TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss von Wärmeführung und Bauteildesign auf die Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. T2 - DVS Congress 2022 CY - Koblenz, Germany DA - 19.09.2022 KW - WAAM KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Windenergie KW - Wärmeführung PY - 2022 AN - OPUS4-56718 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss von Wärmeführung und Bauteildesign auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle T2 - DVS-Berichte - DVS CONGRESS 2022 N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. T2 - DVS Congress 2022 CY - Koblenz, Germany DA - 19.09.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 SN - 978-3-96144-189-1 VL - 382 SP - 737 EP - 745 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56719 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Herstellung und Charakterisierung von WAAM-Bauteilen aus hochfesten Zusatzwerkstoffe N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. Im vorliegenden Beitrag werden einige Verarbeitungsempfehlung auf Basis der Ergebnisse für den Arbeitskreis des DVS AG V 12 (Additive Fertigung) abgeleitet. T2 - Sitzung der DVS Arbeitsgruppe (AG) V 12 Additive Fertigung CY - Online meeting DA - 23.11.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56721 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss der Prozessführung auf den Eigenspannungszustand beim WAAM-Schweißen hochfester Stahlbauteile N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. Im Rahmen der Normungssitzung werden praktikable Verarbeitungsempfehlungen basierend auf den Erkenntnissen des Vh. mit Vertretern aus Industrie und Forschung diskutiert. T2 - NA 092-00-05 GA: Gemeinschaftsarbeitsausschuss NAS/NMP: Zerstörende Prüfung von Schweißverbindungen (DVS AG Q 4/Q 4.1) CY - Online meeting DA - 10.03.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56722 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss der Wärmeführung auf den Beanspruchungszustand in additiv gefertigten Bauteilen aus hochfestem Stahl N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. T2 - OVGU-Kolloquium (BMDK des IWF) CY - Magdeburg, Germany DA - 23.06.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56726 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss der Wärmeführung auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Kommerzielle hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Derzeit ist jedoch eine breite industrielle Anwendung insbesondere für KMU aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse untersucht. Im Fokus dieser Analysen steht die Bestimmung der Wechselwirkungen zwischen WAAM-Prozessparametern bzw. der Wärmeführung auf das Gefüge und die Eigenspannungen. Hierfür werden Referenzproben als offene Hohlquader mit definierten Abmessungen vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die gezielte Einstellung der geometrischen Eigenschaften erfolgt durch Schweißparameter und Nahtaufbau bei ca. 4 kg/h mittlerer Abschmelzleistung. Die Wärmeführung wird innerhalb eines statistischen Versuchsplanes mittels Streckenenergie (200 kJ/m bis 650 kJ/m) und Zwischenlagentemperatur (100 °C bis 300 °C) so variiert, dass die t8/5-Abkühlzeiten dem empfohlenen Verarbeitungsbereich entsprechen (ca. 5 s bis 20 s). Ziel ist es bei konstanten geometrisch-konstruktiven Randbedingungen, den Einfluss der Wärmeführung auf Gefüge und resultierende Eigenspannungen zu analysieren. Für die Streckenenergie können neben den Gefügeeinflüssen aufgrund der resultierenden Abkühlzeit deutliche Effekte insbesondere auf die lokalen Eigenspannungen im Bauteil belegt werden. Das Schweißen mit zu hoher Wärmeeinbringung bzw. Abschmelzleistung kann zu ungünstigen Gefüge- und Bauteileigenschaften führen, gleichzeitig jedoch niedrigere Zugeigenspannungsniveaus bewirken. Solche komplexen Wechselwirkungen gilt es letztlich mit diesen Untersuchungen zu klären, um leicht anwendbare Verarbeitungsempfehlungen und Normvorgaben für ein wirtschaftliches, anforderungsgerechtes und risssicheres WAAM von hochfesten Stählen den Anwendern zur Verfügung zu stellen. T2 - DVS Congress 2021 CY - Online meeting DA - 14.09.2021 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Kaltrisssicherheit KW - Hochfester Stahl PY - 2021 AN - OPUS4-56668 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss der Wärmeführung auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle T2 - DVS-Berichte Band 371 - DVS CONGRESS 2021 N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Kommerzielle hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Derzeit ist jedoch eine breite industrielle Anwendung insbesondere für KMU aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse untersucht. Im Fokus dieser Analysen steht die Bestimmung der Wechselwirkungen zwischen WAAM-Prozessparametern bzw. der Wärmeführung auf das Gefüge und die Eigenspannungen. Hierfür werden Referenzproben als offene Hohlquader mit definierten Abmessungen vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die gezielte Einstellung der geometrischen Eigenschaften erfolgt durch Schweißparameter und Nahtaufbau bei ca. 4 kg/h mittlerer Abschmelzleistung. Die Wärmeführung wird innerhalb eines statistischen Versuchsplanes mittels Streckenenergie (200 kJ/m bis 650 kJ/m) und Zwischenlagentemperatur (100 °C bis 300 °C) so variiert, dass die t8/5-Abkühlzeiten dem empfohlenen Verarbeitungsbereich entsprechen (ca. 5 s bis 20 s). Ziel ist es bei konstanten geometrisch-konstruktiven Randbedingungen, den Einfluss der Wärmeführung auf Gefüge und resultierende Eigenspannungen zu analysieren. Für die Streckenenergie können neben den Gefügeeinflüssen aufgrund der resultierenden Abkühlzeit deutliche Effekte insbesondere auf die lokalen Eigenspannungen im Bauteil belegt werden. Das Schweißen mit zu hoher Wärmeeinbringung bzw. Abschmelzleistung kann zu ungünstigen Gefüge- und Bauteileigenschaften führen, gleichzeitig jedoch niedrigere Zugeigenspannungsniveaus bewirken. Solche komplexen Wechselwirkungen gilt es letztlich mit diesen Untersuchungen zu klären, um leicht anwendbare Verarbeitungsempfehlungen und Normvorgaben für ein wirtschaftliches, anforderungsgerechtes und risssicheres WAAM von hochfesten Stählen den Anwendern zur Verfügung zu stellen. T2 - DVS Congress 2021 CY - Online meeting DA - 14.09.2021 KW - MAG-Schweißen KW - Hochfester Stahl KW - Eigenspannungen KW - Additive Fertigung KW - Kaltrisssicherheit PY - 2021 SN - 978-3-96144-146-4 VL - 371 SP - 16 EP - 22 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56669 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kannengießer, Thomas T1 - Wire Arc Additive Manufacturing (WAAM) mit hochfesten Feinkornbaustählen N2 - Die additive Verarbeitung hochfester Feinkornbaustähle mittels Wire Arc Additive Manufacturing (WAAM) ist ein komplexes, aber zugleich auch effizientes Verfahren, bei dem Werkstoff, Bauteilgeometrie und Schweißprozess gezielt aufeinander abgestimmt sein müssen. Ziel dieser Studie war es, einen Zusammenhang zwischen den Prozessparametern und der generierten Schichtgeometrie zu ermitteln. Dazu wurden definierte Referenzkörper mit einem robotergestützten Schweißsystem additiv gefertigt und hinsichtlich Schichthöhe, Wandstärke und Mikrostruktur analysiert. Fokus der Untersuchung waren sowohl konventionelle als auch für die WAAM-Fertigung speziell entwickelte hochfeste Schweißzusatzwerkstoffe. Die geometrischen Eigenschaften additiv gefertigter Bauteile lassen sich insbesondere durch die Faktoren Drahtvorschubgeschwindigkeit und Schweißgeschwindigkeit gezielt einstellen. Jedoch können diese Parameter nicht beliebig variiert werden, auch aufgrund der rheologischen Eigenschaften der Zusatzwerkstoffe. Zu hohe Streckenenergien führen zu lokalen Überhitzungen und Fehlstellen in der generierten Schicht. Undefinierte Fließ- und Erstarrungsvorgänge im überhitzten Bereich erschweren die maßhaltige Fertigung. Deshalb wird bei speziellen WAAM-Schweißdrähten das Fließverhalten gezielt modifiziert, sodass es über einen größeren Temperaturbereich hinweg konstant ist. Erst die Kenntnis über die komplexen Zusammenhänge zwischen den Prozessparametern und der Bauteilgeometrie ermöglicht die Erzeugung exakter Schichtmodelle für die additive Fertigung. Dies bildet die Grundlage für die Bearbeitung weiterer Fragestellungen auf dem Gebiet der additiven Fertigung mit hochfesten Zusatzwerkstoffen und insbesondere deren Anwendung in modernen hochfesten Bauteilen. T2 - 41. Assistentenseminar Fügetechnik CY - Magdeburg, Germany DA - 03.09.2020 KW - Additiver Fertigung KW - MSG-Schweißen KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit PY - 2020 AN - OPUS4-56690 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Härtel, Sebastian A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss der Wärmeführung auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Kommerzielle hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Derzeit ist jedoch eine breite industrielle Anwendung insbesondere für KMU aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse untersucht. Im Fokus dieser Analysen steht die Bestimmung der Wechselwirkungen zwischen WAAM-Prozessparametern bzw. der Wärmeführung auf das Gefüge und die Eigenspannungen. Hierfür werden Referenzproben als offene Hohlquader mit definierten Abmessungen vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die gezielte Einstellung der geometrischen Eigenschaften erfolgt durch Schweißparameter und Nahtaufbau bei ca. 4 kg/h mittlerer Abschmelzleistung. Die Wärmeführung wird innerhalb eines statistischen Versuchsplanes mittels Streckenenergie (200 kJ/m bis 650 kJ/m) und Zwischenlagentemperatur (100 °C bis 300 °C) so variiert, dass die t8/5-Abkühlzeiten dem empfohlenen Verarbeitungsbereich entsprechen (ca. 5 s bis 20 s). Ziel ist es bei konstanten geometrisch-konstruktiven Randbedingungen, den Einfluss der Wärmeführung auf Gefüge und resultierende Eigenspannungen zu analysieren. Darüber hinaus erfolgt die Bestimmung des Einflusses der t8/5-Abkühlzeit auf die mechanisch-technologischen Eigenschaften des speziellen, hochfesten WAAM-Massivdrahts mithilfe von Dilatometeranalysen. Für die Streckenenergie können neben den Gefügeeinflüssen aufgrund der resultierenden Abkühlzeit deutliche Effekte insbesondere auf die lokalen Eigenspannungen im Bauteil belegt werden. Das Schweißen mit zu hoher Wärmeeinbringung bzw. Abschmelzleistung kann zu ungünstigen Gefüge- und Bauteileigenschaften führen, gleichzeitig jedoch niedrigere Zugeigenspannungsniveaus bewirken. Die Dilatometeranalysen zeigen für den untersuchten WAAM-Schweißzusatzwerkstoff eine großes t8/5-Zeitfenster mit einer vergleichsweise geringen Abnahme der Zugfestigkeit mit zunehmender t8/5-Abkühlzeit. Solche komplexen Wechselwirkungen gilt es letztlich mit diesen Untersuchungen zu klären, um leicht anwendbare Verarbeitungsempfehlungen und Normvorgaben für ein wirtschaftliches, anforderungsgerechtes und risssicheres WAAM von hochfesten Stählen den Anwendern zur Verfügung zu stellen. T2 - 42. Assistentenseminar Fügetechnik CY - Braunschweig, Germany DA - 06.10.2021 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Kaltrisssicherheit PY - 2021 AN - OPUS4-56691 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Kannengießer, Thomas A1 - Schröpfer, Dirk T1 - Generative Fertigung und Kaltrisssicherheit N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. In dieser Präsentation werden erste Ergebnisse der Eigenspannungsanalysen von additiv gefertigten Bauteilen aus hochfestem Stahl vorgestellt. T2 - Bachelor-, Master-, Doktoranden-Kolloquium CY - Online meeting DA - 10.06.2021 KW - Additive Fertigung KW - Wärmeführung KW - Hochfester Stahl KW - Eigenspannungen KW - Härteprüfung nach Vickers PY - 2021 AN - OPUS4-53326 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Hälsig, André A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Kannengießer, Thomas T1 - Erste Untersuchungen auf dem Weg zum WAAM-Kaltrisstest für hochfeste Stähle N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. In dieser Präsentation werden erste Analysen des Einflusses der Fertigungsstrategie auf die Härte in additiv gefertigten Bauteilen aus hochfestem Stahl vorgestellt. T2 - NA 092-00-05 GA (DVS AG Q 4/Q 4.1) CY - Online meeting DA - 10.03.2021 KW - Additive Fertigung KW - Hochfester Stahl KW - Härteprüfung nach Vickers PY - 2021 AN - OPUS4-53327 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schröpfer, Dirk A1 - Becker, Amadeus A1 - Kannengießer, Thomas T1 - Kurzdarstellung der Projektergebnisse: Beanspruchungsgerechte Reparatur von Schweißverbindungen bei der Fertigung von Bauteilen aus hochfesten Feinkornbaustählen N2 - Bei der Montage von Stahlkonstruktionen kommt es trotz anforderungsgerechter schweißtechnischer Fertigung vereinzelt zur Detektion von unzulässigen Unregelmäßigkeiten im Schweißbereich. In einem Forschungsprojekt (FOSTA P1311) wurden Untersuchungen durchgeführt und Kenntnisse erarbeitet, um mittelfristig vor allem KMU beanspruchungsgerechte Reparaturkonzepte zur Verfügung zu stellen. Damit können letztlich Schäden und zumeist teure Nacharbeiten verhindert und eine verbesserte Ausnutzung des hohen Festigkeitspotentials hochfester Stähle erreicht werden. Gerade KMU können mit Blick auf die Kosten für Fertigung, Schweißarbeit und Material von den Erkenntnissen beim Einsatz hochfester Stähle, die für eine effiziente Realisierung der Energiewende in Deutschland notwendig sind, profitieren. KW - MAG-Schweißen KW - Hochfester Stahl KW - Eigenspannungen KW - Thermisches Ausfugen KW - Reparaturschweißen KW - Gefügedegradation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555822 SP - 1 EP - 2 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-55582 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Beanspruchungsgerechte Reparatur beim Bauteilschweißen hochfester Feinkornbaustähle T2 - DVS-Berichte Band 371 - DVS CONGRESS 2021 N2 - Eine nachhaltige und ressourceneffiziente Fertigung und Errichtung von Windenergieanlagen, sowohl auf See als auch an Land, erfordert zunehmend den Einsatz moderner hochfester Feinkornbaustähle. Werden nach dem Schweißen dieser hochfesten Konstruktionen unzulässige Defekte detektiert, sind nach geltenden Verarbeitungsrichtlinien die defekten Bereiche durch lokales Ausfugen und anschließendes Schweißen zu reparieren. Fehlende Informationen zu adäquaten Reparaturkonzepten in den Regelwerken bedingen oftmals eine unzureichende Berücksichtigung dabei auftretender zusätzlicher Beanspruchungen durch die erhöhte Schrumpfbehinderung der Ausfugenuten. Zusätzlich haben die ausführenden Betriebe vielfach kaum Kenntnis über die Degradation angrenzender Gefüge durch thermische Ausfugeprozesse und erneutes Schweißen, die in diesem Zusammenhang besonders bei den hochfesten Stählen als kritisch anzusehen sind. Das aktuelle Forschungsvorhaben der BAM (FOSTA P1311/IGF-Nr.20162N) fokussiert hierfür systematisch bauteilrelevante Untersuchungen zu den schweißbedingten Beanspruchungen und Gefügeveränderungen bei der Reparatur von hochfesten Schweißverbindungen. Wesentlich sind hierbei der Einfluss der Schrumpfbehinderung, der Wärmeführung beim Schweißen und Ausfugen sowie der Reparaturzyklenanzahl und die metallurgischen Aspekte bei den hochfesten Güten S500MLO für zukünftige Offshore-Anwendungen und S960QL für aktuelle Mobilkrananwendungen. Aufbauend auf einigen Studien zur schweißbedingten Beanspruchung hochfester Stähle zeigt der vorliegende Beitrag die Identifikation geeigneter Probengeometrien und Schweißdetails mittels numerischer und experimenteller Analysen. Dadurch wird die Übertragbarkeit der vorgestellten Schweißexperimente und Ergebnisse hinsichtlich der resultierenden Schweißeigenspannungen auf reale Reparaturfälle im Bereich des hochfesten Stahlbaus sichergestellt. Es zeigt sich in Übereinstimmung mit früheren Ergebnissen eine signifikante Erhöhung der Beanspruchungen an den variierten schlitzförmigen Prüfnähten. Das Eigenspannungsniveau sowohl im Schweißgut als auch in der WEZ korreliert mit dem Einspanngrad. Mit dem Ziel beanspruchungs- und werkstoffgerechte Reparaturkonzepte zu erarbeiten, sind zum einen geringere Wärmeinbringungen, besonders durch niedrige Zwischenlagentemperaturen und Einspannbedingungen anzustreben, um hohe Beanspruchungen und kritische Gefügedegradationen im Reparaturbereich zu vermeiden. Dies wird durch systematische Untersuchungen zum Ausfugen und Schweißen sowie letztlich dem Transfer von Verarbeitungsempfehlungen für die Anwender und Richtlinien erreicht. T2 - DVS Congress 2021 CY - Online meeting DA - 14.09.2021 KW - MAG-Schweißen KW - Reparatur KW - Eigenspannungen KW - Hochfester Stahl KW - Thermisches Ausfugen KW - Windenergie KW - Gefügedegradation PY - 2021 SN - 978-3-96144-146-4 VL - 371 SP - 285 EP - 292 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56666 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kannengießer, Thomas T1 - Wire Arc Additive Manufacturing (WAAM) mit hochfesten Feinkornbaustählen T2 - DVS Berichte, Assistentenseminar Fügetechnik N2 - Die additive Verarbeitung hochfester Feinkornbaustähle mittels Wire Arc Additive Manufacturing (WAAM) ist ein komplexes, aber zugleich auch effizientes Verfahren, bei dem Werkstoff, Bauteilgeometrie und Schweißprozess gezielt aufeinander abgestimmt sein müssen. Ziel dieser Studie war es, einen Zusammenhang zwischen den Prozessparametern und der generierten Schichtgeometrie zu ermitteln. Dazu wurden definierte Referenzkörper mit einem robotergestützten Schweißsystem additiv gefertigt und hinsichtlich Schichthöhe, Wandstärke und Mikrostruktur analysiert. Fokus der Untersuchung waren sowohl konventionelle als auch für die WAAM-Fertigung speziell entwickelte hochfeste Schweißzusatzwerkstoffe. Die geometrischen Eigenschaften additiv gefertigter Bauteile lassen sich insbesondere durch die Faktoren Drahtvorschubgeschwindigkeit und Schweißgeschwindigkeit gezielt einstellen. Jedoch können diese Parameter nicht beliebig variiert werden, auch aufgrund der rheologischen Eigenschaften der Zusatzwerkstoffe. Zu hohe Streckenenergien führen zu lokalen Überhitzungen und Fehlstellen in der generierten Schicht. Undefinierte Fließ- und Erstarrungsvorgänge im überhitzten Bereich erschweren die maßhaltige Fertigung. Deshalb wird bei speziellen WAAM-Schweißdrähten das Fließverhalten gezielt modifiziert, sodass es über einen größeren Temperaturbereich hinweg konstant ist. Erst die Kenntnis über die komplexen Zusammenhänge zwischen den Prozessparametern und der Bauteilgeometrie ermöglicht die Erzeugung exakter Schichtmodelle für die additive Fertigung. Dies bildet die Grundlage für die Bearbeitung weiterer Fragestellungen auf dem Gebiet der additiven Fertigung mit hochfesten Zusatzwerkstoffen und insbesondere deren Anwendung in modernen hochfesten Bauteilen. T2 - 41. Assistentenseminar Fügetechnik CY - Magdeburg, Germany DA - 03.09.2020 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Kaltrisssicherheit PY - 2021 SN - 978-3-96144-141-9 VL - 370 IS - 41 SP - 113 EP - 124 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56641 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Härtel, S. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss der Wärmeführung auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle T2 - DVS Berichte, Assistentenseminar Fügetechnik N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Kommerzielle hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Derzeit ist jedoch eine breite industrielle Anwendung insbesondere für KMU aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse untersucht. Im Fokus dieser Analysen steht die Bestimmung der Wechselwirkungen zwischen WAAM-Prozessparametern bzw. der Wärmeführung auf das Gefüge und die Eigenspannungen. Hierfür werden Referenzproben als offene Hohlquader mit definierten Abmessungen vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die gezielte Einstellung der geometrischen Eigenschaften erfolgt durch Schweißparameter und Nahtaufbau bei ca. 4 kg/h mittlerer Abschmelzleistung. Die Wärmeführung wird innerhalb eines statistischen Versuchsplanes mittels Streckenenergie (200 kJ/m bis 650 kJ/m) und Zwischenlagentemperatur (100 °C bis 300 °C) so variiert, dass die t8/5-Abkühlzeiten dem empfohlenen Verarbeitungsbereich entsprechen (ca. 5 s bis 20 s). Ziel ist es bei konstanten geometrisch-konstruktiven Randbedingungen, den Einfluss der Wärmeführung auf Gefüge und resultierende Eigenspannungen zu analysieren. Darüber hinaus erfolgt die Bestimmung des Einflusses der t8/5-Abkühlzeit auf die mechanisch-technologischen Eigenschaften des speziellen, hochfesten WAAM-Massivdrahts mithilfe von Dilatometeranalysen. Für die Streckenenergie können neben den Gefügeeinflüssen aufgrund der resultierenden Abkühlzeit deutliche Effekte insbesondere auf die lokalen Eigenspannungen im Bauteil belegt werden. Das Schweißen mit zu hoher Wärmeeinbringung bzw. Abschmelzleistung kann zu ungünstigen Gefüge- und Bauteileigenschaften führen, gleichzeitig jedoch niedrigere Zugeigenspannungsniveaus bewirken. Die Dilatometeranalysen zeigen für den untersuchten WAAM-Schweißzusatzwerkstoff eine großes t8/5-Zeitfenster mit einer vergleichsweise geringen Abnahme der Zugfestigkeit mit zunehmender t8/5-Abkühlzeit. Solche komplexen Wechselwirkungen gilt es letztlich mit diesen Untersuchungen zu klären, um leicht anwendbare Verarbeitungsempfehlungen und Normvorgaben für ein wirtschaftliches, anforderungsgerechtes und risssicheres WAAM von hochfesten Stählen den Anwendern zur Verfügung zu stellen. T2 - 42. Assistentenseminar Fügetechnik CY - Brunswick, Germany DA - 06.10.2021 KW - MAG-Schweißen KW - Hochfester Stahl KW - Eigenspannungen KW - Additive Fertigung KW - Kaltrisssicherheit PY - 2022 SN - 978-3-96144-210-2 VL - 385 IS - 42 SP - 94 EP - 101 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56642 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Kannengießer, Thomas A1 - Burger, S. A1 - Zinke, M. A1 - Jüttner, S. T1 - Einfluss der Wärmeführung auf die Wasserstoffkonzentration in geschweißten höherfesten Feinkornbaustählen beim Einsatz modifizierter Sprühlichtbogenprozesse JF - Schweißen und Schneiden N2 - Um den wachsenden Anforderungen an den stofflichen und konstruktiven Leichtbau sowie den Forderungen nach Ressourceneffizienz Rechnung zu tragen, werden in vielen Industriebranchen zunehmend höherfeste Feinkornbaustähle mit Streckgrenzen über 690 MPa eingesetzt. Allerdings werden mit zunehmender Festigkeit deutlich höhere Anforderungen an deren schweißtechnische Verarbeitung gestellt, da die Sensibilität gegenüber einer Herabsetzung der mechanischen Eigenschaften durch den beim Schweißen aufgenommenen diffusiblen Wasserstoff mit steigender Festigkeit zunehmen kann. In den vergleichenden Untersuchungen von konventionellem Übergangslichtbogen und modifiziertem Sprühlichtbogen bei reduziertem Nahtöffnungswinkel konnte gezeigt werden, dass die Schweißprozessparameter die in das Schweißgut eingebrachte Wasserstoffkonzentration beeinflussen. Grundsätzlich ist den erarbeiteten Ergebnissen zu entnehmen, dass im Schweißgut von Stumpfstoßverbindungen mit reduziertem Nahtöffnungswinkel erhöhte mittlere Wasserstoffkonzentrationen vorliegen. Diese können mit geeigneten Wärmeführungen signifikant reduziert werden. Dabei erwies sich eine Nachwärmprozedur aus der Schweißwärme heraus als zielführend. KW - Hochfester Stahl KW - Schutzgasschweißen KW - Wärmeführung KW - Wasserstoff KW - Rissbildung PY - 2018 VL - 70 IS - 5 SP - 290 EP - 297 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-45109 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Dixneit, Jonny A1 - Dilger, K. A1 - Nitschke-Pagel, T. A1 - Hensel, J. A1 - Eslami, H. T1 - Schwingfestigkeitsverbesserung hochfester Schweißverbindungen mit Hilfe neuartiger LTT-Zusatzwerkstoffe T2 - FOSTA-Berichte N2 - Die Verwendung von LTT-Zusatzwerkstoffen stellt einen alternativen Ansatz zu den sonst üblichen Verfahren der Schweißnahtnachbehandlung zur Schwingfestigkeitserhöhung geschweißter Stahlkonstruktionen dar. Der wesentliche Wirkmechanismus beruht auf der Beeinflussung des Eigenspannungszustands durch die niedrige Martensitstarttemperatur bereits während des Schweißens. Dadurch werden die Druckeigenspannungen aus der behinderten Volumenausdehnung infolge Phasenumwandlung voll wirksam. Weiter weist die Schweißnaht eine hohe Härte auf, die die Schwingrissbildung verzögern kann, allerdings auch zu einer niedrigen Kerbschlagarbeit führt. Im vorliegenden Forschungsvorhaben wurden grundlegende Untersuchungen zur schweißtechnischen Verarbeitung eines LTT-Zusatzwerkstoffes durchgeführt. Dies beinhaltet die Sicherstellung der Schweißbarkeit sowie die Charakterisierung der Verbindungseigenschaften. Untersuchungen zur Schweißeignung machten deutlich, dass ein sicherer Einsatz in dem für hochfeste Stähle zur Verfügung stehenden Arbeitsfenster möglich ist. Der verwendete LTT-Zusatz auf Cr-Ni-Basis lässt sich mit hoher Nahtgüte fügen. Auch die mechanischen Eigenschaften erlauben den Einsatz im Bereich hochfester Stähle mit einer Streckgrenze von 960 MPa. Entwicklungspotential gibt es hinsichtlich der Zähigkeit. Die in dieser Arbeit erreichten Kerbschlagwerte liegen deutlich unter denen kommerziell verfügbarer konventioneller Schweißgüter. Die Untersuchungen belegen, dass der Effekt der martensitischen Phasenumwandlung im gesamten Schweißgut zum Tragen kommt. Die angestrebten hohen Druckeigenspannungen finden sich vornehmlich im Schweißgutinnern. Im weiteren Vorgehen wurden Schwingfestigkeitsuntersuchungen an den Stählen S355J2 und S960Q unter Verwendung konventioneller Zusatzwerkstoffe im Vergleich zum LTT-Zusatz durchgeführt. Die verwendeten Konstruktionsdetails sind ein Stumpfstoß unter Variation der Schweißnahtausführung (DY-Naht und V-Naht), ein Kreuzstoß mit HV-Naht sowie ein Überlappstoß mit einseitig und beidseitig geschweißter Kehlnaht. Weitergehend wurde eine bauteilähnliche Probe (die Längssteife) untersucht, bei der der LTT-Zusatzwerkstoff als zusätzliche Schweißlage aufgebracht wurde. Neben der Schwingfestigkeit wurden die Schweißnähte hinsichtlich der Eigenspannungen, der Eigenspannungsstabilität im Schwingversuch sowie metallografisch charakterisiert. Eine generell positive Wirkung des LTT-Zusatzwerkstoffes im Hinblick auf die Schwingfestigkeitssteigerung kann nicht bestätigt werden. Teilweise ist eine Steigerung der Schwingfestigkeit bei Substitution konventioneller Zusatzwerkstoffe zu beobachten, teilweise zeigt sich kein Effekt. Ursächlich hierfür ist die bei manchen Stoßformen mangelnde Steifigkeit quer zur Schweißnaht, die zur Ausbildung hoher Druckeigenspannungen infolge Phasenumwandlung notwendig wäre. Die bauteilähnliche Längssteife bestätigt allerdings das grundlegende Potential der LTT-Zusatzwerkstoffe bei Vorliegen hinreichender Steifigkeit. KW - Schweißen KW - Eigenspannungen KW - Schwingfestigkeit KW - Hochfester Stahl KW - LTT PY - 2020 UR - https://matplus.shop/produkt/p-1060-schwingfestigkeitsverbesserung-hochfester-schweissverbindungen-mit-hilfe-neuartiger-ltt-zusatzwerkstoffe SN - 978-3-946885-75-7 VL - P 1060 SP - 1 EP - 123 PB - Verlag und Vertriebsgesellschaft CY - Düsseldorf AN - OPUS4-51216 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Dixneit, Jonny A1 - Kannengießer, Thomas A1 - Hensel, J. A1 - Eslami, H. A1 - Nitschke-Pagel, T. A1 - Dilger, K. T1 - Schwingfestigkeitsverbesserung hochfester Schweißverbindungen mit Hilfe neuartiger LTT-Zusatzwerkstoffe N2 - Die Verwendung von LTT-Zusatzwerkstoffen stellt einen alternativen Ansatz zu den sonst üblichen Verfahren der Schweißnahtnachbehandlung zur Schwingfestigkeitserhöhung geschweißter Stahlkonstruktionen dar. Der wesentliche Wirkmechanismus beruht auf der Beeinflussung des Eigenspannungszustands durch die niedrige Martensitstarttemperatur bereits während des Schweißens. Dadurch werden die Druckeigenspannungen aus der behinderten Volumenausdehnung infolge Phasenumwandlung voll wirksam. Weiter weist die Schweißnaht eine hohe Härte auf, die die Schwingrissbildung verzögern kann, allerdings auch zu einer niedrigen Kerbschlagarbeit führt. Im ersten Teil dieses Beitrages werden grundlegende Untersuchungen zur schweißtechnischen Verarbeitung eines LTT-Zusatzwerkstoffes präsentiert. Dies beinhaltet zunächst die Sicherstellung der Schweißbarkeit sowie die Charakterisierung der Schweißgefüge und deren Härte mit dem Ziel, reproduzierbare Verbindungseigenschaften für die nachfolgende Schwingfestigkeitsprüfung herzustellen. Der zweite Teil des Beitrages beschäftigt sich mit den dazugehörigen Schwingfestigkeitsuntersuchungen an den Stählen S355J2 und S960Q unter Verwendung konventioneller Zusatzwerkstoffe im Vergleich zum LTT-Zusatz. Das verwendete Schweißdetail ist eine Verbindungsschweißung am Stumpfstoß unter Variation der Schweißnahtausführung (DY-Naht und V-Naht). Weitergehend wird eine bauteilähnliche Probe (die Längssteife) untersucht, bei der der LTT-Zusatzwerkstoff als zusätzliche Schweißlage aufgebracht wurde. Neben der Schwingfestigkeit werden die Schweißnähte hinsichtlich der Eigenspannungen, der Eigenspannungsstabilität im Schwingversuch sowie metallo-grafisch charakterisiert. Die Ergebnisse zeigen, dass LTT-Zusatzwerkstoffe unter Einhaltung wesentlicher Konstruktionsrichtlinien zu einem deutlichen Anstieg der Schwingfestigkeit führen. Dadurch kann das Leichtbaupotential hochfester Stahlgüten genutzt werden. T2 - DVS Congress CY - Friedrichshafen, Germany DA - 17.09.2018 KW - Eigenspannungen KW - Schwingfestigkeit KW - Hochfester Stahl KW - LTT PY - 2018 AN - OPUS4-45982 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J T1 - Neutronen- und Röntgendiffraktion zur Einflussanalyse des Bauteil-Designs auf die Eigenspannungen bei der additiven Fertigung mit hochfestem Stahl N2 - Vorstellung und Gegenüberstellung von Eigenspannungsanalysen mittels Röntgen- und Neutronenbeugung an einer additiven Prüfgeometrie aus hochfestem Stahl. Einflussanalyse des Designs (Länge, Höhe, Wandstärke) von additiv gefertigten Bauteilen aus hochfestem Stahl auf die Eigenspannungen. T2 - Bachelor-, Master-, Doktoranden-Kolloquium OvGU Magdeburg CY - Magdeburg, Germany DA - 25.01.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-57688 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Hälsig, A. A1 - Scharf-Wildenhain, R. A1 - Hensel, J. T1 - Einfluss trennender Fertigungsschritte auf die Eigenspannungen in additiv gefertigten Bauteilen aus hochfestem Stahl N2 - Additive Fertigungsverfahren wie das Wire Arc Additive Manufacturing (WAAM) ermöglichen die effiziente Fertigung von gewichtsoptimierten endkonturnahen Strukturen in modernen Stahlkonstruktionen. Ihre Effizienz kann weiter durch die Verwendung von hochfesten Stählen gesteigert werden. Dies erlaubt eine signifikante Einsparung von Kosten, Zeit und Ressourcen. Entsprechende Schweißzusatzwerkstoffe für Lichtbogenschweißverfahren sind kommerziell verfügbar. Fehlende Richtlinien und fehlende quantitative Kenntnisse über die schweißtechnische Beanspruchung während der Fertigung und im Betrieb limitieren den industriellen Einsatz stark. Daher werden in einem aktuellen Vorhaben (IGF-Nr. 21162 BG) der BAM und TU Chemnitz die wesentlichen Einflüsse und komplexen Interaktionen durch Werkstoff, Fertigungsprozess, Konstruktion und trennende Fertigungsschritte auf den Beanspruchungszustand untersucht. Der vorliegende Beitrag fokussiert hierfür die Auswirkungen trennender Fertigungsschritte auf Verzug und Eigenspannungen definierter WAAM-Prüfkörper. Die Eigenspannungsanalyse erfolgt mittels Röntgenbeugung. Die große Anzahl an Ergebnissen von zuvor untersuchten Referenzproben, die mit einem speziellen WAAM-Massivdraht (Streckgrenze >820 MPa) bei unterschiedlicher Wärmeführung und Geometrie vollautomatisiert geschweißt wurden, lässt eine Korrelation der Messdaten zu. Hierzu erfolgt die Analyse des Ausgangszustandes und abschließend des Zustandes nach trennender Bearbeitung, welche begleitend mittels digitaler Bildkorrelation hinsichtlich des Verzuges untersucht wurden. So ist zu beobachten, dass die Geometrie deutlichen Einfluss auf Relaxation und Umlagerung der Eigenspannungen hat und damit die Risssicherheit positiv beeinflussen kann. T2 - Bachelor-, Master-, Doktoranden-Kolloquium OvGU Magdeburg CY - Magdeburg, Germany DA - 31.05.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-57689 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Czeskleba, Denis A1 - Liepold, Phillipp A1 - Mente, Tobias A1 - Kannengießer, Thomas T1 - Bewertung und Vermeidung von schweißverarbeitungsbedingten Rissen in hochfesten Baustählen N2 - Die vorliegende Präsentation fasst die Ergebnisse von drei laufenden bzw. beendeten AiF/IGF-Projekten zusammen, die über die Forschungsvereinigung Stahlanwendung FOSTA e.V. an der BAM bearbeitet wurden zum Thema: Bewertung und Vermeidung von schweißverarbeitungsbedingten Rissen in hochfesten Baustählen. T2 - FOSTA Tagung: Hochfester Stahl im Stahl und Anlagenbau CY - Essen, Germany DA - 16.05.2023 KW - Studie KW - Schweißen KW - Hochfester Stahl KW - Riss KW - Forschung PY - 2023 AN - OPUS4-57517 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schröpfer, Dirk A1 - Becker, Amadeus A1 - Kannengießer, Thomas T1 - Beanspruchungsgerechte Reparatur von Schweißverbindungen bei der Fertigung von Bauteilen aus hochfesten Feinkornbaustählen T2 - FOSTA-Berichte N2 - Bei der Montage von Stahlkonstruktionen kommt es trotz anforderungsgerechter schweißtechnischer Fertigung vereinzelt zur Detektion von unzulässigen Unregelmäßigkeiten im Schweißbereich. Die Verarbeitungsregelwerke empfehlen das lokale thermische Ausfugen betroffener Bereiche und erneutes Schweißen, geben aber aufgrund fehlender wissenschaftlich fundierter Untersuchungen kaum Informationen zu adäquaten Reparaturkonzepten. Dies betrifft insbesondere die Berücksichtigung und Optimierung resultierender schweißbedingter Beanspruchungen durch hohe Schrumpfbehinderungen der Ausfugenuten sowie der Gefügedegradation angrenzender Bereiche durch das Ausfugen und erneute Schweißen. Gerade bei hochfesten Stahlgüten ergeben sich dadurch häufig reduzierte mechanische Eigenschaften und zusätzliche schweißbedingte Beanspruchungen sowie erneut auftretende Nahtdefekte. Deshalb wurden für das Forschungsvorhaben systematische bauteilrelevante Untersuchungen der schweißbedingten Beanspruchungen und Gefügeveränderungen reparierter Schweißnähte in Abhängigkeit von der Schrumpfbehinderung und Wärmeführung beim Schweißen und Ausfugen sowie von der Reparaturzyklenanzahl durchgeführt. Die Untersuchungsergebnisse zeigen auf, welche Faktoren sich für eine Beanspruchungsreduzierung auch bei hohen Einspannbedingungen eignen und wie eine Degradation des Gefüges und der Eigenschaften der Schweißnaht sowie wiederholte Schweißnahtdefekte in der Reparaturnaht vermieden werden können. Insbesondere können mittels adaptiver Wärmeführung geringere schweißbedingte Beanspruchungen in den Reparaturschweißnähten bewirkt werden. Bauteilversuche sichern zudem die Übertragbarkeit der Schweißexperimente in die Praxis ab. Aufgrund der Erkenntnisse konnten Empfehlungen für beanspruchungs- und werkstoffgerechte Reparaturkonzepte abgeleitet und ausgesprochen werden. Die Analysen wurden an den hochfesten Stahlgüten S500MLO für den Offshore-Bereich und S960QL für den Mobilkranbau realisiert. Damit wird insbesondere der wirtschaftlichen Fertigung hocheffizienter Konstruktionen für Windenergieanlagen und hochfester Strukturen, die für deren Errichtung notwendig sind, Rechnung getragen. So bieten die Forschungsergebnisse eine wesentliche Grundlage für die Weiterentwicklung entsprechender Normen und Regelwerke. Damit können letztlich Schäden und zumeist teure Nacharbeiten verhindert und eine verbesserte Ausnutzung des hohen Festigkeitspotentials hochfester Stähle erreicht werden. Gerade auch KMU können mit Blick auf die Kosten für Fertigung, Schweißarbeit und Material von den Erkenntnissen beim Einsatz hochfester Stähle, die für eine effiziente Realisierung der Energiewende in Deutschland notwendig sind, profitieren. KW - MAG-Schweißen KW - Hochfester Stahl KW - Reparatur KW - Kaltrisssicherheit KW - Reparaturschweißen KW - Wärmeführung KW - Windenergie PY - 2023 UR - https://matplus.shop/produkt/p-1311-beanspruchungsgerechte-reparatur-von-schweissverbindungen-bei-der-fertigung-von-bauteilen-aus-hochfesten-feinkornbaustaehlen SN - 978-3-96780-146-0 N1 - Schlussbericht vom 18.07.2022 zu dem über die Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" (AiF) im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Energie (BMWi) aufgrund eines Beschlusses des Deutschen Bundestages geförderten Vorhaben Nr. 20162 N (Berichtszeitraum 01.07.2019 - 28.02.2022) VL - P 1311 SP - 1 EP - 156 PB - Verlag und Vertriebsgesellschaft CY - Düsseldorf AN - OPUS4-59260 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss trennender Fertigungsschritte auf die Eigenspannungen in Bauteilen aus hochfestem Stahl N2 - Der Vortrag gibt einen Überblick über den Einfluss trennender Fertigungsschritte auf die Eigenspannungen in Bauteilen aus hochfestem Stahl. T2 - Bachelor-, Master-, Doktoranden-Kolloquium OvGU Magdeburg CY - Magdeburg, Germany DA - 17.01.2024 KW - Hochfester Stahl KW - Additive Fertigung KW - Reparaturschweißen KW - Eigenspannungen PY - 2024 AN - OPUS4-59413 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss trennender Fertigungsschritte auf die Eigenspannungen in additiv gefertigten Bauteilen aus hochfestem Stahl N2 - Additive Fertigungsverfahren wie das Wire Arc Additive Manufacturing (WAAM) ermöglichen die effiziente Fertigung von gewichtsoptimierten endkonturnahen Strukturen in modernen Stahlkonstruktionen. Ihre Effizienz kann weiter durch die Verwendung von hochfesten Stählen gesteigert werden. Dies erlaubt eine signifikante Einsparung von Kosten, Zeit und Ressourcen. Entsprechende Schweißzusatzwerkstoffe für Lichtbogenschweißverfahren sind kommerziell verfügbar. Fehlende Richtlinien und fehlende quantitative Kenntnisse über die schweißtechnische Beanspruchung während der Fertigung und im Betrieb limitieren den industriellen Einsatz stark. Daher werden in einem aktuellen Vorhaben (IGF-Nr. 21162 BG) der BAM und TU Chemnitz die wesentlichen Einflüsse und komplexen Interaktionen durch Werkstoff, Fertigungsprozess, Konstruktion und trennende Fertigungsschritte auf den Beanspruchungszustand untersucht. Der vorliegende Beitrag fokussiert hierfür die Auswirkungen trennender Fertigungsschritte auf Verzug und Eigenspannungen definierter WAAM-Prüfkörper. Die Eigenspannungsanalyse erfolgt mittels Röntgenbeugung. Die große Anzahl an Ergebnissen von zuvor untersuchten Referenzproben, die mit einem speziellen WAAM-Massivdraht (Streckgrenze >820 MPa) bei unterschiedlicher Wärmeführung und Geometrie vollautomatisiert geschweißt wurden, lässt eine Korrelation der Messdaten zu. Hierzu erfolgt die Analyse des Ausgangszustandes und abschließend des Zustandes nach trennender Bearbeitung, welche begleitend mittels digitaler Bildkorrelation hinsichtlich des Verzuges untersucht wurden. So ist zu beobachten, dass die Geometrie deutlichen Einfluss auf Relaxation und Umlagerung der Eigenspannungen hat und damit die Risssicherheit positiv beeinflussen kann. T2 - 23. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 29.03.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen KW - Residual stress PY - 2023 AN - OPUS4-59231 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Korrelation von Wärmeführung, Nahtgeometrie, Bauteildesign und Eigenspannungen bei DED-Arc mit hochfesten Zusatzwerkstoffen T2 - DVS Berichte, 43. Assistentenseminar Fügetechnik N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für formgebendes MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf Nahtgeometrie, Materialausnutzung und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung wird innerhalb eines statistischen Versuchsplans so variiert, dass die Dt8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) liegen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. T2 - 43. Assistentenseminar Füge- und Schweißtechnik 2022 CY - Chemnitz, Germany DA - 27.09.2022 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 VL - 386 SP - 1 EP - 7 PB - DVS Media CY - Düsseldorf AN - OPUS4-59232 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Fertigungsbedingte Beanspruchungen und Kaltrisssicherheit in generativ gefertigten Bauteilen aus hochfesten Feinkornbaustählen N2 - Der Vortrag gibt einen Überblick über den Einfluss der Prozessparameter auf die Eigenspannungen sowie die Härte in additiv gefertigten Bauteilen aus hochfestem stahl. Des Weiteren wird dargestellt, wie sich das Bauteildesign und trennende Fertigungsschritte auf die Eigenspannungen der Bauteile auswirken. T2 - DVS Arbeitsgruppe (AG) V 12 CY - Online meeting DA - 15.11.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-59235 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf- Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Neutronen- und Röntgendiffraktion Zur Einflussanalyse des Bauteil-Designs auf die Eigenspannungen bei der additiven Fertigung mit hochfestem Stahl N2 - Der Vortrag gibt einen Überblick über die mittels XRD und Neutronenbeugung ermittelten Eigenspannungen in additiv gefertigten Bauteilen. Zusätzliche wird der Einfluss von Geometrieparameters auf de Eigenspannungen betrachtet T2 - Sitzung DIN NA 092-00-05 GA CY - Berlin, Germany DA - 15.03.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-59236 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Hensel, J. T1 - Fertigungsbedingte Beanspruchungen und Kaltrisssicherheit in generativ gefertigten Bauteilen aus hochfesten Feinkornbaustählen - Kurzdarstellung der Projektergebnisse, FOSTA P1380 N2 - Die Verwendung hochfester Feinkornbaustähle hat für viele Anwendungen des Stahlbaus ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen mit ho-her mechanischer Beanspruchbarkeit. Weitere Zugewinne an Effizienz sind durch generative Fertigungsschritte sowie bionische Bauweisen erzielbar. Hierzu stehen bereits kommerzielle hochfeste drahtförmige Zusatzwerkstoffe für formgebendes MSG-Schweißen zur Verfügung. Dem Einsatz stehen noch fehlende quantitative Aussagen zu den fertigungsbedingten Beanspruchungen und der Bauteilsicherheit während Herstellung und Betrieb im Wege. Dies betrifft insbesondere prozess- sowie materialbedingte Einflüsse und die konstruktive Schrumpfbehinderung verbunden mit der Ausbildung hoher Zugeigenspannungen und damit zusammenhängenden Kaltrissbildung. Hierfür wurden im Projekt detaillierte und anwenderbezogene Kenntnisse zu den komplexen Wechselwirkungen zwischen Schweißprozess und Wärmeführung während der Fertigung, der metallurgischen Vorgänge und insbesondere der vorliegenden konstruktiven Einflüsse auf die entstehenden Eigenspannungen erarbeitet, um ein frühzeitiges Bauteilversagen aufgrund eines hohen fertigungsbedingten Beanspruchungsniveaus bis hin zu einer Rissbildung während der Fertigung sicher zu vermeiden. Gleichzeitig wurden die Einflüsse auf die mechanisch-technologischen Gütewerte systematisch analysiert. Zudem wurden die Auswirkungen trennender Verfahren durch Entfernen der Substratplatte sowie durch die spanende Bearbeitung der Vorformlinge zu Endbauteilgeometrien geklärt, da diese unmittelbar den Eigenspannungszustand beeinflussen und deutlichen Verzug der Bauteile auslösen. Für das generative Schweißen konnten Verarbeitungsempfehlungen sowie Normenvorgaben erarbeitet werden. Dies hilft insbesondere KMU eine wirtschaftliche, beanspruchungsgerechte und risssichere generative Fertigung von Bauteilen aus hochfesten Feinkornbaustählen zu ermöglichen. KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Kaltrisssicherheit KW - Hochfester Stahl PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582198 N1 - Das IGF-Vorhaben IGF-Nr. 21162 BG (P 1380) "Fertigungsbedingte Beanspruchungen und Kaltrisssicherheit in generativ gefertigten Bauteilen aus hochfesten Feinkornbaustählen" der Forschungsvereinigung Stahlanwendung e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. SP - 1 EP - 2 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-58219 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss trennender Fertigungsschritte auf die Eigenspannungen in additiv gefertigten Bauteilen aus hochfestem Stahl N2 - Additive Fertigungsverfahren wie das Wire Arc Additive Manufacturing (WAAM) ermöglichen die effiziente Fertigung von gewichtsoptimierten endkonturnahen Strukturen in modernen Stahlkonstruktionen. Ihre Effizienz kann weiter durch die Verwendung von hochfesten Stählen gesteigert werden. Dies erlaubt eine signifikante Einsparung von Kosten, Zeit und Ressourcen. Entsprechende Schweißzusatzwerkstoffe für Lichtbogenschweißverfahren sind kommerziell verfügbar. Fehlende Richtlinien und fehlende quantitative Kenntnisse über die schweißtechnische Beanspruchung während der Fertigung und im Betrieb limitieren den industriellen Einsatz stark. Daher werden in einem aktuellen Vorhaben (IGF-Nr. 21162 BG) der BAM und TU Chemnitz die wesentlichen Einflüsse und komplexen Interaktionen durch Werkstoff, Fertigungsprozess, Konstruktion und trennende Fertigungsschritte auf den Beanspruchungszustand untersucht. Der vorliegende Beitrag fokussiert hierfür die Auswirkungen trennender Fertigungsschritte auf Verzug und Eigenspannungen definierter WAAM-Prüfkörper. Die Eigenspannungsanalyse erfolgt mittels Röntgenbeugung. Die große Anzahl an Ergebnissen von zuvor untersuchten Referenzproben, die mit einem speziellen WAAM-Massivdraht (Streckgrenze >820 MPa) bei unterschiedlicher Wärmeführung und Geometrie vollautomatisiert geschweißt wurden, lässt eine Korrelation der Messdaten zu. Hierzu erfolgt die Analyse des Ausgangszustandes und abschließend des Zustandes nach trennender Bearbeitung, welche begleitend mittels digitaler Bildkorrelation hinsichtlich des Verzuges untersucht wurden. So ist zu beobachten, dass die Geometrie deutlichen Einfluss auf Relaxation und Umlagerung der Eigenspannungen hat und damit die Risssicherheit positiv beeinflussen kann. T2 - Werkstofftechnisches Kolloquium 2023 Chemnitz CY - Chemnitz, Germany DA - 29.03.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-57690 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -