TY - JOUR A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Hannemann, Andreas A1 - Friedersdorf, Peter A1 - Kannengießer, Thomas A1 - Gibmeier, J. T1 - In-situ load analysis in multi-run welding using LTT filler materials N2 - Modifying the level of mostly detrimental welding residual stresses already during the welding process would be highly attractive as time- and cost-consuming post processing may be prevented. The nature of stress buildup during welding-associated cooling is highly affected by phase transformations. Up to now, it is not clear in which way this is applicable to real component welding exhibiting high shrinkage restraint and complex heat input. In this study, two different low transformation temperature (LTT) alloys have been investigated concerning the stress development in restrained multi-run butt welding in order to evaluate the potential of stress reduction. Pulsed gas metal arc welding (P-GMAW) welding was executed on a testing facility designed to simulate real lifelike restraint conditions of component weldments. The effect of reducedMS-temperatures and the heat control on the globally acting stresses was monitored by in-situ measurement of the reaction forces during welding fabrication. Additional local residual stress measurements allowed analyzing global as well as local loading of the welded construction. Although phase transformation has a significant influence on unloading the joint during each weld pass, the reaction stress upon cooling to room temperature seems to be determined mainly by the heat input. On the surface, low longitudinal residual stresses were observed in case of LTT whereas transverse residual stresses are less affected. T2 - 69th IIW Annual Assembly and International Conference CY - Melbourne, Australia DA - 10.07.2016 KW - Phase transformation temperature KW - Residual stress KW - Welding KW - Dilution KW - Restraint PY - 2016 U6 - https://doi.org/10.1007/s40194-016-0373-1 SN - 0043-2288 VL - 60 IS - 6 SP - 1159 EP - 1168 PB - Springer CY - Heidelberg AN - OPUS4-37892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burbank, John A1 - Woydt, Mathias T1 - Optimization of pre-conditioned cold work hardening of steel alloys for friction and wear reductions under slip-rolling contact N2 - The goal of reducing CO2 emissions in the automobile industry has led to the development of increasingly efficient lightweight material solutions that yield enhanced performance. In light of this goal, this current work involves the optimization of the pre-conditioning of novel, high toughness steel bearings without thermo-chemical treatment, with the aim of transferring the running-in phase into the final step of the mechanical finishing process. A case-hardened gear steel and two novel non-case-hardened steels were evaluated. KW - Work hardening KW - Steel KW - Gear KW - Bearing KW - Residual stress KW - Hardness PY - 2016 U6 - https://doi.org/10.1016/j.wear.2016.01.011 SN - 0043-1648 VL - 350-351 SP - 141 EP - 154 PB - Elsevier B.V. CY - Amsterdam, u.a. AN - OPUS4-35665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -