TY - CONF A1 - Theiler, Geraldine T1 - Tribology of polymer materials in hydrogen N2 - The polymer chemical structure of the polyimide has a major influence on the tribological behaviour. The addition of graphite in PI2 has a beneficial effect in hydrogen on the friction and wear. The low friction of graphite is associated with a lubricant film in hydrogen. The influence of hydrogen on graphite is more effective than humidity. CNTs have a similar effect to that of graphite in PEEK composites. TiO2 particles improve significantly the wear rate both in vacuum and hydrogen environment. In LH2 friction and wear decrease for unfilled polymers. Friction of graphite filled composites increases slightly and wear rate is stable. T2 - 10. International Hydrogen Energy Development Forum 2016 / 2016 HYDROGENIUS & I2CNER Tribology Symposium CY - Fukuoka, Japan DA - 04.02.2016 KW - Hydrogen KW - Tribology KW - Polymer materials KW - Cryogenic temperature KW - CNT KW - TiO2 KW - PEEK PY - 2016 AN - OPUS4-35641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Elabshihy, Karim A1 - Kalinka, Gerhard T1 - Investigation of the time-dependent behavior of cnt-filled epoxy using nanoindentation N2 - Epoxy/Carbon nanotube (CNT) composites are interesting materials that could be used in a wide variety of applications. In this study, CNT contents of 0.25, 0.5, 1 and 2 wt% were used for reinforcing epoxy. A nanoindentation device and a temperature regulating system were developed in order to investigate the effect of CNTs on the time-dependent properties of epoxy using relaxations and creep tests on the nano scale. The relaxation tests showed a significant shift for the relaxation spectrum towards shorter times with introducing a low CNT content of 0.25 wt%. Additionally, creep tests showed that both the holding time at a constant load and the unloading velocity have a major effect on the contact stiffness. However, there was no effect for the CNTs on the creep behavior with contents lower than 1 wt%, which was related to the presence of a percolation threshold around this value. T2 - Nanobrücken 2013 CY - Dresden, Germany DA - 20.03.2013 KW - Epoxy KW - CNT KW - Time-dependent KW - Nanoindentation PY - 2013 AN - OPUS4-35533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -