TY - CONF A1 - Agudo Jácome, Leonardo T1 - Effect of a circular notch on [001] tensile creep behavior of the Ni-base superalloy single crystal LEK 94 at 1020 °C N2 - Ni-base superalloy single crystals have been used in turbine blades for hot sections of gas turbines for over four decades. In order to increase the efficiency of the turbines, a continuous increase in the inlet temperature of combustion gases into the turbine has driven the design of turbine blades to complicated shapes and the presence of a complex pattern of cooling channels. These three-dimensional shapes, together with the inhomogeneous distribution of stresses along the blade, induce an also complicated triaxial stress state, which does not compare to uniaxial tests that are performed to characterize high temperature properties such as creep. A round notch on a test piece represents a simple configuration that generates a quasi-isostatic stress state across the notch. In the present contribution, the effect of a sharp round notch on the microstructural micromechanisms within the notched region cylindrical bars, loaded along [001] at 1020 °C and 160 MPa net stress, is studied. To this end, a series of interrupted creep tests is conducted on plain and notched bars and the microstructure is compared. Results are discussed in terms of degree microstructural coarsening, and dislocation activity. The effect of notch generation via grinding is also discussed in these terms. The presence of carbides evolving in from residual carbon is also shown and discussed. .Funding by the German Research Association (DFG) [grant number AG 191/1] is acknowledge T2 - DGM-Arbeitskreis mechanisches Werkstoffverhalten bei hoher Temperatur CY - Hochschule Augsburg, Germany DA - 20.09.2018 KW - Superalloy single crystals KW - Microstructure KW - Electron microscopy KW - Creep KW - Multiaxial stress state PY - 2018 AN - OPUS4-46050 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Woydt, Mathias T1 - Niobium carbide, a new cermet material with excellent properties N2 - Niobium carbide is a ceramic material which can be used with excellent results to replace tungsten carbide with cobalt binder. Furthermore, it might be manufactured by classic ceramic technologies and even colloidal processing. To achieve high toughness and strength, it is necessary to have a perfect mix of hard phase and binder, which is mainly achieved by ball milling. Mechanical and physical properties as well as results on different tribological and application-oriented machining tests are presented. The results have been compared with results obtained with NbC grades with Co and Fe3Al binders as well as with pure binderless hot-pressed NbC and SPS sintered Nb2O5. T2 - ICCCI 2018 - 6th Int. Conf. on the Characterization and Control of Interfaces for High Quality Advanced Materials and 54th Summer Symposium on Powder Technology CY - Kurashiki, Japan DA - 09.07.2018 KW - Niobium carbide KW - Cermet KW - Microstructure KW - Properties PY - 2018 AN - OPUS4-45643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -