TY - JOUR A1 - Emmerling, Franziska A1 - Martins, Ines T1 - Carbamazepine Dihydroxybenzoic Acid Cocrystals: Exploring Packing Interactions and Reaction Kinetics JF - Crystal Growth and Design N2 - Herein, we present the mechanochemical formation of three new cocrystals containing the active pharmaceutical ingredient carbamazepine and dihydroxybenzoic acids as coformers (CBZ:2,4-DHBA 1:1, CBZ:2,5-DHBA 1:1, and CBZ:2,6-DHBA 1:1). Rietveld methods were used for three different purposes: (i) refining all structures solved using powder X-ray diffraction, (ii) performing a quantitative phase analysis of the diffraction data collected from ex situ mechanochemical reactions at different milling times, and (iii) determining the cocrystallization kinetic profiles. The rate of cocrystallization was found to be higher for the formation of CBZ:2,4-DHBA and CBZ:2,6-DHBA, reaching an equilibrium after 600 s of milling. In the case of CBZ:2,5-DHBA a short induction period of 20 s was detected prior to the start of the reaction and an equilibrium was reached after 1200 s. An empirical trend between the rate of cocrystallization and the structural complexity of the cocrystal product was found. The slowest cocrystallization rate observed for CBZ:2,5-DHBA corresponds to the crystal structure deviating substantially from the hydrogen-bonding motif found in the reactants. KW - Mechanochemistry KW - In situ real-time monitoring KW - Kinetics PY - 2021 DO - https://doi.org/10.1021/acs.cgd.1c00902 VL - 21 IS - 12 SP - 6961 EP - 6970 PB - ACS Publications AN - OPUS4-54407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical processes N2 - Overview of the present BAM activities in the field of in situ analytics of mechanochemical processes. Recent results for the synthesis of metal organic frameworks and cocrystals are presented. T2 - HZB Seminar CY - Online meeting DA - 21.01.2022 KW - Mechanochemistry KW - In situ real-time monitoring PY - 2022 AN - OPUS4-54296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Shaken not stirred: in situ investigations of mechanochemical processes N2 - Mechanochemistry has emerged as one of the most interesting synthetic protocols to produce new materials. The development of mechanochemistry as a synthetic method is supported by excellent research by many groups worldwide in a wide range of applications. The potential of mechanochemistry is also reflected in the inclusion in IUPAC’s 10 chemical innovations that will change our world’.[1] Solvent-free methodologies lead to unique chemical processes during synthesis with the consequent formation of martials with new properties.2 In this contribution, we will discuss our recent results investigating the formation of (polymorphic) cocrystals, coordination polymers, metal oxides and metal nanoparticles.[3-8] We introduced different setups enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy and thermography. T2 - Deutsche Kristallzüchtertagung CY - Berlin, Germany DA - 06.10.2021 KW - Mechanochemistry KW - In situ real-time monitoring KW - Crystal PY - 2021 AN - OPUS4-53996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, I. A1 - Carta, M. A1 - Haferkamp, Sebastian A1 - Feiler, Torvid A1 - Delogu, F. A1 - Colacino, E. A1 - Emmerling, Franziska T1 - Mechanochemical N‑Chlorination Reaction of Hydantoin: In Situ Real-Time Kinetic Study by Powder X‑ray Diffraction and Raman Spectroscopy JF - Acs Sustainable Chemistry & Engineering N2 - Mechanochemistry has become a valuable tool for the synthesis of new molecules, especially in the field of organic chemistry. In the present work, we investigate the kinetic profile of the chlorination reaction of N-3-ethyl-5,5-dimethylhydantoin (EDMH) activated and driven by ball milling. The reaction has been carried out using 2 mm, 4 mm, 5 mm, 6 mm, and 8 mm ball sizes in a new small custom-made Perspex milling jar. The Crystal structure of the starting material EDMH and the 1-chloro-3-ethyl5,5′-dimethyl hydantoin (CEDMH) chlorination product was solved by single-crystal X-ray diffraction. The reaction was monitored, in situ and in real time, by both powder X-ray diffraction (PXRD) and Raman spectroscopy. Our kinetic data show that the reaction progress to equilibrium is similar at all milling ball sizes. The induction period is very short (between 10 and 40 s) when using 4 mm, 5 mm, 6 mm, and 8 mm balls. For the reaction performed with a 2 mm ball, a significantly longer induction period of 9 min was observed. This could indicate that an initial energy accumulation and higher mixing efficiency are necessary before the reaction starts. Using different kinetic models, we found that the amount of powder affected by critical loading conditions during individual impacts is significantly dependent on the ball size used. An almost linear correlation between the rate of the chemical transformations and the ball volume is observed. KW - Mechanochemistry KW - In situ real-time monitoring KW - N-Chlorination KW - Kinetics KW - Hydantoin KW - Powder X-ray diffraction KW - Raman spectroscopy PY - 2021 DO - https://doi.org/10.1021/acssuschemeng.1c03812 VL - 9 IS - 37 SP - 12591 EP - 12601 AN - OPUS4-53541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemical formation of multicomponent crystal systems: Mechanism & Kinetics N2 - Mechanochemistry is an effective, environmentally benign, and facile method for the synthesis of new multicomponent crystal systems. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. The increasing interest in mechanochemistry is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Different analytical methods and their combinations have been developed for the time resolved in situ monitoring of mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy, and thermography. Here we will discuss our recent results investigating the formation of (poly-morphic) cocrystals, metal-organic compounds, and salts, thereby elucidating the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For the mechanochemical chlorination reaction of hydantoin normalizing the kinetic profiles to the volume of the milling ball showed clearly that milling reaction kinetics are conserved. Here physical kinetics dominate reaction rates in a ball-milling transformation. Attempting to interpret such kinetics in purely chemical terms risk misinterpreting the results. Our results indicate that time-resolved in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemical processes. T2 - 25th International Conference on the Chemistry of the Organic Solid State (ICCOSS XXV) CY - Ohrid, Macedonia DA - 03.07.2022 KW - Mechanochemistry KW - In situ real-time monitoring KW - Crystal Engineering PY - 2022 AN - OPUS4-55413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemical formation of multicomponent crystals systems N2 - Mechanochemistry is an effective, environmentally benign, and facile method for the synthesis of new multicomponent crystal systems. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. The increasing interest in mechanochemistry is contrasted by a limited mechanistic understanding of mechanochemical reactivity and selectivity. Different analytical methods and their combinations have been developed for the time-resolved in situ monitoring of mechanochemical transformations, including powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography. Here we will discuss our recent results investigating the formation of (polymorphic) cocrystals, metal-organic compounds, and salts, thereby elucidating the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. Our results indicate that time-resolved in situ investigations of milling reactions offer a new approach to tune and optimize mechanochemical processes. T2 - 5ECQUL Forging Bonds CY - Lisbon, Portugal DA - 12.07.2022 KW - Mechanochemistry KW - In situ real-time monitoring KW - N-Chlorination PY - 2022 AN - OPUS4-55414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Shaken not stirred: enhancing the flavor of mechanochemistry N2 - compounds and cocrystals. The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. Time-resolved in situ investigations of milling reactions (Figure 1) provide direct insights into the underlying mechanisms. We recently introduced different setups enabling in situ investigation of mechanochemical reactions using synchrotron XRD and XAS combined with Raman spectroscopy and thermography. The presented setup allows the detection of crystalline, amorphous, eutectic, and liquid intermediates. Furthermore, the chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key to future optimization of mechanochemical syntheses. In this contribution, we will discuss our recent results investigating the formation of (polymorphic) cocrystals and coordination polymers. Our results indicate that time-resolved in situ investigations of mechanochemical processes are key for tuning and optimizing mechanochemical syntheses allowing to unleash the potential of mechanochemistry for a green materials design. T2 - 2nd National Crystallographic Meeting Lisbon, Portugal CY - Lisbon, Portugal DA - 15.07.2022 KW - Mechanochemistry KW - In situ real-time monitoring KW - Crystal PY - 2022 AN - OPUS4-55415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemical formation of multicomponent crystal systems: Mechanism & Kinetics N2 - Mechanochemistry is an effective, environmentally benign, and facile method for the synthesis of new multicomponent crystal systems. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. The increasing interest in mechanochemistry is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Different analytical methods and their combinations have been developed for the time resolved in situ monitoring of mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy, and thermography.1 Here we will discuss our recent results investigating the formation of (polymorphic) cocrystals2–3 and metal-organic frameworks,4 thereby elucidating the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For the mechanochemical chlorination reaction of hydantoin normalizing the kinetic profiles to the volume of the milling ball showed clearly that milling reaction kinetics are conserved.6 Here physical kinetics dominate reaction rates in a ball-milling transformation. Attempting to interpret such kinetics in purely chemical terms risk misinterpreting the results. Our results indicate that time-resolved in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemical processes. T2 - 10th International conference on Mechanochemistry and Mechanical Alloying CY - Cagliari, Italy DA - 06.06.2022 KW - Mechanochemistry KW - In situ real-time monitoring KW - Cocrystal PY - 2022 AN - OPUS4-55421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -