoparticles, we assess the potential of the fluorometric γH2AX assay for this purpose. This assay, which can be run on an automated microscopic detection system, relies on the detection of DNA double strand breaks as a sign for genotoxicity3. Here, we provide first results obtained with broadly used nanomaterials like CdSe/CdS and InP/ZnS quantum dots as well as iron oxide, gold, and polymer particles of different surface chemistry with previously tested colloidal stability and different cell lines like Hep-2 and 8E11 cells, which reveal a dependence of the genotoxicity on the chemical composition as well as the surface chemistry of these nanomaterials. These studies will be also used to establish nanomaterials as positive and negative genotoxicity controls or standards for assay performance validation for users of this fluorometric genotoxicity assay. In the future, after proper validation, this microscopic platform technology will be expanded to other typical toxicity assays. T2 - SPIE 2018 CY - San Francisco, USA DA - 27.01.2018 KW - Nanoparticle KW - Fluorescence KW - Surface chemistry KW - Size KW - Assay KW - Microscopy KW - Nanotoxicity KW - Toxicity KW - Automation KW - Calibration KW - Standard PY - 2018 AN - OPUS4-44186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kraft, Marco A1 - Kaiser, Martin A1 - Radunz, Sebastian A1 - Muhr, V. A1 - Hirsch, T. T1 - Effect of particle architecture, dopant concentration, size, and excitation power density on the luminescence efficiency of upconversion nanocrystals N2 - Lanthanide-based upconversion nanoparticles (UCNPs) offer new strategies for luminescence-based sensing and imaging. One of the best studied materials are hexagonal ß-NaYF4 UCNPs doped with 20% Yb3+ and 2% Er3+, which efficiently convert 976 nm light to photons emitted at 540 nm, 655 nm, and 845 nm, respectively, reveal Long luminescence lifetimes (> 100 µs), and are very photostable and chemically inters.[1,2] The properties of their upconversion (UC) luminescence (UCL) are, however, strongly influenced by particle size, concentration and spatial arrangement of dopant Ions, surface chemistry, and microenvironment.[3,4] In addition, the multiphotonic absorption processes responsible for UCL render UCL dependent on excitation power density (P). The rational design of brighter UCNPs particle architectures encouraged us to assess systematically the influence of these parameters on UCL for differently doped UCNPs relying on the commonly used ß-NaYf4 matrix using steady state and time resolved fluorometry as well as integrating sphere spectroscopy for P varied over almost three orders of magnitude. This includes comprehensive studies of the influence of size and shell, Yb3+ and Er3+ dopand concentrations, and energy Transfer processes from UCNPs to surface-bound organic dyes or vice versa [5]. Our results underline the need for really quantitative luminescence studies for mechanistic insights, the potential of high p to compensate for UCL surface quenching, and the matrix- and P-dependence of the optimum dopand concentration. T2 - BIOSPIE 2018 CY - San Francisco, USA DA - 27.01.2018 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Modeling KW - Size PY - 2018 AN - OPUS4-43939 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Freund, R. A1 - Lächelt, U. A1 - Gruber, T. A1 - Rühle, Bastian A1 - Wuttke, S. T1 - Multifunctional efficiency: Extending the concept of atom economy to functional nanomaterials N2 - Green chemistry, in particular, the principle of atom economy, has defined new criteria for the efficient and sustainable production of synthetic compounds. In complex nanomaterials, the number of embedded functional entities and the energy expenditure of the assembly process represent additional compound-associated parameters that can be evaluated from an economic viewpoint. In this Perspective, we extend the principle of atom economy to the study and characterization of multifunctionality in nanocarriers, which we define as “multifunctional efficiency”. This concept focuses on the design of highly active nanomaterials by maximizing integrated functional building units while minimizing inactive components. Furthermore, synthetic strategies aim to minimize the number of steps and unique reagents required to make multifunctional nanocarriers. The ultimate goal is to synthesize a nanocarrier that is highly specialized but practical and simple to make. Owing to straightforward crystal engineering, metal−organic framework (MOF) nanoparticles are an excellent example to illustrate the idea behind this concept and have the potential to emerge as next-generation drug delivery systems. Here, we highlight examples showing how the combination of the properties of MOFs (e.g., their organic−inorganic hybrid nature, high surface area, and biodegradability) and induced systematic modifications and functionalizations of the MOF’s scaffold itself lead to a nanocarrier with high multifunctional efficiency. KW - Nanomaterial KW - Metal-organic frameworks KW - Nanomedicine KW - Theranostics KW - Multifunctional efficiency PY - 2018 U6 - https://doi.org/10.1021/acsnano.8b00932 SN - 1936-0851 SN - 1936-086X VL - 12 IS - 3 SP - 2094 EP - 2105 PB - ACS Publications CY - Washington, DC AN - OPUS4-44737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Haufe, Manuela A1 - Kohl, Anka A1 - Rehfeldt, Rainer T1 - Resistance of polyethylene grades with permeation barriers in biofuels N2 - Biofuels including ethanol and biodiesel (FAME) represent a renewable fuel alternative to petroleum-derived transport fuels. The aim of this work was to study the interaction between high density polyethylene (HDPE) with permeation barriers in form of polyamide (PA) and fluorination, and biofuels such as E85 (fuel with 85 % ethanol), biodiesel and B10 (heating oil with 10 % biodiesel). 10 l jerrycans made of polyethylene with permeation barrier of PA were filled with E85 and biodiesel and exposed to temperatures of 20 °C and 40 °C for 5 years. Half of the 20 l jerrycans of HDPE for filling with B10 were fluorinated at the inner layer to prevent permeation before the exposure. Tensile properties were determined once a year, and FTIR-spectroscopy was used to evaluate possible changes. The tensile properties tensile strength and breaking elongation of HDPE jerrycan cuttings with permeation barrier decreased, but not significantly, after immersion in E85, biodiesel and B10. The elasticity modulus of the polyethylene grades was especially reduced during exposure to E85. The FTIR spectra of HDPE jerrycan cuttings with permeation barrier showed that immersion tests for five years with the test fuels at 20 °C and 40 °C did not lead to a decomposition of the permeation barriers. T2 - CORROSION 2018 CY - Phönix, Arizona, USA DA - 16.04.2018 KW - Polyethylene grades KW - Biofuels KW - Permeation barriers KW - FTIR spectra PY - 2018 SP - Paper 10543, 1 EP - Paper 10543, 12 PB - NACE International CY - Houston, Texas, USA AN - OPUS4-44768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, Sebastian A1 - Schürmann, Robin A1 - Feldmann, Ines A1 - Blocki, A. A1 - Bald, Ilko A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Maintaining Stable Zeolitic Imidazolate Framework (ZIF) Templates during Polyelectrolyte Multilayer Coating N2 - Equipping ZIF particles with a polyelectrolyte membrane provides functional groups at their interface, enabling further conjugations necessary for applications such as targeted drug delivery. Previous approaches to coat ZIF particles with polyelectrolytes led to surface corrosion of the template material. This work overcomes previous limitations by performing a Layer-by-Layer (LbL) polyelectrolyte coating onto ZIF-8 and ZIF-67 particles in nonaqueous environment. Using the 2-methylimidazolium salt of polystyrensulfonic acid instead of the acid itself and polyethyleneimine in methanol led to intact ZIF particles after polyelectrolyte coating. This was verified by electron microscopy. Further, zetapotential and atomic force microscopy measurements confirmed a continuous polyelectrolyte multilayer built up. The here reported adaption to the well-studied (LbL) polyelectrolyte selfassembly process provides a facile method to equip ZIF particles with a nanometer thin polyelectrolyte multilayer membrane. KW - Zeolithe KW - Molecular Organic Frameworks KW - MOF KW - ZIF KW - Layer-by-Layer KW - Beschichtung KW - Polyelektrolyt PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-447729 SN - 2215-0382 VL - 22 SP - 14 EP - 17 PB - Elsevier B.V. CY - Amsterdam, NL AN - OPUS4-44772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Haufe, Manuela A1 - Kohl, Anka A1 - Rehfeldt, Rainer T1 - Resistance of polyethylene grades with permeation barriers in biofuels N2 - Biofuels including ethanol and biodiesel (FAME) represent a renewable fuel alternative to petroleum-derived transport fuels. The aim of this work was to study the interaction between high density polyethylene (HDPE) with permeation barriers in form of polyamide (PA) and fluorination, and biofuels such as E85 (fuel with 85 % ethanol), biodiesel and B10 (heating oil with 10 % biodiesel). 10 l jerrycans made of polyethylene with permeation barrier of PA were filled with E85 and biodiesel and exposed to temperatures of 20 °C and 40 °C for 5 years. Half of the 20 l jerrycans of HDPE for filling with B10 were fluorinated at the inner layer to prevent permeation before the exposure. Tensile properties were determined once a year, and FTIR-spectroscopy was used to evaluate possible changes. The tensile properties tensile strength and breaking elongation of HDPE jerrycan cuttings with permeation barrier decreased, but not significantly, after immersion in E85, biodiesel and B10. The elasticity modulus of the polyethylene grades was especially reduced during exposure to E85. The FTIR spectra of HDPE jerrycan cuttings with permeation barrier showed that immersion tests for five years with the test fuels at 20 °C and 40 °C did not lead to a decomposition of the permeation barriers. T2 - CORROSION 2018 CY - Phönix, Arizona, USA DA - 16.04.2018 KW - Polyethylene grades KW - Biofuels KW - Permeation barriers KW - FTIR spectra PY - 2018 AN - OPUS4-44758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hinsch, Alexandra A1 - Strelow, Christian A1 - Kipp, Tobias A1 - Würth, Christian A1 - Geißler, Daniel A1 - Resch-Genger, Ute A1 - Mews, Alf T1 - The influence of the individual Particles on the ensemble Quantum Yield of elongated CdSe/cds core/Shell nanoparticles N2 - Colloidal semiconductor nanoparticles with a spherical core and an elongated shell form bright emitters with a high absorption cross section. They show great potential for a multitude of optoelectronic applications such as LEDs or photovoltaic cells and can be used as gain material or as markers for bio imaging. For most of these applications high fluorescence quantum yields are a figure of merit for the emitter quality. In this work we investigate how the ensemble quantum yield is affected by the properties of the individual particles. In particular, we prove the role of non-emitting particles as well as the role of blinking. Using a combination of AFM and spatially resolved photoluminescence spectroscopy we measured hundreds of individual CdSe/CdS dot/rod particles of different shell lengths exciting with two different excitation wavelengths for shell or core excitation, respectively. T2 - SPIE Photonics West CY - San Francisco, CA, USA DA - 27.01.2018 KW - Exciton diffusion KW - Quantum Dot-Rod KW - Quantum Yield PY - 2018 AN - OPUS4-44759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hinsch, Alexandra A1 - Strelow, Christian A1 - Kipp, Tobias A1 - Würth, Christian A1 - Geißler, Daniel A1 - Resch-Genger, Ute A1 - Mews, Alf T1 - The influence of the individual particles on the ensemble quantum yield of elongated CdSe/CdS core/shell nanoparticles N2 - Colloidal semiconductor nanoparticles with a spherical core and an elongated shell form bright emitters with a high absorption cross section. They show great potential for a multitude of opto-electronic applications such as LEDs or photovoltaic cells and can be used as gain material or as markers for bio imaging. For most of these applications high fluorescence quantum yields are a figure of merit for the emitter quality. Our previous work showed that the ensemble quantum yields depend strongly on the shell size and the excitation wavelength. In this work we investigate how the ensemble quantum yield is affected by the properties of the individual particles. In particular, we prove the role of non-emitting particles as well as the role of blinking. Using a combination of AFM and spatially resolved photoluminescence spectroscopy we measured hundreds of individual CdSe/CdS dot/rod particles of different shell lengths exciting with two different excitation wavelengths for shell or core excitation, respectively. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie CY - Berlin, Germany DA - 11.03.2018 KW - Exciton diffusion KW - Quantum dot-rod KW - Quantum yield PY - 2018 AN - OPUS4-44761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scherz, Franziska A1 - Krop, U. A1 - Monks, K. A1 - Weller, Michael G. T1 - Antikörperreinigung mit Glasmonolithen - Vereinfachung von Affinitätstrennungen mit HPLC-Systemen N2 - Druckstabile Glasmonolithen ermöglichen eine schnelle und unkomplizierte Reinigung von Antikörpern, z.B. aus Serum oder Zellkulturüberständen. Die sehr gute Regenerierbarkeit lässt eine lange Lebensdauer der Säulen erwarten, was die Kosten pro Probe niedrig hält. KW - Borosilicatglas KW - Immunglobuline KW - IgG KW - Serum KW - Plasma KW - Protein A KW - Protein G KW - Affinitätschromatographie KW - Agarose KW - Carrier-Material KW - Stationäre Phase KW - Immobilisierung KW - Highspeed KW - Trennung KW - Reinigung KW - Downstream Processing PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-445330 UR - http://www.git-labor.de/forschung/materialien/antikoerperreinigung-mit-glasmonolithen SN - 0016-3538 VL - 62 IS - 3 SP - 24 EP - 25 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-44533 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez-Martin, Pedro A1 - Becker, Roland A1 - Toepel, J. A1 - Gorbushina, Anna T1 - An improved test for the evaluation of hydrocarbon degradation capacities of diesel-contaminating microorganisms N2 - The development of a test to evaluate the degradation of semi-volatile fuels as diesel by microorganisms is presented. This method is based on the principles described in the CEC-L-103 Standard procedure that is exclusively meant for testing the biodegradability of non-volatile lubricants. Therefore, significant modifications involve aseptic conditions for testing specific microorganisms and conducting the test in closed vessels avoiding evaporation losses, while fuel quantification using gas chromatography-flame ionization detection (GC-FID) is retained. It is suggested that the modified procedure should enable routine application for semi-volatile hydrocarbon-based fuels. GC-FID provides additionally valuable information on the alteration of fuel component patterns during biodegradation. The procedure was successfully tested using two bacteria (Pseudomonas aeruginosa and Sphingomonas sp.) and two yeasts (Moesziomyces sp. and Candida sp.) isolated from real diesel contamination cases. All tested microorganisms caused a significant degradation of diesel fuel achieving hydrocarbon degradation percentages ranging from 23% to 35%. Specific aspects on the test modification and prospects for further modification regarding targeted investigations in the field of fuel contamination by microorganisms are briefly discussed. KW - Biofouling KW - Bacteria KW - Fungi KW - CEC-L-103 KW - GC-FID KW - Reference organisms PY - 2018 U6 - https://doi.org/10.1016/j.ibiod.2018.01.009 SN - 0964-8305 VL - 129 SP - 89 EP - 94 PB - Elsevier AN - OPUS4-44524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kimani, Martha Wamaitha A1 - Zhang, Y. A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescent core/shell molecularly-imprinted nanoparticles for staining sialic acid (SA) residues on tumor cells N2 - Cancer is a leading cause of death worldwide, and its early detection and resultant treatment contributes significantly to patient recovery and survival. Detection is currently based on magnetic resonance imaging and computed tomography, methods that are expensive, while processing of the results is time consuming. There is a need for low-cost cancer-detection techniques that give conclusive results in the shortest time possible. Molecularly imprinted polymers (MIPs) targeting tumor markers on cancerous cells may provide a cheaper solution for cancer detection. Thin MIP layers immobilized on particle platforms are known to give faster response times and increased selectivity in comparison to bulk MIPs. It has been reported that a fluorescent monomer can be incorporated into the MIP layer, allowing for faster detection of the target group, thus significantly shortening the turn-around time for biopsies. Changes in sialylation patterns of cell surface glycoproteins indicate malignancy. Here, we present the development of MIPs that target sialic acid-terminated glycoproteins (SA MIPs), prepared as a thin layer on a silica nanoparticle platform. A fluorescent monomer is incorporated into the MIP layer, and upon binding of the target group to the specific binding pockets in the MIP, the fluorescence signal is enhanced. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are used for structural characterization. To validate the specificity, fluorescence changes of MIPs in the presence and absence of template are compared to their corresponding non-imprinted polymer particles (NIP). Initial binding experiments with tumor cells using fluorescence microscopy demonstrate that the presented technique shows promise as a cheaper alternative to current detection methods, while allowing for relatively shorter analysis of biopsy results. T2 - MIP 2018 CY - Hebrew University Jerusalem, Belgium House, Israel DA - 24.07.2018 KW - Sialic acid KW - MIPs KW - Fluorescence PY - 2018 AN - OPUS4-45419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Fischer, S. A1 - Grauel, Bettina A1 - Alivisatos, A. P. A1 - Resch-Genger, Ute T1 - Quantum Yields, Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell Upconverting Nanoparticles N2 - We synthesized and characterized a set of ultrasmall hexagonal-phase NaGdF4: 20% Yb3+, 2% Er3+ upconversion nanoparticles with core diameters of 3.7 ± 0.5 nm. In order to assess passivation effects and the influence of possible core−shell intermixing and to identify optimum particle structures for combined imaging in the visible and near-infrared (vis−NIR: 410−850 nm) and short-wave infrared (SWIR: 1520 nm), NaYF4 shells of varying thicknesses (monolayer to 10 nm) were introduced and the influence of this parameter on the upconversion and downshifting photoluminescence of these particles was studied at different excitation power densities. This included excitation power-dependent emission spectra, slope factors, quantum yields, and excited state decay kinetics. These measurements revealed enhancement factors of the upconversion quantum yield of >10 000 in the low power region and an excitation power density-independent quantum yield of the downshifted emission at 1520 nm between 0.1 and 14%. The optimized shell thickness for combined vis and SWIR imaging was identified as 5 nm. Moreover, lifetimes and quantum yields can be continuously tuned by shell thickness which can be exploited for lifetime multiplexing and encoding. The fact that we did not observe a saturation of the upconversion quantum yield or the excited state decay kinetics with increasing shell thickness is ascribed to a strong intermixing of the active core with the inert shell during the shelling procedure. This indicates the potential of spectroscopic tools to detect cation intermixing. KW - Nanoparticle KW - Upconversion KW - Quenching PY - 2018 U6 - https://doi.org/10.1021/jacs.8b01458 IS - 140 SP - 4922 EP - 4928 PB - American Chemical Society AN - OPUS4-45378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sternbaek, L. A1 - Kimani, Martha Wamaitha A1 - Shinde, S. A1 - Alm, K. A1 - Sellegren, B. A1 - Gjörloff-Wingren, A. T1 - Macrophage-uptake of sialic acid-targeted molecularly imprinted polymers (SA-MIPs) N2 - Sialic acid (SA) is a cell surface glycan, which has a decisive role in many cell activities including differentiation, proliferation, and the immune response. The amount of SA has been found to correlate with cancer, with an upregulation on more aggressive cancers. Therefore, there is a great interest in developing methods for detection of SA on cancer cells. We are screening SA on cancer cell lines by using fluorescent molecularly imprinted polymers, SA-MIPs. Macrophages, which evolve from mono-cytes, are well known for their extraordinary ability to phagocytose foreign objects. This could lead to the hypothesis that the SA-MIPs can be recognized by macrophages as foreign object; thus leading to internalization and potentially degradation. We have demonstrated that SA-MIPs can be detected after incubation with the RAW macrophage cells, with increasing fluorescence over time. The microscopy analysis shows that the RAW cells ingest the SA-MIP particles. This information is important when planning to use SA-MIPs in future in vivo applications. T2 - 1st National Meeting of the Swedish Chemical Society CY - Lund University, Sweden DA - 17.06.2018 KW - Sialic acid KW - MIPs KW - Macrophages PY - 2018 AN - OPUS4-45421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sternbaek, L. A1 - Kimani, Martha Wamaitha A1 - Shinde, S. A1 - Alm, K. A1 - Sellegren, B. A1 - Gjörloff-Wingren, A. T1 - Macrophage-uptake of sialic acid-targeted molecularly imprinted polymers (SA-MIPs) N2 - Sialic acid (SA) is a cell surface glycan, which has a strong role in many cell activities including differentiation, proliferation, and the immune response. The amount of SA has been found to be correlated with cancer, with an upregulation on more aggressive cancers. Therefore, there is great interest in developing methods for detection of SA on cancer cells. We are screening SA on cancer cell lines by using fluorescent molecularly imprinted polymers, SA-MIPs.Macrophages, which evolve from mono-cytes, are well known for their extraordinary ability to phagocytose foreign objects. This could lead to the hypothesis that the SA-MIPs can be recognized by macrophages as foreign object; thus leading to internalization and potential degradation. We have discovered that SA-MIPs can be detected after incubation with the RAW macrophage cells, with increasing fluorescence over time. The microscopy analysis shows that the RAW cells ingest the SA-MIP particles. This information is important when planning to use SA-MIPs in future in vivo applications. T2 - The 69th Annual Conference of the Nordic Microscopy Society, 2018 CY - Lyngby, Denmark DA - 25.06.2018 KW - Sialic acid KW - MIPs KW - Macrophages PY - 2018 AN - OPUS4-45422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Serrano Oliver, Ana A1 - Baumgart, S. A1 - Bremser, Wolfram A1 - Flemig, Sabine A1 - Wittke, D. A1 - Grützkau, A. A1 - Luch, A. A1 - Haase, A. A1 - Jakubowski, Norbert T1 - Quantification of silver nanoparticles taken up by single cells using inductively coupled plasma mass spectrometry in the single cell measurement mode N2 - The impact of nanoparticles, NPs, at the single cell level has become a major field of toxicological research and different analytical methodologies are being investigated to obtain biological and toxicological information to better understand the mechanisms of cell–NP interactions. Here, inductively coupled plasma mass spectrometry in the single cell measurement mode (SC-ICP-MS) is proposed to study the uptake of silver NPs, AgNPs, with a diameter of 50 nm by human THP-1 monocytes in a proof-ofprinciple experiment. The main operating parameters of SC-ICP-MS have been optimized and applied for subsequent quantitative analysis of AgNPs to determine the number of particles in individual cells using AgNP suspensions for calibration. THP-1 cells were incubated with AgNP suspensions with concentrations of 0.1 and 1 µg/mL for 4 and 24 hours. The results reveal that the AgNP uptake by THP-1 monocytes is minimal at the lower dose of 0.1 µg/mL (roughly 1 AgNP per cell was determined), whereas a large cell-to-cell variance dependent on the exposure time is observed for a 10 times higher concentration (roughly 7 AgNPs per cell). The method was further applied to monitor the AgNP uptake by THP-1 cells differentiated macrophages incubated at the same AgNP concentration levels and exposure times demonstrating a much higher AgNP uptake (roughly from 9 to 45 AgNPs per cell) that was dependent on exposure concentration and remained constant over time. The results have been compared and validated by sample digestion followed by ICP-MS analysis as well as with other alternative promising techniques providing single cell analysis. KW - Silbernanopartikel KW - ICP-MS KW - Einzelzellanalyse PY - 2018 U6 - https://doi.org/10.1039/C7JA00395A SN - 0267-9477 VL - 33 IS - 7 SP - 1256 EP - 1263 PB - Royal Society of Chemistry CY - London AN - OPUS4-45473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Fischer, Linn A1 - Hoffmann, Katrin A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Close spectroscopic look at dye-stained polymer microbeads N2 - Dye-stained micrometer-sized polymer beads are important tools in the life sciences with applications in biomedical, biochemical, and clinical research. Here, bead-based assays are increasingly used, for example, in DNA sequencing and the detection of autoimmune diseases or pathogenic microorganisms. Moreover, stained beads are employed as calibration tools for fluorescence microscopy and flow cytometry methods with increasing complexity. To address the requirements concerning the relevant fluorescence features, the spectroscopic properties of representative polymer beads with diameters ranging from about 1 to 10 μm stained with varying concentrations of rhodamine 6G were systematically assessed. The observed dependence of the spectral properties, fluorescence decay kinetics, and fluorescence quantum yields on bead size and dye loading concentration is attributed to different fluorescence characteristics of fluorophores located in the particle core and near-surface dye molecules. Supported by the fluorescence anisotropy measurements, the origin of the observed alteration of fluorescence features is ascribed to a combination of excitation energy transfer and polarity-related effects that are especially pronounced at the interface of the bead and the surrounding medium. The results of our studies underline the need to carefully control and optimize all Parameters that can affect the fluorescence properties of the dye-stained beads. KW - Fluorophore KW - Polymer particles KW - Photophysics KW - Life sciences KW - Standards PY - 2018 U6 - https://doi.org/10.1021/acs.jpcc.8b02546 SN - 1932-7447 VL - 122 IS - 24 SP - 12782 EP - 12791 PB - ACS Publications CY - Washington, DC AN - OPUS4-45453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tuma, Dirk A1 - Safarov, J. A1 - Sperlich, C. A1 - Namazova, A. A1 - Aliyev, A. A1 - Shahverdiyev, A. A1 - Hassel, E. T1 - Carbon dioxide solubility in 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrachloroferrate over an extended range of temperature and pressure N2 - Solubility data of carbon dioxide (CO2) in the two ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium tetrachloroferrate [BMIM][FeCl4] at T = (273.15-413.15) K and pressures up to p = 4.5 MPa are presented. In Addition to the experiments, a literature review was done to compare the new results with published solubility data. The measurements were carried out using an isochoric method which operates in decrements of deltaT = 20 K within the investigated temperature range and at selected four different pressure steps ranging from a pressure p of around 4.5 MPa to around 0.5 MPa. The solubility of CO2 decreases in both ionic liquids with increasing temperatures. Within the p,T-range investigated, CO2 displayed a solubility in [BMIM][BF4] from a mole fraction x = 0.0117 and a corresponding molality m = 0.0526 mol/kg at T = 413.15 K and p = 0.417 MPa up to x = 0.4876 and m = 4.2094 mol/kg at T = 293.15 K and p = 4.349 MPa. The corresponding values for the solubility in [BMIM][FeCl4] start at a mole fraction x = 0.0268 and a corresponding molality m = 0.0818 mol/kg at T = 413.15 K and p = 0.443 MPa and end at x = 0.5126 and m = 3.1216 mol/kg at T = 293.15 K and p = 4.478 MPa. At a constant temperature, CO2 is better soluble in [BMIM][FeCl4] than in [BMIM][BF4] and the mean value of the solubility difference related to mole fraction x over the pressure range investigated amounts to about 4 % at T = 273.15 K and monotonously increases to about 92 % at T = 413.15 K. Henry's law constant as well as derived thermodynamic properties, such as the Gibbs energy of solvation, the enthalpy of solvation, the entropy of solvation, and the heat capacity of solvation, were calculated and discussed regarding the solute-solvent molecular interactions. KW - Ionic liquid KW - Gas solubility KW - Henry's law constant KW - Solvation properties PY - 2018 U6 - https://doi.org/10.1016/j.fluid.2018.03.019 SN - 0378-3812 SN - 1879-0224 VL - 467 SP - 45 EP - 60 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-44892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Juds, Carmen A1 - Conrad, T. A1 - Weller, Michael G. A1 - Börner, H. G. T1 - Finding peptide binders for polypropylene using phage display and next generation sequencing N2 - Phage display is used to find specific target binding peptides for polypropylene (PP) surfaces. PP is one of the most commonly used plastics in the world. Millions of tons are produced every year. PP binders are of particular interest because so far gluing or printing on PP is challenging due to its low surface energy. A phage display protocol for PP was developed followed by Next Generation DNA Sequencing of the whole phage library. Data analysis of millions of sequences yields promising peptide candidates which were synthesized as PEG conjugates. Fluorescence-based adsorption-elution-experiments show high adsorption on PP for several sequences. T2 - BAM PhD Day CY - Berlin-Adlershof, Germany DA - 31.05.2018 KW - Polymer KW - Glue KW - Amplification KW - Illumina KW - PEG KW - Sanger sequencing KW - SALSA KW - Data analysis KW - Fluorescence PY - 2018 AN - OPUS4-45055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Geißsler, Daniel A1 - Behnke, Thomas A1 - Schneider, Ralf T1 - Simple and versatile methods for quantifying functional groups, ligands, and biomolecules on nanomaterials N2 - Many applications of nanomaterials in the life sciences require the controlled functionalization of these materials with ligands like polyethylene glycol (PEG) and/or biomolecules such as peptides, proteins, and DNA. This enables to tune their hydrophilicity and biocompatibility, minimize unspecific interactions, improve biofunction-nalization efficiencies, and enhance blood circulation times and is the ultimate prerequisite for their use as reporters in assays or the design of targeted optial probes for bioimaging. At the core of these functionalization strategies are reliable and validated methods for surface group and ligand quantification that can be preferably performed with routine laboratory instrumentation, require only small amounts of substances, and are suitable for many different types of nanomaterials. We present here versatile and simple concepts for the quantification of common functional groups, ligands, and biomolecules on different types of organic and inorganic nano-materials, using different types of optical reporters and method validation with the aid of multimodal reporters and mass balances. T2 - RSC Symposium on Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - PEG ligands KW - Surface group analysis KW - Upconverting nanoparticles KW - Integrating sphere spectroscopy KW - Absolute fluorescence quantum yield KW - Fluorescence decay kinetics PY - 2018 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-44986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Brandt, Guido A1 - Ehrke, Roman A1 - Nolze, Gert A1 - Schmid, Thomas A1 - Sasaki, S. A1 - Woydt, Mathias T1 - Wear behaviour of alpha-alumina in hot steam at high contact pressure N2 - The work examines the wear behaviour of α-aluminium oxide by combining thermodynamic modelling with advanced wear testing as well as analytical methods to get a better understanding of this structural ceramic material wear behavior and its possible use in high temperature steam environment. KW - Aluminium oxide KW - Temperature KW - Hot steam KW - Diaspore KW - Ceramic KW - Wear PY - 2018 U6 - https://doi.org/10.1016/j.wear.2018.02.012 SN - 0043-1648 SN - 1873-2577 VL - 404-405 SP - 22 EP - 30 PB - Elsevier B.V. AN - OPUS4-44449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -