TY - JOUR A1 - Kulka, M. W. A1 - Donskyi, Ievgen A1 - Wurzler, Nina A1 - Salz, D. A1 - Özcan Sandikcioglu, Özlem A1 - Unger, Wolfgang A1 - Haag, R. T1 - Mussel-Inspired Multivalent Linear Polyglycerol Coatings Outperform Monovalent Polyethylene Glycol Coatings in Antifouling Surface Properties N2 - Biofouling constitutes a major challenge in the application of biosensors and biomedical implants, as well as for (food) packaging and marine equipment. In this work, an antifouling surface coating based on the combination of mussel-inspired dendritic polyglycerol (MI-dPG) and an amine-functionalized block copolymer of linear polyglycerol (lPG−b−OA11, OA = oligo-amine) was developed. The coating was compared to a MI-dPG surface which was postfunctionalized with commercially available amine-terminated Polyethylene glycol (HO−PEG−NH2) of similar molecular weight. In the current work, These coatings were compared in their chemical stability, protein fouling characteristics, and cell fouling characteristics. The lPG−b−OA11-functionalized coating showed high chemical stability in both phosphate buffered saline (PBS) and sodium dodecyl sulfate (SDS) solutions and reduced the adhesion of fibrinogen from human plasma with 99% and the adhesion of human serum albumin with 96%, in comparison to the bare titanium dioxide substrate. Furthermore, the Proliferation of human umbilical vein endothelial cells (HUVECs) was reduced with 85% when the lPG−b−OA11 system was compared to bare titanium dioxide. Additionally, a reduction of 94% was observed when the lPG−b−OA11 system was compared to tissue culture polystyrene. KW - Antifouling surface coatings KW - Human umbilical cell adhesion KW - Linear polyglycerol KW - Polyethylene glycol KW - Mussel-inspired adhesives PY - 2019 DO - https://doi.org/10.1021/acsabm.9b00786 VL - 2 IS - 12 SP - 5749 EP - 5759 PB - ACS AN - OPUS4-50342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Schütter, J. D. A1 - Wagner, R. A1 - Dimper, M. A1 - Lützenkirchen-Hecht, D. A1 - Özcan Sandikcioglu, Özlem T1 - Trained to corrode: Cultivation in the presence of Fe(III) increases the electrochemical activity of iron reducing bacteria – An in situ electrochemical XANES study N2 - This paper reports results from in situ electrochemical X-ray absorption near-edge spectroscopy (XANES) studies of the corrosion processes on model thin iron films in the presence of iron reducing bacteria Shewanella putrefaciens. Here we investigate the electrochemical activity of two cultures grown in the presence and absence of Fe(III) citrate in the culture medium. The XANES spectra and the OCP data of the Fe sample incubated with the culture grown in absence of Fe(III) did not show any significant changes during twenty hours of monitoring. In the case of the culture grown in Fe(III) containing medium, an accelerated dissolution of the iron film was observed together with the formation of a mixed Fe(II)-Fe(III) hydroxide surface layer. The open circuit potential (OCP) steadily approached the free corrosion potential of iron in neutral chloride containing electrolytes, indicating a continuous dissolution process without passivation. KW - Microbiologically influenced corrosion KW - XANES KW - Electrochemistry KW - Iron reducing bacteria PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505732 DO - https://doi.org/10.1016/j.elecom.2020.106673 VL - 112 SP - 106673 PB - Elsevier B.V. AN - OPUS4-50573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Schutter, Jan David A1 - Wagner, R. A1 - Dimper, Matthias A1 - Lützenkirchen-Hecht, D. A1 - Özcan Sandikcioglu, Özlem T1 - Abundance of Fe(III) during cultivation affects the microbiologically influenced corrosion (MIC) behaviour of iron reducing bacteria Shewanella putrefaciens N2 - The effect of the presence of Fe(III) during the cultivation on the electrochemical activity and corrosion behaviour of dissimilatory iron reducing bacteria Shewanella putrefaciens was studied by means of ex situ and in situ X-ray absorption near-edge spectroscopy (XANES). Stainless steel AISI 304 and thin iron films were studied as substrates. XANES analysis indicated an accelerated iron dissolution and growth of an oxide/hydroxide film for the culture grown with Fe(III) in comparison to the culture grown in absence of Fe(III). Electrochemical Analysis indicated that the biofilm resulted in acceleration of the general corrosion but provides protection against local corrosion. KW - Stainless Steel KW - XANES KW - Iron KW - Cyclic Voltammetry KW - Microbiological Corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513788 DO - https://doi.org/10.1016/j.corsci.2020.108855 VL - 174 SP - 108855 PB - Elsevier Ltd. AN - OPUS4-51378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Sobol, Oded A1 - Altmann, Korinna A1 - Radnik, Jörg A1 - Özcan Sandikcioglu, Özlem T1 - Preconditioning of AISI 304 stainless steel surfaces in the presence of flavins—Part I: Effect on surface chemistry and corrosion behavior N2 - Stainless steel AISI 304 surfaces were studied after a mild anodic polarization for oxide growth in the presence and absence of two derivatives of vitamin B2 (riboflavin and flavin mononucleotide) that can be secreted by metal‐reducing bacteria and act as a chelating agent for iron species. The alterations in oxide chemistry were studied by means of surface‐sensitive techniques such as X‐ray photoelectron spectroscopy and time‐of‐flight secondary ion mass spectrometry analysis. The complementary electrochemical characterization revealed a preferential growth of an oxide/hydroxide iron‐rich film that is responsible for an altered pit initiation and nucleation behavior. These findings suggest that as the corrosion behavior is determined by the interplay of the chemical and electronic properties, only a mild anodic polarization in the presence of redox‐active molecules is able to alter the chemical and electronic structure of the passive film formed on stainless steel AISI 304. This helps to achieve a profound understanding of the mechanisms of microbially influenced corrosion (MIC) and especially the possible effects of the redox‐active biomolecules, as they may play an important role in the corrosion susceptibility of stainless steel surfaces. KW - Corrosion KW - Stainless steel KW - Surface analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528117 DO - https://doi.org/10.1002/maco.202012191 VL - 72 IS - 6 SP - 974 EP - 982 PB - Wiley AN - OPUS4-52811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -