TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Verfahrensentwicklung für die Prozessüberwachung in der additiven Fertigung - Thermografie N2 - Für die Prozessüberwachung in der additiven Fertigung (AM) werden Sensoren und Messsysteme zur Kontrolle der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie zumindest im metallbasierten AM schon kommerziell angeboten. Weitere Verfahren der Optik, Spektroskopie und zerstörungsfreien Prüfung werden in der Literatur als geeignet für die in-situ Anwendung bezeichnet, es finden sich aber nur wenige Berichte über konkrete praktische Umsetzungen. Ein neues Projekt der BAM im Themenfeld Material hat daher das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile in AM-Prozessen mit Laser- bzw. Lichtbogenquellen zu entwickeln. Dies beinhaltet neben passiver und aktiver Thermografie die optische Tomografie, die optische Emissionsspektroskopie, die Wirbelstromprüfung, die Laminografie, die Röntgenrückstreuung und photoakustische Verfahren. Diese Verfahren werden in verschiedenen AM-Systemen zum selektiven Laserschmelzen, zum Laser-Pulver-Auftragsschweißen und zum Lichtbogenschweißen mit Drahtzuführung zum Einsatz gebracht. Für die zum Teil sehr großen Datenmengen werden Algorithmen für ein effizientes Preprocessing entwickelt und Merkmale der Messdaten in Korrelation zu Fehlern und Inhomogenitäten extrahiert, welche mit Referenzverfahren wie Computertomografie und Ultraschall-Tauchtechnik ermittelt werden. Die Ergebnisse der Einzelverfahren werden fusioniert und mit den Fertigungsparametern korreliert. Diese Prozessüberwachung soll eine deutliche Reduzierung aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen nach der Fertigung des Bauteiles und zugleich eine Verringerung von Ausschussproduktion bewirken. Im Beitrag wird zunächst das Projekt als Ganzes vorgestellt und dann der Fokus auf die Thermografie mit Detektoren in verschiedenen Wellenlängenbereichen gelegt. Anforderungen an die Messtechnik für verschiedene AM-Systeme werden diskutiert und experimentelle Ergebnisse im Vergleich zur optischen Tomografie und weiterer Verfahren präsentiert. T2 - DGZfP DACH Jahrestagung 2019 CY - Friedrichshafen, Germany DA - 27.05.2019 KW - Additive Fertigung KW - 3D Druck KW - Thermografie KW - L-PBF KW - SLM PY - 2019 AN - OPUS4-50213 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Seeger, Stefan T1 - Prozessmonitoring für die additive Fertigung: Entwicklungen an der BAM N2 - Das Prozessmonitoring stellt einen wichtigen Baustein für eine Qualitätssicherung additiv gefertigter Bauteile dar, insbesondere bei kleinen Losgrößen. Der Vortrag zeigt einen Überblick aktueller Entwicklungen der BAM im Bereich des Prozessmonitorings für das Laserstrahlschmelzen (laser powder bed fusion) metallischer Werkstoffe. Durch Vergleich mit der Referenzmethode Computertomografie wird am Beispiel der thermografischen Verfahren gezeigt, wie relevante Defekte in Bauteilen detektiert werden können und Einsatzpotenziale sowie Limitierungen aufgezeigt. T2 - Forum Additive Fertigung Rheinland-Pfalz CY - Ludwigshafen, Germany DA - 07.11.2019 KW - Optische Tomografie KW - Additive Fertigung KW - Prozessmonitoring KW - Thermografie PY - 2019 AN - OPUS4-49958 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Gordei, A. A1 - Ehlers, Henrik A1 - Kochan, J. A1 - Jahangir, H. A1 - Pelkner, Matthias A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-situ Monitoring of PBF-LB/M by thermography, optical tomography, melt-pool-monitoring and eddy current N2 - The formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The LPBF process is characterized by a large number of influencing factors which can be hard to quantify. Machine Learning (ML) is a prominent tool to predict the outcome of complex processes on the basis of different sensor data. In this study, a ML model for defect prediction is created using thermographic image features as input data. As a reference, the porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan of the produced specimen is used. Physical knowledge about the keyhole pore formation is incorporated into the model to increase the prediction accuracy. From the prediction result, the quality of the input data is evaluated and future demands on in-situ monitoring of LPBF processes are formulated. T2 - AM Bench 2022 CY - Bethesda, Washingthon DC, USA DA - 15.08.2022 KW - Additive Manufacturing KW - Thermography KW - Additive Fertigung KW - Thermografie PY - 2022 AN - OPUS4-55854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ Thermografie in der additiven Fertigung mittels Laser-Pulver-Auftragsschweißen N2 - Im Rahmen des Themenfeld Projektes „Process Monitoring of AM“ (ProMoAM) evaluiert die BAM gegenwärtig die Anwendbarkeit verschiedenster ZfP-Verfahren, darunter die Thermografie, zur Prozessüberwachung in der additiven Fertigung von Metallen in Hinblick auf die Qualitätssicherung. In diesem Beitrag werden SWIR-Thermografiemessungen während des Bauprozesses mittels Laser Pulver Auftragsschweißen (LPA) vorgestellt. Eine Herausforderung im Rahmen dieser Messungen liegt in der Positionierung der Kamera, welche entweder fixiert am Schweißarm, also mitbewegt, oder fixiert in der Baukammer, also stationär, erfolgen kann, wobei beide Varianten mit individuellen Vor- und Nachteilen verbunden sind. Eine stationäre Befestigung der Kamera ermöglicht zwar eine einfachere Zuordnung der Messdaten zu der jeweiligen Position im Bauteil, führt jedoch bei komplexeren Geometrien zwangsläufig zu Problemen durch Abschattungen und zu defokussierten Bereichen. Zur Auswertung von Thermogrammen, welche durch eine mit dem Schweißarm mitbewegte Kamera aufgenommen wurden, sind hingegen für jedes Bild akkurate Positionsdaten der Kamera nötig um die Messdaten einer Position im Bauteil zuzuordnen. Da die Positionsdaten des Schweißarmes im allgemeinen Fall durch die Anlagensoftware nicht zur Verfügung gestellt werden, muss diese Information durch zusätzliche Messungen aufgezeichnet werden. Hierzu verwenden wir einen an der Kamera befestigten Beschleunigungssensor. Dieser ermöglicht einen zeitlichen Abgleich mit dem vorprogrammierten Verfahrweg des Schweißarmes, welcher im Allgemeinen noch Unsicherheiten bezüglich genauer Geschwindigkeiten und Beschleunigungen offenlässt. Weiterhin untersuchen wir den Einfluss des empfindlichen Spektralbereiches der IR-Kamera durch den Vergleich von Messungen mit verschiedenen schmalbandigen Bandpassfiltern (25 nm FWHM) in einem Bereich von 1150 nm bis 1550 nm. T2 - Thermographie-Kolloquium 2019 CY - Halle (Saale), Germany DA - 19.09.2019 KW - Additive manufacturing KW - 3D printing KW - Thermography KW - Direct energy deposition KW - Laser Metal Deposition KW - 3D Druck KW - Laser Pulver Auftragsschweißen KW - Additive Fertigung KW - Thermografie PY - 2019 AN - OPUS4-49078 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Oster, Simon A1 - Altenburg, Simon A1 - Metz, C. A1 - Maierhofer, Christiane T1 - Aktive Laserthermografie im L-PBF-Prozess zur in-situ Detektion von Defekten N2 - Die zerstörungsfreie Prüfung von metallischen Bauteilen hergestellt mit additiver Fertigung (Additive Manufacturing - AM) gewinnt zunehmend an industrieller Bedeutung. Grund dafür ist die Feststellung von Qualität, Reproduzierbarkeit und damit auch Sicherheit für Bauteile, die mittels AM gefertigt wurden. Jedoch wird noch immer ex-situ geprüft, wobei Defekte (z.B. Poren, Risse etc.) erst nach Prozessabschluss entdeckt werden. Übersteigen Anzahl und/oder Abmessung die vorgegebenen Grenzwerte für diese Defekte, so kommt es zu Ausschuss, was angesichts sehr langer Bauprozessdauern äußerst unrentabel ist. Eine Schwierigkeit ist dabei, dass manche Defekte sich erst zeitverzögert zum eigentlichen Materialauftrag bilden, z.B. durch thermische Spannungen oder Schmelzbadaktivitäten. Dementsprechend sind reine Monitoringansätze zur Detektion ggf. nicht ausreichend. Daher wird in dieser Arbeit ein Verfahren zur aktiven Thermografie an dem AM-Prozess Laser Powder Bed Fusion (L-PBF) untersucht. Das Bauteil wird mit Hilfe des defokussierten Prozesslasers bei geringer Laserleistung zwischen den einzelnen gefertigten Lagen unabhängig vom eigentlichen Bauprozess erwärmt. Die entstehende Wärmesignatur wird ort- und zeitaufgelöst durch eine Infrarotkamera erfasst. Durch diese der Lagenfertigung nachgelagerte Prüfung werden auch zum Bauprozess zeitversetzte Defektbildungen nachweisbar. In dieser Arbeit finden die Untersuchungen als Proof-of-Concept, losgelöst vom AM-Prozess, an einem typischen metallischen Testkörper statt. Dieser besitzt eine Nut als oberflächlichen Defekt. Die durchgeführten Messungen finden an einer eigens entwickelten L-PBF-Forschungsanlage innerhalb der Prozesskammer statt. Damit wird ein neuartiger Ansatz zur aktiven Thermografie für L-PBF erforscht, der eine größere Bandbreite an Defektarten auffindbar macht. Der Ansatz wird validiert und Genauigkeit sowie Auflösungsvermögen geprüft. Eine Anwendung am AM-Prozess wird damit direkt forciert und die dafür benötigten Zusammenhänge werden präsentiert. T2 - DGZfP-Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Thermografie KW - Zerstörungsfreie Prüfung KW - Aktive Laserthermografie PY - 2022 AN - OPUS4-55040 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Gordei, A. A1 - Ehlers, Henrik A1 - Kochan, J. A1 - Jahangir, H. A1 - Pelkner, Matthias A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-situ Prozessüberwachung in der additiven Fertigung von Metallen (PBF-LB /M) mittels TT und ET N2 - Durch die additive Fertigung ergeben sich durch die nun mögliche wirtschaftliche Fertigung hochgradig individueller und komplexer metallischer Bauteile in kleinen Stückzahlen bis hinunter zum Einzelstück für viele Industriebereiche ganz neue Möglichkeiten. Gleichzeitig entstehen jedoch neue Herausforderungen im Bereich der Qualitätssicherung, da sich auf statistischen Methoden beruhende Ansätze nicht anwenden lassen, ohne wiederum die Vorteile der Fertigung massiv einzuschränken. Eine mögliche Lösung für dieses Problem liegt in der Anwendung verschiedener In-situ-Überwachungstechniken während des Bauprozesses. Jedoch sind nur wenige dieser Techniken kommerziell verfügbar und noch nicht so weit erforscht, dass die Einhaltung strenger Qualitäts- und Sicherheitsstandards gewährleistet werden kann. In diesem Beitrag stellen wir die Ergebnisse einer Studie über mittels L-PBF gefertigte Probekörper aus der Nickelbasis-Superlegierung Haynes 282 vor, bei denen die Bildung von Defekten durch lokale Variationen der Prozessparameter wie der Laserleistung provoziert wurde. Die Proben wurden in-situ mittels Thermographie, optischer Tomographie, Schmelzbadüberwachung und Wirbelstromprüfung sowie ex-situ mittels Computertomographie (CT) überwacht, mit dem Ziel, die Machbarkeit und die Aussichten der einzelnen Methoden für die zuverlässige Erkennung der Bildung relevanter Defekte zu bewerten. T2 - DGZfP Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Additive Manufacturing KW - Thermografie KW - Additive Fertigung KW - Thermography PY - 2022 AN - OPUS4-55851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Jan P. A1 - Krankenhagen, Rainer T1 - Ein Blick unter die Oberfläche von Windkraftanlagen durch Thermografie N2 - Rotorblätter von Windkraftanlagen sind hohen Belastungen ausgesetzt. Nach Jahren der Nutzung können Klebeverbindungen unter der Oberfläche versagen. Thermografie soll die Zustandsüberwachung während der gesamten Lebensdauer verbessern. N2 - Rotor blades of wind power generators are subject to high strains. After years of use, adhesive bonds under the surface may fail. Thermography is intended to improve condition monitoring during the entire service life. T2 - Hannover Messe 2019 CY - Hanover, Germany DA - 1.4.2019 KW - Wiederkehrende Prüfung KW - Thermografie KW - Klebeverbindungen KW - Rotorblatt KW - GFK PY - 2019 AN - OPUS4-49160 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane A1 - Fischer, Christian T1 - Additiv gefertigte Polymerbauteile: Untersuchung der Beständigkeit durch künstliche Bewitterung und zerstörungsfreie Charakterisierung (PolyMatAM) N2 - Es wird ein Verfahren zur Charakterisierung der Beständigkeit und Langzeitstabilität von additiv gefertigten Kunststoff-Bauteilen vorgestellt. Dabei sollen die Prüfkörper über 2000 Stunden künstlich bewittert und währenddessen die Änderungen der Eigenschaften der Bauteile zerstörungsfrei untersucht werden. T2 - 47. Jahrestagung der Gesellschaft für Umweltsimulation e.V. (GUS) CY - Stutensee, Germany DA - 21.03.2018 KW - Additive Fertigung KW - Künstliche Bewitterung KW - Thermografie PY - 2018 AN - OPUS4-46545 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Verfahrensentwicklung für das Prozessmonitoring in der additiven Fertigung von Metallen - Thermografie N2 - Aktuell werden Prozessmonitoringsysteme in der additiven Fertigung (AM) zur Überwachung der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie zumindest im metallbasierten AM schon kommerziell angeboten. Weitere Verfahren aus den Bereichen der Optik, Spektroskopie und zerstörungsfreien Prüfung werden in der Literatur als geeignet für die in-situ Anwendung bezeichnet, es finden sich aber nur wenige Berichte über konkrete Umsetzungen in die Praxis. Die Bundesanstalt für Materialforschung und -prüfung hat ein neues Projekt gestartet, dessen Ziel die Entwicklung von Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Bauteile in AM-Prozessen mit Laser- bzw. Lichtbogenquellen ist. Verschiedene Verfahren der zerstörungsfreien Prüfung, wie Thermografie, optische Tomografie, optische Emissionsspektroskopie, Wirbelstromprüfung und Laminografie werden in verschiedenen AM-Prozessen zum Einsatz gebracht und die Ergebnisse fusioniert. Die evaluierten Ergebnisse werden mit Referenzverfahren wie Computertomografie und Ultraschall-Tauchtechnik verglichen. Ziel ist eine deutliche Reduzierung aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen nach der Fertigung des Bauteiles und zugleich eine Verringerung von Ausschussproduktion. Hier wird das Projekt als Ganzes vorgestellt und der Fokus auf verschiedene Methoden der Temperaturmessung mit Hilfe der Thermografie gelegt. Anforderungen an die Messtechnik für verschiedene AM-Systeme werden diskutiert und erste experimentelle Ergebnisse werden präsentiert. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Additive Fertigung KW - Prozessmonitoring KW - ProMoAM KW - Thermografie PY - 2018 AN - OPUS4-46562 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Straße, Anne A1 - Maierhofer, Christiane A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - In-situ Monitoring der Additiven Fertigung von Metallen im LPA Prozess mittels Optischer Emissionsspektrometrie (OES) und Thermografie (TT) N2 - Einer der aussichtsreichsten Ansätze, die Qualität und Sicherheit der gefertigten Teile in der metallbasierten additiven Fertigung (AM) zu erhöhen und die Notwendigkeit aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen (ZfP) nach der Fertigung zu verringern, liegt in dem Einsatz von in-situ Prozessüberwachungstechniken. Viele wichtige Prozessgrößen bei der additiven Fertigung sind thermischer Natur, wie z.B. die Temperatur des Schmelzbades. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zur Temperaturbestimmung an. Für die Thermografie und Optische Emissionsspektrometrie im IR-Bereich, welche für die in-situ Anwendung prinzipiell als geeignet angesehen werden können, gibt es allerdings noch wenig konkrete praktische Umsetzungen, da die Möglichkeiten und individuellen Grenzen dieser Methoden, angewendet auf AM, noch nicht ausreichend erforscht sind. Aus diesem Grund verfolgt die BAM mit dem Projekt „Process Monitoring of AM“ (ProMoAM) im Themenfeld Material das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile weiterzuentwickeln. Im Beitrag wird der Fokus auf eine Versuchsserie gelegt, bei der Aufbau von Probekörpern aus dem austenitischen Edelstahl 316L mittels Laser-Pulver-Auftragschweißen (LPA) durch od. mit Hilfe von IR-Spektrometrie und Thermografie in-situ überwacht wurde. Hierbei stellen u.a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen des Metalls große experimentelle Herausforderungen dar, wobei jede Methode individuelle Vor- und Nachteile aufweist, welche verglichen werden. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition KW - Additive Fertigung KW - Thermografie KW - Laserauftragschweißen PY - 2021 AN - OPUS4-52744 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Verfahrensentwicklung für die Prozessüberwachung in der additiven Fertigung - Thermografie N2 - Aktuell werden Prozessmonitoringsysteme in der additiven Fertigung (AM) zur Überwachung der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie zumindest im metallbasierten AM schon kommerziell angeboten. Weitere Verfahren aus den Bereichen der Optik, Spektroskopie und zerstörungsfreien Prüfung werden in der Literatur als geeignet für die in-situ Anwendung bezeichnet, es finden sich aber nur wenige Berichte über konkrete Umsetzungen in die Praxis. Die Bundesanstalt für Materialforschung und -prüfung hat ein neues Projekt gestartet, dessen Ziel die Entwicklung von Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Bauteile in AM-Prozessen mit Laser- bzw. Lichtbogenquellen ist. Verschiedene Verfahren der zerstörungsfreien Prüfung, wie Thermografie, optische Tomografie, optische Emissionsspektroskopie, Wirbelstromprüfung und Laminografie werden in verschiedenen AM-Prozessen zum Einsatz gebracht und die Ergebnisse fusioniert. Die evaluierten Ergebnisse werden mit Referenzverfahren wie Computertomografie und Ultraschall-Tauchtechnik verglichen. Ziel ist eine deutliche Reduzierung aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen nach der Fertigung des Bauteiles und zugleich eine Verringerung von Ausschussproduktion. Hier wird das Projekt als Ganzes vorgestellt und der Fokus auf verschiedene Methoden der Temperaturmessung mit Hilfe der Thermografie gelegt. Anforderungen an die Messtechnik für verschiedene AM-Systeme werden diskutiert und erste experimentelle Ergebnisse werden präsentiert. T2 - Innotesting 2019 CY - Wildau, Germany DA - 21.02.2019 KW - Additive Fertigung KW - Thermografie KW - Prozessüberwachung PY - 2019 AN - OPUS4-47457 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Maierhofer, Christiane A1 - Wachtendorf, Volker A1 - Fischer, C. T1 - Zerstörungsfreie Charakterisierung der Alterung additiv gefertigter Kunststoffbauteile N2 - Es wurden mittels Fused Layer Modeling (FLM) Probekörper aus ABS und mittels Laser Sintering (LS) Probekörper aus PA 12 hergestellt, die anschließend für drei Monate einer künstlichen Bewitterung unterzogen wurden. Die dabei erzeugte definierte Alterung wurde nach drei Zeitabschnitten jeweils mit zerstörungsfreien Methoden charakterisiert. Dabei wurde neben den spektroskopischen Standardmethoden auch die aktive Thermografie eingesetzt. Die Ergebnisse zeigen, dass sich mittels der Thermografie sowohl chemische Veränderungen als auch mechanische Schädigungen (Fehlstellen) darstellen lassen. Die Bewitterung beeinflusst die Teiltransparenz der Proben zumindest im sichtbaren Spektralbereich, was bei der Charakterisierung der Fehlstellen, die mittels optisch angeregter aktiver Thermografie detektiert wurden, berücksichtigt werden muss. Die Erkenntnisse dienen für die Entwicklung einer Strategie für eine Qualitätskontrolle von additiv gefertigten Kunststoffteilen. T2 - DACH-Jahrestagung 2019 - Zerstörungsfreie Materialprüfung CY - Friedrichshafen, Germany DA - 27.05.2019 KW - Additive Fertigung KW - Künstliche Bewitterung KW - Thermografie KW - Zerstörungsfreie Prüfung KW - additive manufacturing KW - Kunststoffe PY - 2019 AN - OPUS4-48331 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Maierhofer, Christiane A1 - Wachtendorf, Volker A1 - Fischer, C. T1 - Untersuchung der Beständigkeit additiv gefertigter Bauteile mit Thermografie nach künstlicher Bewitterung N2 - Additiv gefertigte Prüfkörper aus Polyamid 12 (Laser Sinter Verfahren) und Acrylnitril-Butadien-Styrol (Fused Layer Modeling Verfahren) wurden über 2000 Stunden künstlich bewittert und ihr Alterungsverhalten untersucht. Die Ergebnisse wurden anschließend mit denen von Prüfkörpern verglichen, welche auf dieselbe Weise künstlich bewittert, aber mittels konventionellem Kunststoff-Spritzguss hergestellt wurden. Die Erkenntnisse dienen für die Entwicklung einer Strategie für eine Qualitätskontrolle von additiv gefertigten Kunststoffteilen. T2 - 48. Jahrestagung der Gesellschaft für Umweltsimulation e.V. (GUS) CY - Stutensee-Blankenloch, Germany DA - 27.03.2019 KW - Additive Fertigung KW - Künstliche Bewitterung KW - Thermografie KW - Zerstörungsfreie Prüfung KW - Additive manufacturing KW - Kunststoffe PY - 2019 AN - OPUS4-48328 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ thermographic monitoring of the laser metal deposition process N2 - By allowing economic on demand manufacturing of highly customized and complex workpieces, metal based additive manufacturing (AM) has the prospect to revolutionize many industrial areas. Since AM is prone to the formation of defects during the building process, a fundamental requirement for AM to become applicable in most fields is the ability to guarantee the adherence to strict quality and safety standards. A possible solution for this problem lies in the deployment of various in-situ monitoring techniques. For most of these techniques, the application to AM is still very poorly understood. Therefore, the BAM in its mission to provide safety in technology has initiated the project “Process Monitoring of AM” (ProMoAM). In this project, a wide range of in-situ process monitoring techniques, including active and passive thermography, optical tomography, optical emission and absorption spectroscopy, eddy current testing, laminography, X-ray backscattering and photoacoustic methods, are applied to laser metal deposition (LMD), laser powder bed fusion and wire arc AM. Since it is still unclear which measured quantities are relevant for the detection of defects, these measurements are performed very thoroughly. In successive steps, the data acquired by all these methods is fused and compared to the results of reference methods such as computer tomography and ultrasonic immersion testing. The goal is to find reliable methods to detect the formation of defects during the building process. The detailed acquired data sets may also be used for comparison with simulations. Here, we show first results of high speed (> 300 Hz) thermographic measurements of the LMD process in the SWIR range using 316L as building material. For these experiments, the camera was mounted fixed to the welding arm of the LMD machine to keep the molten pool in focus, regardless of the shape of the specimen. As the thermograms do not contain any information about the current spatial position during the building process, we use an acceleration sensor to track the movement and synchronize the measured data with the predefined welding path. This allows us to reconstruct the geometry of the workpieces and assign the thermographic data to spatial positions. Furthermore, we investigate the influence of the acquisition wavelength on the thermographic data by comparing measurements acquired with different narrow bandpass filters (50 nm FWHM) in a spectral range from 1150 nm to 1550 nm. This research was funded by BAM within the Focus Area Materials. T2 - Sim-AM 2019 - 2. International Conference on Simulation for Additive Manufacturing CY - Pavia, Italy DA - 11.09.2019 KW - Additive manufacturing KW - 3D printing KW - Thermography KW - Direct energy deposition KW - Laser Metal Deposition KW - 3D Druck KW - Laser Pulver Auftragsschweißen KW - Additive Fertigung KW - Thermografie PY - 2019 AN - OPUS4-49070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Heinrich, P. A1 - Baum, D. A1 - Hilgenberg, Kai T1 - In-situ Prozessüberwachung in der additiven Fertigung von Metallen mittels optischer Verfahren N2 - Einer der aussichtsreichsten Ansätze, die Qualität und Sicherheit der gefertigten Teile in der metallbasierten additiven Fertigung (AM) zu erhöhen und die Notwendigkeit aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen (ZfP) nach der Fertigung zu verringern, liegt in dem Einsatz von in-situ Prozessüberwachungstechniken. Bereits jetzt werden erste Messsysteme zur Kontrolle der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie kommerziell angeboten. Weitere ZfP Verfahren, wie z.B. die aktive und passive Thermografie, werden in der Literatur als geeignet für die in-situ Anwendung angesehen, allerdings gibt es noch wenig konkrete praktische Umsetzungen, da die Möglichkeiten und individuellen Grenzen dieser Methoden, angewendet auf AM, noch nicht ausreichend erforscht sind. Aus diesem Grund verfolgt die BAM mit dem Projekt „Process Monitoring of AM“ (ProMoAM) im Themenfeld Material das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile weiterzuentwickeln. Im Beitrag wird zunächst das Projekt vorgestellt und anschließend der Fokus auf eine Messserie gelegt, in der Probekörper aus dem austenitischen Edelstahl 316L mit lokal variierenden Prozessparametern mittels selektiven Laserschmelzen (L-PBF) aufgebaut wurden. Der Bauprozess wurde hierbei durch das maschineneigene, koaxial arbeitende Photodiodensystem (Melt-Pool-Monitoring), einer Mittelwellen-Infrarotkamera und einer optischen Tomografiekamera im sichtbaren Wellenlängenbereich (Langzeitbelichtung für die Dauer eines Lagenaufbaus mit einer CMOS-Kamera mit hoher Ortsauflösung) simultan überwacht. Als Referenz für diese Methoden wurden die Probekörper mittels Computertomografie untersucht. Für die dabei anfallenden teils großen Datenmengen wurden Algorithmen für ein effizientes Preprocessing entwickelt. Es wurden Merkmale der Messdaten in Korrelation zu Fehlern und Inhomogenitäten extrahiert, welche für die einzelnen Methoden vergleichend vorgestellt und diskutiert werden. T2 - 5. Tagung des Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Online meeting DA - 04.11.2020 KW - Additive Fertigung KW - Prozessüberwachung KW - Thermografie KW - Optische Tomografie KW - Computertomografie KW - L-PBF KW - AM KW - CT KW - In-situ PY - 2020 AN - OPUS4-51627 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Zerstörungsfreie Charakterisierung additiv gefertigter Kunststoffbauteile und ihres Alterungsverhaltens sowie zerstörende Prüfungen N2 - Es wurden Prüfkörper aus additiver Fertigung mittels Laser Sinter Verfahren (Polyamid 12, PA 12) und Fused Layer Modeling (Acrylnitril-Butadien-Styrol, ABS) sowie Prüfkörper aus dem Kunststoff-Spritzguss Verfahren (PA 12 und ABS) über 2000 Stunden künstlich bewittert. Vor, während und nach der Bewitterung erfolgte eine zerstörungsfreie Prüfung mittels Thermografie, optischer Mikroskopie und spektralen Methoden (UV/VIS-Spektroskopie und spektrale Reflexion), um den Alterungsfortschritt zu untersuchen und Schäden durch die künstliche Bewitterung sowie eingedruckte Defekte zu identifizieren und zu detektieren. Zusätzlich wurden zerstörende Zugprüfungen vorgenommen, welche mit einer IR-Kamera verfolgt wurden. Auf diese Weise konnten lokale Temperaturänderungen, hervorgerufen durch elastische sowie plastische Verformungen, zeitaufgelöst erfasst und ausgewertet werden. T2 - Sitzung des DGM Fachausschusses Polymerwerkstoffe CY - Würzburg, Germany DA - 14.11.2019 KW - Additive Fertigung KW - Thermografie KW - Kunststoffe KW - Zugprüfungen KW - Künstliche Bewitterung PY - 2019 AN - OPUS4-49820 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Scheuschner, Nils T1 - Prozessüberwachung in der additiven Fertigung von Metallen - das Projekt ProMoAM N2 - Prozessüberwachung in der additiven Fertigung von Metallen - das Projekt ProMoAM. In diesem Vortrag wird das gesamte Projekt vorgestellt. Dabei wird auf die Thermografie im LMD und L-PBF Prozess näher eingegangen. Hierbei werden sowohl stationäre als auch mit bewegte Systeme vorgestellt. T2 - Webinar: Inline-Messtechnik und –Prozessüberwachung CY - Online meeting DA - 01.07.2020 KW - Pulverbettverfahren KW - Laser Metal Deposition KW - Thermografie KW - Optische Tomografie PY - 2020 UR - https://quality-engineering.industrie.de/webinarreihe-additive-verfahren/#Inline-Messtechnik AN - OPUS4-50962 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -