TY - CONF A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Gook, S. A1 - Rethmeier, Michael T1 - Investigation of the mechanical properties of single-pass hybrid laser-arc welded thick X120 pipeline steel plates N2 - High heat input leads to grain coarsening and softening in WM and HAZ; the tensile strength is reduced. Low heat input leads to inadmissible hardening in the WM; the impact strength is reduced. The proposed t8/5-time of 3 s to 15 s could be achieved through the reduced welding velocity. The concept of electromagnetic weld pool support system allowed single-pass welds in flat position without gravity drop-outs even for reduced welding speeds; in this way the heat input can be controlled. The adaptation of the electromagnetic weld pool support system to laser and laser hybrid welding process can dramatically increase the potential field of application of these technologies for real industrial implementation. T2 - 14th Pipeline Technology Conference 2019 CY - Berlin, Germany DA - 18.03.2019 KW - Toughness KW - Hybrid laser-arc welding KW - Pipeline steel X120 KW - Electromagnetic weld pool support KW - Mechanical properties PY - 2019 AN - OPUS4-49894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ö. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Single-pass Hybrid Laser Arc Welding of Thick Materials Using Electromagnetic Weld Pool Support T2 - Lasers in Manufacturing Conference 2019 N2 - Hybrid laser-arc welding process allows single-pass welding of thick materials, provides good quality formation of joints with minimal thermal deformations and a high productivity in comparison with arc-based welding processes. Nevertheless, thick-walled steels with a thickness of 20 mm or more are still multi-pass welded using arc welding processes, due to increased process instability by increasing laser power. One limitation factor is the inadmissible formation of gravity drop-outs at the root. To prevent this, an innovative concept of electromagnetic weld pool support is used in this study. With help of such system a stable welding process can be established for 25 mm thick steel plates and beyond. Sound welds could be obtained which are tolerant to gaps and misalignment of the welded parts. The adaptation of this system to laser and hybrid laser-arc welding process can dramatically increase the potential field of application of these technologies for real industrial implementation. T2 - Lasers in Manufacturing Conference 2019 CY - Munich, Germany DA - 24.06.2019 KW - Full Penetration KW - Hybrid Laser Arc Welding KW - Electromagnetic Weld Pool Support KW - Thick Materials PY - 2019 SP - 1 EP - 8 PB - WLT Wissenschaftliche Gesellschaft Lasertechnik e.V. AN - OPUS4-48971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ö. A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Mechanical Properties of Single-pass Hybrid Laser Arc Welded 25 mm Thick-walled Structures Made of Fine-grained Structural Steel JF - Procedia Manufacturing N2 - The presented study deals with the performing and mechanical testing of single pass hybrid laser-arc welds (HLAW) on 25 mm thick plates made of steel grade S355J2. One of the challenges have to be solved at full penetration HLAW of thick plates is the drop formation occurring due to the disbalances of the forces acting in the keyhole and on the melt pool surface. Such irregularities mostly limit the use of high-power laser beam welding or HLAW of thick-walled constructions. To overcome this problem, an innovative concept of melt pool support based on generating Lorentz forces in the weld pool is used in this work. This method allows to perform high quality welds without sagging even for welding of 25 mm thick plates in flat position at a welding speed of 0.9 m min-1. For the obtain of full penetrated welds a laser beam power of 19 kW was needed. A high V-impact energy of up to 160 J could be achieved at the test temperature of 0 °C. Even at the most critical part in the weld root an impact energy of 60 J in average could be reached. The tensile strength of the weld reaches that of the base material. An introduce of the HLAW process with electromagnetic support of the melt pool in the industrial practice is an efficient alternative to the time- and cost-intensive arc-based multi-layer welding techniques which are established nowadays for joining of thick-walled constructions. KW - Mechanical Properties KW - Hybrid Laser Arc Welding KW - Thick-walled Structures KW - Fine-grained Steel PY - 2019 DO - https://doi.org/10.1016/j.promfg.2019.08.016 SN - 2351-9789 VL - 36 SP - 112 EP - 120 PB - Elsevier B.V. AN - OPUS4-48969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ö. A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of the mechanical properties of single-pass hybrid laser-arc welded thick X120 pipeline steel plates T2 - Proceedings of the Pipeline Technology Conference 2019 N2 - With global increases in clean energy demand, the natural gas is gaining in importance. Pipelines are the safest and most cost-effective way of transporting natural gas. Due to high transport volume and resulting high operation pressure, the demand for ultra-high strength steel grades such as X120 is very strong. As a result of the fact that these steels are produced by thermo-mechanical controlled processing, the welding process must be selected accordingly. Based on investigations, a high heat input such as by submerged arc welding process leads to softening in the weld metal and loss of strength whereas pure laser beam welding results in high cooling rates and deteriorate toughness of the weld metal. The objective of this research is to investigate the influence of heat input to mechanical properties of hybrid laser-arc welded pipeline steels of grade X120. Test specimens with a thickness of 20 mm could be welded without preheating in a single-pass with different welding velocities to observe the largest possible parameter window of the heat input. The achieved V-notch impact energy for hybrid laser-arc welded samples was 144±37 J at a testing temperature of -40 °C. With a tensile strength of 930±4 MPa the requirements of API 5L was achieved. To prevent gravity drop-outs at the slow welding speeds, an electromagnetic weld pool support system was used, which works contactless and is based on generating Lorentz forces. It was therefore possible to control the cooling rate in order to meet the requirements of the mechanical properties. By adapting the electromagnetic weld pool support to the laser and laser hybrid welding process, the application potential of these technologies for industrial implementation can be drastically increased. T2 - 14th Pipeline Technology Conference CY - Berlin, Germany DA - 18.03.2019 KW - Mechanical properties KW - Hybrid laser arc welding KW - Pipeline steel X120 PY - 2019 UR - https://www.pipeline-conference.com/conferences/14th-pipeline-technology-conference-2019 SN - 2510-6716 SP - 1 EP - 10 AN - OPUS4-48970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Mohr, Gunther T1 - The Influence of the Temperature Gradient on the Distribution of Residual Stresses in AM AISI 316L N2 - Steep temperature gradients and solidification shrinkage are the main contributors to the formation of residual stresses in additively manufactured metallic parts produced by laser beam melting. The aim of this work was to determine the influence of the temperature gradient. Diffraction results show a similar pattern for both specimens, indicating the shrinkage to be more dominant for the distribution of residual stresses than the temperature gradient. Thermography results imply that a higher energy input result in higher compressive residual stresses in the bulk. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting KW - Neutron Diffraction PY - 2019 AN - OPUS4-48075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Mohr, Gunther T1 - µCT as Benchmark for Online Process Monitoring N2 - µCT is used to validate the capability of online monitoring for in-situ detection of defects during the L-PBF build process, which is a focus of the TF project ProMoAM. Our first experiments show that online monitoring using thermography and optical tomography cameras are able to detect defects in the built part. But further research is needed to understand root cause of the correlation. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting PY - 2019 AN - OPUS4-48073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Thiede, Tobias A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - How Temperature Gradient Influences the Formation of Residual Stresses in Metallic Parts Made by L-PBF N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured (AM) parts and important factors for residual stress formation which have implications on structural integrity. This study examined the influence of heat input on the distribution of residual stresses in two prisms produced by laser powder bed fusion (L-PBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two distinct helix scanning strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. Residual stresses were characterised at one plane perpendicular to the building direction at half of its build height using neutron diffraction. In addition, the defect distribution was analysed via micro X-ray computed tomography (µCT) in a twin specimen. Both scanning strategies reveal residual stress distributions typical for AM: compressive stresses in the bulk and tensile stresses at the surface. However, temperature gradients and maximum stress levels differ due to the different heat input. Regarding the X-ray µCT results, they show an accumulation of defects at the corners where the laser direction turned through 90°. The results demonstrate that neutron diffraction and X-ray µCT can be successfully used as non-destructive methods to analyse through-thickness residual stress and defect distribution in AM parts, and in the presented case, illustrate the influence of scanning strategies. This approach contributes to deeper assessment of structural integrity of AM materials and components. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norwegen DA - 09.09.2019 KW - AGIL KW - Neutron diffraction KW - Thermography KW - Additive manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Uhlmann, E. A1 - Düchting, J. A1 - Petrat, T. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Heat treatment of SLM-LMD hybrid components T2 - Lasers in Manufacturing Conference 2019 N2 - Additive manufacturing is no longer just used for the production of prototypes but already found its way into the industrial production. However, the fabrication of massive metallic parts with high geometrical complexity is still too time-consuming to be economically viable. The combination of the powder bed-based selective laser melting process (SLM), known for its geometrical freedom and accuracy, and the nozzle-based laser metal deposition process (LMD), known for its high build-up rates, has great potential to reduce the process duration. For the industrial application of the SLM-LMD hybrid process chain it is necessary to investigate the interaction of the processes and its effect on the material properties to guarantee part quality and prevent component failure. Therefore, hybrid components are manufactured and examined before and after the heat treatment regarding the microstructure and the hardness in the SLM-LMD transition zone. The experiments are conducted using the nickel-based alloy Inconel 718. T2 - LiM 2019 CY - München, Germany DA - 23.06.2019 KW - Additive Manufacturing KW - Selective Laser Melting KW - Hybrid components KW - Inconel 718 KW - Laser Metal Deposition PY - 2019 SP - 1 EP - 9 AN - OPUS4-48410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Quality improvement of laser welds on thick duplex plates by laser cladded buttering N2 - Because of its excellent corrosion resistance, high tensile strength and high ductility, duplex stainless steel 2205 offers many areas of application. Though laser beam welding accompanied by high cooling rates, duplex steels tend to perform higher ferrite contents in weld metal as the base metal, which leads to a reduction of ductility and corrosion resistance of the weld joint. To overcome this problem, a solution, based on buttering the plate edges by laser metal deposition (LMD) with material containing higher Ni concentrations prior to laser welding was suggested. In this context different process parameters for LMD and different mixtures of duplex and nickel powder, were investigated. In a second step the possibility of welding those edges defect free while achieving balanced austenite-ferrite ratio was verified with metallographic analysis, Electron Backscatter Diffraction (EBSD) and impact testing according to Charpy. The improved corrosion resistance was observed with ASTM G48 standard test method. T2 - Lasers in Manufacturing- LiM 2019 CY - Munich, Germany DA - 24.07.2019 KW - Stainless Steel KW - Laser Metal Deposition KW - Laser Beam Welding KW - Duplex PY - 2019 AN - OPUS4-49365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of cladded buffering on thick duplex plates for laser welding N2 - Because of its excellent corrosion resistance, a high tensile strength together with a high ductility, duplex stainless steel 2205 offers many areas of application in the chemical and the offshore industry, to name just two. Though welding, especially laser beam welding accompanied by high cooling rates, duplex steels tend to perform higher ferrite contents in weld metal upon cooling down from melting temperature as the base metal. This trend leads to a reduction of the ductility as well as the corrosion resistance of the weld joint. To overcome this problem a solution, based on buffering the plate edges by laser metal deposition with material containing higher Ni concentrations prior to the laser welding was suggested. This method offers more benefits in comparison to conventional usage of higher Ni-alloyed filler wire due to the better control over Ni-distribution in the weld seam, resulting in balanced austenite- ferrite ratio everywhere in the weld metal. In this context different mixtures of duplex and nickel powder were investigated as well as different process parameters, that enable a smooth surface structure with slightly reduced ferrite contents. In a second step the possibility of welding those edges defect free with standard parameters while achieving balanced austenite- ferrite ratio was verified with metallographic analysis of the microstructure, Electron Backscatter Diffraction (EBSD) and impact testing according to Charpy. The improved corrosion resistance of the welds in comparison to unbuffered ones was observed with the ASTM G48 standard test method. T2 - IIW 2019 CY - Bratislava, Slowakia DA - 07.07.2019 KW - Stainless Steel KW - Laser Metal Deposition KW - Laser Beam Welding KW - Duplex PY - 2019 AN - OPUS4-49366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -