TY - CONF A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Ulbricht, Alexander A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Kromm, Arne A1 - Madia, Mauro ED - Bruno, Giovanni T1 - A Critical Discussion on the Diffraction-Based Experimental Determination of Residual Stress in AM Parts N2 - As opposed to reviewing results on experimental determination of residual stress by diffraction, this paper discusses the open issues when dealing with residual stress determination in additive manufactured parts, in particular those manufactured with laser powder bed fusion techniques. Three points are addressed in detail: (a) the proper determination of the strain-free reference d0, (b) the problem of the determination of the principal axes, and (c) the use of the correct diffraction elastic constants. It is shown that all methods to determine the strain-free reference d0 suffer from caveats, and care must be taken in evaluating the most suitable for the problem being tackled. In addition, it is shown that, in some systems, the principal axes do correspond to the geometrical axes of the specimen, but this needs to be systematically checked, especially in the case of uni- or bidirectional hatching strategies. Finally, the need to experimentally determine the proper diffraction elastic constants is underlined, especially in the case of strongly textured specimens, which again depends on the deposition strategy. T2 - ASTM ICAM 2020 – ASTM International Conference on Additive Manufacturing CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Diffraction KW - Residual Stress PY - 2020 DO - https://doi.org/10.1520/STP163120190148 VL - STP1631 SP - 122 EP - 138 PB - ASTM International CY - USA AN - OPUS4-51347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Zhang, Zhen A1 - Malow, Marcus A1 - Bruno, Giovanni T1 - 3D characterisation of ammonium nitrate powders by X-ray computed tomography N2 - The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually called ANFO, is extensively used in the mining industry as a bulk industrial explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the porosity of the AN prills. Standardised tests routinely used to assess oil retention face several important limitations; the first being the difficulty to cover the wide range of porosity contents and morphologies from different types of ammonium nitrate prills; the second being the inability to evaluate the closed porosity, which is an important factor regarding the sensitivity of the explosive to detonation. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. XCT can therefore be employed to non-destructively and accurately evaluate and characterise porosity in ammonium nitrate prills. T2 - 23rd Seminar on New Trends in Research of Energetic Materials CY - Meeting was canceled DA - 01.04.2020 KW - Ammonium nitrate KW - Prill KW - Non-destructive characterisation KW - Porosity KW - Specific surface area PY - 2020 SP - 163 EP - 171 AN - OPUS4-51272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernández, R. A1 - Bokuchava, G. A1 - Toda-Caraballo, I. A1 - Bruno, Giovanni A1 - Turchenko, V. A1 - Gorshkova, Y. A1 - González-Doncel, G. T1 - Analysis of the Combined Strengthening Effect of Solute Atoms and Precipitates on Creep of Aluminum Alloys N2 - The creep strengthening mechanisms in (age-hardenable) aluminum alloys are analyzed on the basis of a new microstructural study of powder samples, an analysis of a comprehensive revision of creep data from the literature, and a new modeling approach. A strategy based on the strength difference (SD) method to separate the contributions of solid solution atoms and precipitates to creep strengthening is proposed. The new methodology considers the combination of the two contributions avoiding the need of a threshold stress term in the creep equation. The contribution of both precipitates and solid solution is taken into account by means of the analysis of the lattice parameter variation with aging time. For this study, powders of two commercial AA2xxx alloys have been analyzed using diffraction methods. The experimental results are modeled using Lubarda’s approach combined with the SD method. KW - Composites KW - Aluminum alloys KW - Creep models KW - Neutron Diffraction KW - Stress exponent PY - 2020 DO - https://doi.org/10.1002/adem.201901355 VL - 22 IS - 4 SP - 1901355 PB - WILEY-VCH Verlag AN - OPUS4-51055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Chen, C. A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Onel, Yener A1 - Staude, A. A1 - Prinz, Carsten A1 - Stroh, Julia A1 - Feldmann, Ines T1 - Orientation of pore space in diesel particulate filter materials N2 - Porous ceramic diesel particulate filters (DPFs) are extruded products that possess macroscopic anisotropic mechanical and thermal properties. This anisotropy is caused by both morphologic features (mostly the orientation of porosity) and crystallographic texture. We systematically studied those two aspects in a cordierite and two aluminum titanate (AT) ceramic materials of different porosity using mercury porosimetry, gas adsorption, electron microscopy, X-ray diffraction, and X-ray refraction radiography. We found that a lower porosity in AT content implies a larger isotropy of both the crystal texture and the porous space orientation. We also found that, analogous to cordierite, AT crystallites do align with their axis of negative thermal expansion along the extrusion direction. However, unlike what found for cordierite, the aluminium titanate crystallite form is such that a more pronounced (0 0 2) texture along the extrusion direction implies porosity aligned perpendicular to it. T2 - 6th Cellular Materials CellMAT 2020 CY - Online meeting DA - 07.10.2020 KW - Microstructure-property relations KW - Preferred orientation KW - X-ray refraction KW - Pore orientation KW - Crystal structure KW - Extrusion PY - 2020 AN - OPUS4-51451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Léonard, Fabien A1 - Zhang, Zhen A1 - Krebs, Holger A1 - Bruno, Giovanni T1 - Morphological characterisation of explosive powders by XCT: When grain numbers count N2 - Ammonium nitrate (AN) prills are commonly used as an ingredient in industrial explosives and in fertilisers. Conventional techniques (such as BET or mercury intrusion porosimetry) can measure the open porosity and specific surface area of AN prill, but the closed porosity is not obtainable. This work was focused on evaluating X-ray computed tomography (XCT) as a non-destructive technique for the assessment of porosity in AN prills. An advanced data processing workflow was developed so that the segmentation and quantification of the CT data could be performed on the entire 3D volume, yet allowing the measurements (e.g.; volume, area, shape factor…) to be extracted for each individual phase (prill, open porosity, closed porosity) of each individual prill, in order to obtain statistically relevant data. Clear morphological and structural differences were seen and quantified between fertiliser and explosive products. Overall, CT can provide a very wide range of parameters that are not accessible to other techniques, destructive or non-destructive, and thus offers new insights and complementary information. T2 - 10th Conference on Industrial Computed Tomography (iCT 2020) CY - Wels, Austria DA - 04.02.2020 KW - Ammonium nitrate KW - Prill KW - Non-destructive characterisation KW - Porosity KW - Specific surface area PY - 2020 UR - http://www.ndt.net/?id=25118 SN - 1435-4934 VL - 25 IS - 2 SP - 1 EP - 6 PB - NDT.net CY - Kirchwald AN - OPUS4-50348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -