TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Lyamkin, V. A1 - Bruno, Giovanni A1 - Pittner, Andreas A1 - Wimpory, Robert A1 - Boin, M. A1 - Kreutzbruck, Marc T1 - Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings JF - Journal of Magnetism and Magnetic Materials N2 - The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction(ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth. KW - GMR KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - TIG-welding PY - 2017 DO - https://doi.org/10.1016/j.jmmm.2016.11.102 SN - 0304-8853 SN - 1873-4766 VL - 426 SP - 580 EP - 587 PB - Elsevier CY - Amsterdam AN - OPUS4-38678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Pelkner, Matthias A1 - Lyamkin, Viktor A1 - Sonntag, Nadja A1 - Bruno, Giovanni A1 - Skrotzki, Birgit A1 - Kreutzbruck, Marc T1 - Evaluation of high spatial resolution imaging of magnetic stray fields for early damage detection T2 - AIP Conference Proceeding N2 - The paper discusses the evaluation of elastic and plastic strain states in two low-carbon steels of the same steel group with high spatial resolution GMR (giant magneto resistance) sensors. The residual stress distributions of tungsten inert gas welded plates were determined by means of neutron diffraction as a reference. The normal component of local residual magnetic stray fields arise in the vicinity of the positions of maximum stress. The experiments performed on flat tensile specimen indicate that the boundaries of plastic deformations are a source of stray fields. The spatial variations of magnetic stray fields for both the weld and the tensile samples are in the order of the earths magnetic field. T2 - 43rd Annual Review of Progress in Quantitative Nondestructive Evaluation, Volume 36 CY - Atlanta, Georgia, USA DA - 17.07.2016 KW - Plastic deformation KW - GMR KW - Neutron diffraction KW - Residual stress KW - Microstructure KW - Low carbon steel KW - TIG weld PY - 2017 SN - 978-0-7354-1474-7 DO - https://doi.org/10.1063/1.4974688 SN - 0094-243X VL - 1806 IS - 1 SP - Article UNSP 110010-1 EP - 10 PB - AIP Publishing CY - Melville, NY 11747 AN - OPUS4-39279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Kromm, Arne A1 - Seyfert, Christoph A1 - Farahbod, Lena A1 - Haberland, Christoph A1 - Schneider, Judith Ann A1 - Portella, Pedro Dolabella A1 - Bruno, Giovanni T1 - Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718 JF - Materials and Design N2 - In the present study, samples fabricated by varying the deposition hatch length during selective laser melting of nickel based superalloy Inconel 718 were investigated. Microstructure and texture of these samples was characterized using scanning electron microscopy, combined with electron back-scattered diffraction, and residual stress assessment, using neutron diffraction method. Textured columnar grains oriented along the sample building direction were observed in the shorter hatch length processed sample. A ten-fold increase in the hatch length reduced the texture intensity by a factor of two attributed to the formation of finer grains in the longer hatch length sample. Larger gradients of transverse residual stress in the longer hatch length sample were also observed. Along the build direction, compressive stresses in the shorter hatch length and negligible stresses for the longer hatch length specimen were observed. Changes to the temperature gradient (G) in response to the hatch length variation, influenced the G to growth rate (R) ratio and the product G × R, in agreement with the microstructures and textures formed. For the residual stress development, geometry of the part also played an important role. In summary, tailored isotropy could be induced in Inconel 718 by a careful selection of parameters during selective laser melting. KW - Additive manufacturing KW - Nickel-based superalloy KW - Microstructure and texture KW - Residual stress KW - Electron back-scattered diffraction KW - Neutron diffraction PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0264127517308018 DO - https://doi.org/10.1016/j.matdes.2017.08.049 SN - 0264-1275 VL - 134 SP - 139 EP - 150 PB - Elsevier CY - Oxford, UK AN - OPUS4-41606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Artzt, Katia A1 - Haubrich, J. A1 - Klaus, M. A1 - Genzel, Ch. A1 - Requena, G. A1 - Bruno, Giovanni T1 - An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V JF - Materials N2 - Ti-6Al-4V bridges were additively fabricated by selective laser melting (SLM) under different scanning speed conditions, to compare the effect of process energy density on the residual stress state. Subsurface lattice strain characterization was conducted by means of synchrotron diffraction in energy dispersive mode. High tensile strain gradients were found at the frontal surface for samples in an as-built condition. The geometry of the samples promotes increasing strains towards the pillar of the bridges. We observed that the higher the laser energy density during fabrication, the lower the lattice strains. A relief of lattice strains takes place after heat treatment. KW - Selective laser melting KW - Additive manufacturing KW - Heat treatment KW - Ti-6Al-4V KW - Synchrotron X-ray diffraction KW - Residual stress PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395759 DO - https://doi.org/10.3390/ma10040348 SN - 1996-1944 VL - 10 IS - 4 SP - Article 348, 1 EP - 14 AN - OPUS4-39575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -